Search results for: cover image
2111 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping
Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung
Abstract:
Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 2592110 Coronavirus Academic Paper Sorting Application
Authors: Christina A. van Hal, Xiaoqian Jiang, Luyao Chen, Yan Chu, Robert D. Jolly, Yaobin Lin, Jitian Zhao, Kang Lin Hsieh
Abstract:
The COVID-19 Literature Summary App was created for the primary purpose of enabling academicians and clinicians to quickly sort through the vast array of recent coronavirus publications by topics of interest. Multiple methods of summarizing and sorting the manuscripts were created. A summary page introduces the application function and capabilities, while an interactive map provides daily updates on infection, death, and recovery rates. A page with a pivot table allows publication sorting by topic, with an interactive data table that allows sorting topics by columns, as wells as the capability to view abstracts. Additionally, publications may be sorted by the medical topics they cover. We used the CORD-19 database to compile lists of publications. The data table can sort binary variables, allowing the user to pick desired publication topics, such as papers that describe COVID-19 symptoms. The application is primarily designed for use by researchers but can be used by anybody who wants a faster and more efficient means of locating papers of interest.Keywords: COVID-19, literature summary, information retrieval, Snorkel
Procedia PDF Downloads 1542109 Replacement of the Distorted Dentition of the Cone Beam Computed Tomography Scan Models for Orthognathic Surgery Planning
Authors: T. Almutairi, K. Naudi, N. Nairn, X. Ju, B. Eng, J. Whitters, A. Ayoub
Abstract:
Purpose: At present Cone Beam Computed Tomography (CBCT) imaging does not record dental morphology accurately due to the scattering produced by metallic restorations and the reported magnification. The aim of this pilot study is the development and validation of a new method for the replacement of the distorted dentition of CBCT scans with the dental image captured by the digital intraoral camera. Materials and Method: Six dried skulls with orthodontics brackets on the teeth were used in this study. Three intra-oral markers made of dental stone were constructed which were attached to orthodontics brackets. The skulls were CBCT scanned, and occlusal surface was captured using TRIOS® 3D intraoral scanner. Marker based and surface based registrations were performed to fuse the digital intra-oral scan(IOS) into the CBCT models. This produced a new composite digital model of the skull and dentition. The skulls were scanned again using the commercially accurate Laser Faro® arm to produce the 'gold standard' model for the assessment of the accuracy of the developed method. The accuracy of the method was assessed by measuring the distance between the occlusal surfaces of the new composite model and the 'gold standard' 3D model of the skull and teeth. The procedure was repeated a week apart to measure the reproducibility of the method. Results: The results showed no statistically significant difference between the measurements on the first and second occasions. The absolute mean distance between the new composite model and the laser model ranged between 0.11 mm to 0.20 mm. Conclusion: The dentition of the CBCT can be accurately replaced with the dental image captured by the intra-oral scanner to create a composite model. This method will improve the accuracy of orthognathic surgical prediction planning, with the final goal of the fabrication of a physical occlusal wafer without to guide orthognathic surgery and eliminate the need for dental impression.Keywords: orthognathic surgery, superimposition, models, cone beam computed tomography
Procedia PDF Downloads 2002108 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network
Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima
Abstract:
Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network
Procedia PDF Downloads 3312107 Turkish Airlines' 85th Anniversary Commercial: An Analysis of the Institutional Identity of a Brand in Terms of Glocalization
Authors: Samil Ozcan
Abstract:
Airlines companies target different customer segments in consideration of pricing, service quality, flight network, etc. and their brand positioning accords with the marketization strategies developed in the same direction. The object of this study, Turkish Airlines, has many peculiarities regarding its brand positioning as compared to its rivals in the sector. In the first place, it appeals to a global customer group because of its Star Alliance membership and its broad flight network with 315 destination points. The second group in its customer segmentation includes domestic customers. For this group, the company follows a marketing strategy that plays to local culture and accentuates the image of Turkishness as an emotional allurement. The advertisements and publicity projects designed in this regard put little emphasis on the service quality the company offers to its clients; it addresses the emotions of the consumers rather than individual benefits and relies on the historical memory of the nation and shared cultural values. This study examines the publicity work which aims at the second segment customer group focusing on Turkish Airlines’ 85th Anniversary Commercial through a symbolic meaning analysis approach. The commercial presents six stories with undertones of nationalism in its theme. Nationalism is not just the product of collective interests based on reason but a result of patriotism in the sense of loyalty to state and nation and love of ethnic belonging. While nationalism refers to concrete notions such as blood tie, common ancestor, shared history, it is not the actuality of these notions that it draws its real strength but the emotions invested in them. The myths of origin, the idea of common homeland, boundary definitions, and symbolic acculturation have instrumental importance in the development of these commonalities. The commercial offers concrete examples for an analysis of Connor’s definition of nationalism based on emotions. Turning points in the history of the Turkish Republic and the historical mission Turkish Airlines undertook in these moments are narrated in six stories in the commercial with a highly emotional theme. These emotions, in general, depend on collective memory generated by national consciousness. Collective memory is not simply remembering the past. It is constructed through the reconstruction and reinterpretation of the past in the present moment. This study inquires the motivations behind the nationalist emotions generated within the collective memory by engaging with the commercial released for the 85th anniversary of Turkish Airlines as the object of analysis. Symbols and myths can be read as key concepts that reveal the relation between 'identity and memory'. Because myths and symbols do not merely reflect on collective memory, they reconstruct it as well. In this sense, the theme of the commercial defines the image of Turkishness with virtues such as self-sacrifice, helpfulness, humanity, and courage through a process of meaning creation based on symbolic mythologizations like flag and homeland. These virtues go beyond describing the image of Turkishness and become an instrument that defines and gives meaning to Turkish identity.Keywords: collective memory, emotions, identity, nationalism
Procedia PDF Downloads 1562106 3D Estimation of Synaptic Vesicle Distributions in Serial Section Transmission Electron Microscopy
Authors: Mahdieh Khanmohammadi, Sune Darkner, Nicoletta Nava, Jens Randel Nyengaard, Jon Sporring
Abstract:
We study the effect of stress on nervous system and we use two experimental groups of rats: sham rats and rats subjected to acute foot-shock stress. We investigate the synaptic vesicles density as a function of distance to the active zone in serial section transmission electron microscope images in 2 and 3 dimensions. By estimating the density in 2D and 3D we compare two groups of rats.Keywords: stress, 3-dimensional synaptic vesicle density, image registration, bioinformatics
Procedia PDF Downloads 2802105 Copper Content in Daily Food Rations Planned and Served to Students from Selected Military Academies and Soldiers Doing Compulsory Military Service in the Polish Army
Authors: J. Bertrandt, A. Kłos, R. Waszkowski, T. Nowicki, R. Pytlak, E. Stęzycka, A. Gazdzinska
Abstract:
The aim of the work was estimation of copper intake with the daily food rations used for alimentation of students of military high schools and soldiers doing compulsory military service in the Polish Army. An average planned copper content in daily food rations used for alimentation of students and soldiers amounted to 2.49±0.35 mg, and 2.44±0.25 mg respectively. The copper content in the daily food ration given for consumption to students amounted from 1.81±0.14 mg to 2.58±0.44 mg while daily food rations served to soldiers delivered from 2.06±0.45 mg to 2.13±0.33 mg. The copper content in the rations planned for students and soldiers’ alimentation was within the limits of the norms obligatory in Poland. Daily food rations given for consumption, except rations served for students, were within the limits of the recommended norms, but food rations really eaten by examined men didn’t cover the requirements for copper.Keywords: copper, daily food ration, military service, food security, nutrition
Procedia PDF Downloads 2772104 An Initial Assessment of the Potential Contibution of 'Community Empowerment' to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve
Authors: Arzyana Sunkar, Yanto Santosa, Siti Badriyah Rushayati
Abstract:
Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an in-depth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oil-palm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of socio-cultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowermentKeywords: Actor-led solution, community empowerment, drivers of deforestation and forest degradation, Giam Siak Kecil – Bukit Batu Biosphere Reserve
Procedia PDF Downloads 3512103 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting
Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu
Abstract:
large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.Keywords: automatic attendance, face detection, haar-like cascade, manual attendance
Procedia PDF Downloads 732102 Evaluating the Impact of Urbanization on Local Biodiversity and Ecosystem Functioning: A Case Study of Algiers, Algeria
Authors: Akram Sadouki
Abstract:
Urbanization is one of the most significant drivers of biodiversity loss and ecosystem degradation. This study aims to evaluate the impact of urban expansion on local biodiversity and ecosystem functioning in Algiers, Algeria. Using a combination of field surveys, remote sensing data, and GIS analysis, we quantified changes in land use and land cover over the past three decades. Our results indicate a substantial reduction in green spaces and natural habitats, leading to a decline in native species diversity and abundance. Furthermore, we observed alterations in ecosystem services, including reduced air and water quality, increased urban heat island effects, and diminished carbon sequestration capabilities. This paper highlights the urgent need for sustainable urban planning and conservation strategies to mitigate the adverse effects of urbanization on biodiversity. We propose several policy recommendations, such as the creation of urban green belts, restoration of degraded areas, and incorporation of biodiversity considerations into city planning processes. By adopting these measures, Algiers can enhance its resilience to environmental changes and ensure the well-being of its inhabitants.Keywords: biodiversity, ecosystem functioning, Algiers, urbanization
Procedia PDF Downloads 402101 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 1502100 D6tions: A Serious Game to Learn Software Engineering Process and Design
Authors: Hector G. Perez-Gonzalez, Miriam Vazquez-Escalante, Sandra E. Nava-Muñoz, Francisco E. Martinez-Perez, Alberto S. Nunez-Varela
Abstract:
The software engineering teaching process has been the subject of many studies. To improve this process, researchers have proposed merely illustrative techniques in the classroom, such as topic presentations and dynamics between students on one side or attempts to involve students in real projects with companies and institutions to bring them to a real software development problem on the other hand. Simulators and serious games have been used as auxiliary tools to introduce students to topics that are too abstract when these are presented in the traditional way. Most of these tools cover a limited area of the huge software engineering scope. To address this problem, we have developed D6tions, an educational serious game that simulates the software engineering process and is designed to experiment the different stages a software engineer (playing roles as project leader or as a developer or designer) goes through, while participating in a software project. We describe previous approaches to this problem, how D6tions was designed, its rules, directions, and the results we obtained of the use of this game involving undergraduate students playing the game.Keywords: serious games, software engineering, software engineering education, software engineering teaching process
Procedia PDF Downloads 4962099 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 3972098 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 1692097 Streamwise Vorticity in the Wake of a Sliding Bubble
Authors: R. O’Reilly Meehan, D. B. Murray
Abstract:
In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.Keywords: bubbly flow, particle image velocimetry, two-phase flow, wake structures
Procedia PDF Downloads 3822096 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)
Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo
Abstract:
Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop
Procedia PDF Downloads 4082095 Flicker Detection with Motion Tolerance for Embedded Camera
Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan
Abstract:
CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.Keywords: illumination flicker, embedded camera, rolling shutter, detection
Procedia PDF Downloads 4242094 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 902093 Colony Size and Behaviors Characteristics of Monkeys in Peninsular Malaysia
Authors: Karimullah Karim, Shahrul Anuar, T. Dauda
Abstract:
Swarm of research on monkey behavior exists, but were concerned with an aspect of molecular study in support of human primate and non-human primates. Many researchers take an interest in the study of Primates and their environment for the reason that they are intimately connected to humans in terms of human social behaviors. In this context, a study of the activity budget of monkeys was conducted in three states of Peninsular Malaysia. The chi-square test was served to analysis the behaviors and their variances in different study areas, effects of seasonal variation on behaviors, time differences in behaviors and habituated and non-habituated behaviors of monkeys. In consequent the behavior of moving (17%) was found higher followed by climbing (15%), eating (13%), and other social behaviors. All the behavior categories were found significant at p<0.05. The most common behavior of the monkeys in conclusion has been found associated with the restiveness of the animal and that their colony size is not rigid as it depends also on some other factors. This study can therefore serve as a starting point for the understanding of comparative behaviors of monkey in general and the study of the monkey behavior is thus recommended to be expanded to cover more study areas as well as species than in the present work.Keywords: activity budget, Peninsular Malaysia, monkeys colony, behaviour
Procedia PDF Downloads 3212092 Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing
Authors: G. Rajeshwari, V. D. M. Jabez Daniel
Abstract:
Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this.Keywords: antenna, anti-collision protocols, data management system, reader, reading enhancement, tag
Procedia PDF Downloads 3072091 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 2142090 An Analysis of Brand-Building Characteristics in the Iran Airline Websites
Authors: Pedram Behyar, Zahra Bayat
Abstract:
The internet and web are changing ways of “far reaching scope and potential for transformation of the marketing functions”. The web is developing in a faster rate than any previous new communication medium. The website of destination has become a crucial branding channel, that is why all businesses are changing their way to communicate with their customers to encounter their needs and wants in better ways. Website provides numerous opportunities for businesses to strengthen their relationship with their customers. One of these opportunities is website component that enables internet users to make two-way communication with the businesses.Keywords: marketing communication, brand image, usability, privacy and security, personalization and customization, responsiveness, customer online web experience
Procedia PDF Downloads 5062089 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 1682088 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs
Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).Keywords: woody, vegetation, repeated, photographs
Procedia PDF Downloads 942087 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1182086 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI
Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal
Abstract:
Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.Keywords: fMRI, functional connectivity, task-based, beta series correlation
Procedia PDF Downloads 2742085 Histological and Morphometric Studies of the Liver of Goats Aborted
Authors: Toumi Farah, Charallah Salima
Abstract:
In the Algerian Sahara, goat farming is predominant, and it’s associated with other types of breeding, particularly camel and sheep; it also constitutes a significant proportion of breeding exclusively goat. This Saharan goat is a small ruminant with a black dress with white’s spots, hanging ears, and a coat more or less long. It is known for its hardiness and resistance to adverse conditions of arid zones and its perfect ecophysiological adaptation to harsh environmental conditions. However, pregnancy alterations, particularly abortion, degrade its productivity and cause economic losses, having both direct and indirect effects on animal production, like the costs of veterinary interventions and the reconstitution of livestock. The purpose of this work is to study the histological aspect of the liver of goats’ aborted living under nomadic herds in the region of Béni-Abbès (30° 7' N, 2° 10 'O). The organs were collected in physiological serum, rinsed, and then fixed with formaldehyde (37°, diluted at 10%). After that, these samples were processed for a topographic study. The morphometric study of the liver was performed by using an image analysis and processing software "Image J"; the various measurements obtained are intended to specify the supposed stage of development according to the body weight. The histological structure of the liver shows that the hepatic parenchyma consists of vascular conjunctive spaces surrounded by Glisson’s capsule. The sinusoids and hepatic portal vein are full of red blood cells, representing sinusoidal congestion and a thrombosed vein. At high magnification, the blood vessels show the presence of vascular thrombosis and haemorrhage in some areas of the hepatic parenchyma. Morphometric analysis shows that the number of liver parenchymal cells and the diameter of liver vessels vary according to the stage of development. The results obtained will provide details of the anatomical and cellular elements that can be used in the diagnosis of early or late abortion and late embryonic death. It would be interesting to find, by immunohistochemistry, some inflammatory markers useful for monitoring the progress of pregnancy and bioindicators of fetomaternal distress.Keywords: aborting goat, arid zone, liver, histopathology
Procedia PDF Downloads 1012084 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods
Authors: Frank Papworth, Inam Khan
Abstract:
Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.Keywords: chlorides, marine, exposure, design life, reliability, modelling
Procedia PDF Downloads 2362083 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 1592082 Selecting a Material for an Aircraft Diesel Engine Block
Authors: Ksenia Siadkowska, Tytus Tulwin, Rafał Sochaczewski
Abstract:
Selecting appropriate materials is presently a complex task as material databases cover tens of thousands of different types of materials. Product designing proceeds in numerous stages and in most of them there are open questions with not only one correct solution but better and worse ones. This paper overviews the Diesel engine body construction materials mentioned in the literature and discusses a certain practical method to select materials for a cylinder head and a Diesel engine block as a prototype. The engine body, depending on its purpose, is most frequently iron or aluminum. If it is important to optimize parts to achieve low weight, aluminum alloys are usually applied, especially in the automotive and aviation industries. In the latter case, weight is even more important so new types of magnesium alloys which are even lighter than aluminum ones are developed and used. However, magnesium alloys are, for example, more flammable and not enough strong so, for safety reasons, this type of material is not used solely in engine bodies. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: aluminum alloy, cylinder head, Diesel engine, materials selection
Procedia PDF Downloads 397