Search results for: deep acting
859 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 266858 Learning Activities in Teaching Nihon-Go in the Philippines: Basis for a Proposed Action Plan
Authors: Esperanza C. Santos
Abstract:
Japanese Language was traditionally considered as a means of imparting culture and training aesthetic experience in students and therefore as something beyond the practical aims of language teaching and learning. Due to the complexity of foreign languages, lots of language learners and teachers shared deep reservations about the potentials of foreign language in enhancing the communication skills of the students. In spite of the arguments against the use of Foreign Language (Nihon-go) in the classroom, the researcher strongly support the use of Nihon-go in teaching communication skills as the researcher believes that Nihon-go is a valuable resource to be exploited in the classroom in order to help the students explore the language in an interesting and challenging way. The focus of this research is to find out the relationship between the preferences, opinions, and perceptions with the communication skills. This study also identifies the significance of the relationship between preferences, opinions and perceptions and communications skills in the activities employed in Foreign language (Nihon-go) among the junior and senior students in Foreign Language 2 at the Imus Institute, Imus Cavite during the academic year 2013-2014. The results of the study are expected to encourage further studies that particularly focused on the communication skills as brought about by the identified factors namely: preferences, opinions, and perceptions on the benefits factor namely the language acquisition; access to Japanese culture and students' interpretative ability. Therefore, this research is in its quest for the issues and concerns on how to effectively teach different learning activities in a Nihon-go class.Keywords: preferences, opinions, perceptions, language acquisition
Procedia PDF Downloads 312857 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete
Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim
Abstract:
Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.Keywords: high strength concrete, mineral admixture, fire resistance, social disaster
Procedia PDF Downloads 145856 A Study of Generation Y's Career Attitude at Workplace
Authors: Supriadi Hardianto, Aditya Daniswara
Abstract:
Today's workplace, flooded by millennial Generation or known also as Generation Y. A common problem that faced by the company towards Gen Y is a high turnover rate, attitudes problem, communication style, and different work style than the older generation. This is common in private sector. The objective of this study is to get a better understanding of the Gen Y Career Attitude at the workplace. The subject of this study is focusing on 430 respondent of Gen Y which age between 20 – 35 years old who works for a private company. The Questionnaire as primary data source captured 9 aspects of career attitude based on Career Attitudes Strategy Inventory (CASI). This Survey distributes randomly among Gen Y in the IT Industry (125 Respondent) and Manufacture Company (305 Respondent). A Random deep interview was conducted to get the better understanding of the etiology of their primary obstacles. The study showed that most of Indonesia Gen Y have a moderate score on Job satisfaction but in the other aspects, Gen Y has the lowest score on Skill Development, Career Worries, Risk-Taking Style, Dominant Style, Work Involvement, Geographical Barrier, Interpersonal Abuse, and Family Commitment. The top 5 obstacles outside that 9 aspects that faced by Gen Y are 1. Lower communication & networking support; 2. Self-confidence issues; 3. Financial Problem; 4. Emotional issues; 5. Age. We also found that parent perspective toward the way they are nurturing their child are not aligned with their child’s real life. This research fundamentally helps the organization and other Gen Y’s Stakeholders to have a better understanding of Gen Y Career Attitude at the workplace.Keywords: career attitudes, CASI, Gen Y, career attitude at workplace
Procedia PDF Downloads 160855 Elemental and Magnetic Properties of Bed Sediment of Siang River, a Major River of Brahmaputra Basin
Authors: Abhishek Dixit, Sandip S. Sathe, Chandan Mahanta
Abstract:
The Siang river originates in Angsi glacier in southern Tibet (there known as the Yarlung Tsangpo). After traveling through Indus-Tsangpo suture zone and deep gorges near Namcha Barwa peak, it takes a south-ward turn and enters India, where it is known as Siang river and becomes a major tributary of the Brahmaputra in Assam plains. In this study, we have analyzed the bed sediment of the Siang river at two locations (one at extreme upstream near the India-China border and one downstream before Siang Brahmaputra confluence). We have also sampled bed sediment at the remote location of Yammeng river, an eastern tributary of Siang. The magnetic hysteresis properties show the combination of paramagnetic and weak ferromagnetic behavior with a multidomain state. Moreover, curie temperature analysis shows titanomagnetite solid solution series, which is causing the weak ferromagnetic signature. Given that the magnetic mineral was in a multidomain state, the presence of Ti, Fe carrying heave mineral, may be inferred. The Chemical index of alteration shows less weathered sediment. However, the Yammeng river sample being close to source shows fresh grains subjected to physical weathering and least chemically alteration. Enriched Ca and K and depleted Na and Mg with respect to upper continental crust concentration also points toward the less intense chemical weathering along with the dominance of calcite weathering.Keywords: bed sediment, magnetic properties, Siang, weathering
Procedia PDF Downloads 124854 Role of the Marshes in the Natural Decontamination of Surface Water: A Case of the Redjla Marsh, North-Eastern Algerian
Authors: S. Benessam, T. H. Debieche, A. Drouiche, S. Mahdid, F. Zahi
Abstract:
The marsh is the impermeable depression. It is not very deep and presents the stagnant water. Their water level varies according to the contributions of water (rain, groundwater, stream etc.), when this last reaches the maximum level of the marsh, it flows towards the downstream through the discharge system. The marsh accumulates all the liquid and solid contributions of upstream part. In the North-East Algerian, the Redjla marsh is located on the course of the Tassift river. Its contributions of water come from the upstream part of the river, often characterized by the presence of several pollutants in water related to the urban effluents, and its discharge system supply the downstream part of the river. In order to determine the effect of the marsh on the water quality of the river this study was conducted. A two-monthly monitoring of the physicochemical parameters and water chemistry of the river were carried out, before and after the marsh, during the period from November 2013 to January 2015. The results show that the marsh plays the role of a natural purifier of water of Tassift river, present by drops of conductivity and concentration of the pollutants (ammonium, phosphate, iron, chlorides and bicarbonates) between the upstream part and downstream of the marsh. That indicates that these pollutants are transformed with other chemical forms (case of ammonium towards nitrate), precipitated in complex forms or/and adsorbed by the sediments of the marsh. This storage of the pollutants in the ground of the marsh will be later on a source of pollution for the plants and river water.Keywords: marsh, natural purification, urban pollution, nitrogen
Procedia PDF Downloads 266853 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan
Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed
Abstract:
Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot
Procedia PDF Downloads 50852 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 66851 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 67850 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column
Authors: Mamata Mohanty, J. T. Shahu
Abstract:
The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength
Procedia PDF Downloads 181849 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 194848 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization
Authors: M. Dhana Lakshmi, S. Sakthivel Murugan
Abstract:
As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter
Procedia PDF Downloads 203847 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method
Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama
Abstract:
SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies
Procedia PDF Downloads 90846 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment
Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen
Abstract:
To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis
Procedia PDF Downloads 141845 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation
Authors: Bharatkumar Doshi
Abstract:
Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.Keywords: COMSOL, EMPW, FEM, Lorentz force
Procedia PDF Downloads 187844 R-Killer: An Email-Based Ransomware Protection Tool
Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena
Abstract:
Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine
Procedia PDF Downloads 219843 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 133842 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 161841 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading
Authors: Mohammad Zaid, Md. Rehan Sadique
Abstract:
Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.Keywords: finite element method, blast, rock, tunnel, CEL, JWL
Procedia PDF Downloads 152840 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science
Authors: Nicola G. G. Cecca
Abstract:
In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™
Procedia PDF Downloads 273839 Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy
Authors: Malgorzata J. Rybak-Smith, Benedicte Thiebaut, Simon Johnson, Peter Bishop, Helen E. Townley
Abstract:
Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy.Keywords: cancer, gadolinium, ROS, titania nanoparticles, X-ray
Procedia PDF Downloads 434838 Active Victim Participation in the Criminal Justice System: The Indian Scenario
Authors: Narayani Sepaha
Abstract:
In earlier days, the sufferer was burdened to prove the offence as well as to put the offender to punishment. The adversary system of legal procedure was characterized simply by two parties: the prosecution and the defence. With the onset of this system, firstly the judge started acting as a neutral arbitrator, and secondly, the state inadvertently started assuming the lead role and thereby relegated the victims to the position of oblivion. In this process, with the increasing role of police forces and the government, the victims got systematically excluded from the key stages of the case proceedings and were reduced to the stature of a prosecution witness. This paper tries to emphasise the increasing control over the various stages of the trial, by other stakeholders, leading to the marginalization of victims in the trial process. This monopolization has signalled the onset of an era of gross neglect of victims in the whole criminal justice system. This consciousness led some reformists to raise their concerns over the issue, during the early part of the 20th century. They started supporting the efforts which advocated giving prominence to the participation of victims in the trial process. This paved the way for the evolution of the science of victimology. Markedly the innovativeness to work out facts, seek opinions and statements of the victims and reassure that their voice is also heard has ensured the revival of their rightful roles in the justice delivery system. Many countries, like the US, have set an example by acknowledging the advantages of participation of victims in trials like in the proceedings of the Ariel Castro Kidnappings of Cleveland, Ohio and enacting laws for protecting their rights within the framework of the legal system to ensure speedy and righteous delivery of justice in some of the most complicated cases. An attempt has been made to flag that the accused have several rights in contrast to the near absence of separate laws for victims of crime, in India. It is sad to note that, even in the initial process of registering a crime the victims are subjected to the mercy of the officers in charge and thus begins the silent suffering of these victims, which continues throughout the process of their trial. The paper further contends, that the degree of victim participation in trials and its impact on the outcomes, can be debated and evaluated, but its potential to alter their position and make them regain their lost status cannot be ignored. Victim participation in trial proceedings will help the court in perceiving the facts of the case in a better manner and in arriving at a balanced view of the case. This will not only serve to protect the overall interest of the victims but will act to reinforce the faith in the criminal justice delivery system. It is pertinent to mention that there is an urgent need to review the accused centric prosecution system and introduce appropriate amendments so that the marginalization of victims comes to an end.Keywords: victim participation, criminal justice, India, trial, marginalised
Procedia PDF Downloads 161837 Study of Polish and Ukrainian Volunteers Helping War Refugees. Psychological and Motivational Conditions of Coping with Stress of Volunteer Activity
Authors: Agata Chudzicka-Czupała, Nadiya Hapon, Liudmyla Karamushka, Marta żywiołek-Szeja
Abstract:
Objectives: The study is about the determinants of coping with stress connected with volunteer activity for Russo-Ukrainian war 2022 refugees. We examined the mental health reactions, chosen psychological traits, and motivational functions of volunteers working in Poland and Ukraine in relation to their coping with stress styles. The study was financed with funds from the Foundation for Polish Science in the framework of the FOR UKRAINE Programme. Material and Method: The study was conducted in 2022. The study was a quantitative, questionnaire-based survey. Data was collected through an online survey. The volunteers were asked to assess their propensity to use different styles of coping with stress connected with their activity for Russo-Ukrainian war refugees using The Brief Coping Orientation to Problems Experienced Inventory (Brief-COPE) questionnaire. Depression, anxiety, and stress were measured using the Depression, Anxiety, and Stress (DASS)-21 item scale. Chosen psychological traits, psychological capital and hardiness, were assessed by The Psychological Capital Questionnaire and The Norwegian Revised Scale of Hardiness (DRS-15R). Then The Volunteer Function Inventory (VFI) was used. The significance of differences between the variable means of the samples was tested by the Student's t-test. We used multivariate linear regression to identify factors associated with coping with stress styles separately for each national sample. Results: The sample consisted of 720 volunteers helping war refugees (in Poland, 435 people, and 285 in Ukraine). The results of the regression analysis indicate variables that are significant predictors of the propensity to use particular styles of coping with stress (problem-focused style, emotion-focused style and avoidant coping). These include levels of depression and stress, individual psychological characteristics and motivational functions, different for Polish and Ukrainians. Ukrainian volunteers are significantly more likely to use all three coping with stress styles than Polish ones. The results also prove significant differences in the severity of anxiety, stress and depression, the selected psychological traits and motivational functions studied, which led volunteers to participate in activities for war refugees. Conclusions: The results show that depression and stress severity, as well as psychological capital and hardiness, and motivational factors are connected with coping with stress behavior. The results indicate the need for increased attention to the well-being of volunteers acting under stressful conditions. They also prove the necessity of guiding the selection of people for specific types of voluKeywords: anxiety, coping with stress styles, depression, hardiness, mental health, motivational functions, psychological capital, resilience, stress, war, volunteer, civil society
Procedia PDF Downloads 75836 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 75835 Predictors for Success in Methadone Maintenance Treatment Clinic: 24 Years of Experience
Authors: Einat E. Peles, Shaul Schreiber, Miriam Adelson
Abstract:
Background: Since established more than 50 years ago, methadone maintenance treatment (MMT) is the most effective treatment for opioid addiction, a chronic relapsing brain disorder that became an epidemic in western societies. Treatment includes daily individual optimal medication methadone dose (a long acting mu opioid receptor full agonist), accompanied with psychosocial therapy. It is well established that the longer retention in treatment the better outcome and survival occur. It reduces the likelihood to infectious diseases and overdose death that associated with drug injecting, enhanced social rehabilitation and eliminate criminal activity, and lead to healthy productive life. Aim: To evaluate predictors for long term retention in treatment we analyzed our prospective follow up of a major MMT clinic affiliated to a big tertiary medical center. Population Methods: Between June 25, 1993, and June 24, 2016, all 889 patients ( ≥ 18y) who ever admitted to the clinic were prospectively followed-up until May 2017. Duration in treatment from the first admission until the patient quit treatment or until the end of follow-up (24 years) was taken for calculating cumulative retention in treatment using survival analyses (Kaplan Meier) with log-rank and Cox regression for multivariate analyses. Results: Of the 889 patients, 25.2% were females who admitted to treatment at younger age (35.0 ± 7.9 vs. 40.6 ± 9.8, p < .0005), but started opioid usage at same age (22.3 ± 6.9). In addition to opioid use, on admission to MMT 58.5% had positive urine for benzodiazepines, 25% to cocaine, 12.4% to cannabis and 6.9% to amphetamines. Hepatitis C antibody tested positive in 55%, and HIV in 7.8% of the patients and 40%. Of all patients, 75.7% stayed at least one year in treatment, and of them, 67.7% stopped opioid usage (based on urine tests), and a net reduction observed in all other substance abuse (proportion of those who stopped minus proportion of those who have started). Long term retention up to 24 years was 8.0 years (95% Confidence Interval (CI) 7.4-8.6). Predictors for longer retention in treatment (Cox regression) were being older on admission ( ≥ 30y) Odds Ratio (OR) =1.4 (CI 1.1-1.8), not abusing opioids after one year OR=1.8 (CI 1.5-2.1), not abusing benzodiazepine after one year OR=1.7 (CI 1.4-2.1) and treating with methadone dose ≥ 100mg/day OR =1.8 (CI 1.5-2.3). Conclusions: Treating and following patients over 24 years indicate success of two main outcomes, high rate of retention after one year (75.7%) and high proportion of opiate abuse cessation (67.7%). As expected, longer cumulative retention was associated with patients treated with high adequate methadone dose that successfully result in opioid cessation. Based on these findings, in order to reduce morbidity and mortality, we find the establishment of more MMT clinics within a general hospital, a most urgent necessity.Keywords: methadone maintenance treatment, epidemic, opioids, retention
Procedia PDF Downloads 195834 Laboratory Scale Experimental Studies on CO₂ Based Underground Coal Gasification in Context of Clean Coal Technology
Authors: Geeta Kumari, Prabu Vairakannu
Abstract:
Coal is the largest fossil fuel. In India, around 37 % of coal resources found at a depth of more than 300 meters. In India, more than 70% of electricity production depends on coal. Coal on combustion produces greenhouse and pollutant gases such as CO₂, SOₓ, NOₓ, and H₂S etc. Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts these unmineable coals into valuable calorific gases. The UCG syngas (mainly H₂, CO, CH₄ and some lighter hydrocarbons) which can utilized for the production of electricity and manufacturing of various useful chemical feedstock. It is an inherent clean coal technology as it avoids ash disposal, mining, transportation and storage problems. Gasification of underground coal using steam as a gasifying medium is not an easy process because sending superheated steam to deep underground coal leads to major transportation difficulties and cost effective. Therefore, for reducing this problem, we have used CO₂ as a gasifying medium, which is a major greenhouse gas. This paper focus laboratory scale underground coal gasification experiment on a coal block by using CO₂ as a gasifying medium. In the present experiment, first, we inject oxygen for combustion for 1 hour and when the temperature of the zones reached to more than 1000 ºC, and then we started supplying of CO₂ as a gasifying medium. The gasification experiment was performed at an atmospheric pressure of CO₂, and it was found that the amount of CO produced due to Boudouard reaction (C+CO₂ 2CO) is around 35%. The experiment conducted to almost 5 hours. The maximum gas composition observed, 35% CO, 22 % H₂, and 11% CH4 with LHV 248.1 kJ/mol at CO₂/O₂ ratio 0.4 by volume.Keywords: underground coal gasification, clean coal technology, calorific value, syngas
Procedia PDF Downloads 233833 Power Asymmetry and Major Corporate Social Responsibility Projects in Mhondoro-Ngezi District, Zimbabwe
Authors: A. T. Muruviwa
Abstract:
Empirical studies of the current CSR agenda have been dominated by literature from the North at the expense of the nations from the South where most TNCs are located. Therefore, owing to the limitations of the current discourse that is dominated by Western ideas such as voluntarism, philanthropy, business case and economic gains, scholars have been calling for a new CSR agenda that is South-centred and addresses the needs of developing nations. The development theme has dominated in the recent literature as scholars concerned with the relationship between business and society have tried to understand its relationship with CSR. Despite a plethora of literature on the roles of corporations in local communities and the impact of CSR initiatives, there is lack of adequate empirical evidence to help us understand the nexus between CSR and development. For all the claims made about the positive and negative consequences of CSR, there is surprisingly little information about the outcomes it delivers. This study is a response to these claims made about the developmental aspect of CSR in developing countries. It offers some empirical bases for assessing the major CSR projects that have been fulfilled by a major mining company, Zimplats in Mhondoro-Ngezi Zimbabwe. The neo-liberal idea of capitalism and market dominations has empowered TNCs to stamp their authority in the developing countries. TNCs have made their mark in developing nations as they stamp their global private authority, rivalling or implicitly challenging the state in many functions. This dominance of corporate power raises great concerns over their tendencies of abuses in terms of environmental, social and human rights concerns as well as how to make them increasingly accountable. The hegemonic power of TNCs in the developing countries has had a tremendous impact on the overall CSR practices. While TNCs are key drivers of globalization they may be acting responsibly in their Global Northern home countries where there is a combination of legal mechanisms and the fear of civil society activism associated with corporate scandals. Using a triangulated approach in which both qualitative and quantitative methods were used the study found out that most CSR projects in Zimbabwe are dominated and directed by Zimplats because of the power it possesses. Most of the major CSR projects are beneficial to the mining company as they serve the business plans of the mining company. What was deduced from the study is that the infrastructural development initiatives by Zimplats confirm that CSR is a tool to advance business obligations. This shows that although proponents of CSR might claim that business has a mandate for social obligations to society, we need not to forget the dominant idea that the primary function of CSR is to enhance the firm’s profitability.Keywords: hegemonic power, projects, reciprocity, stakeholders
Procedia PDF Downloads 256832 Creating Shared Value: A Paradigm Shift from Corporate Social Responsibility to Creating Shared Value
Authors: Bolanle Deborah Motilewa, E.K. Rowland Worlu, Gbenga Mayowa Agboola, Marvellous Aghogho Chidinma Gberevbie
Abstract:
Businesses operating in the modern business world are faced with varying challenges; amongst which is the need to ensure that they are performing their societal function of being responsible in the society in which they operate. This responsibility to society is generally termed as corporate social responsibility. For many years, the practice of corporate social responsibility (CSR) was solely philanthropic, where organizations gave ‘charity’ or ‘alms’ to society, without any link to the organization’s mission and objectives. However, there has arisen a shift in the application of CSR from an act of philanthropy to a strategy with a business model engaged in by organizations to create a win-win situation of performing their societal obligation, whilst simultaneously performing their economic obligation. In more recent times, the term has moved from CSR to creating shared value, which is simply corporate policies and practices that enhance the competitiveness of a business organization while simultaneously advancing social and economic conditions in the communities in which the company operates. Creating shared value has in more recent light found more meaning in underdeveloped countries, faced with deep societal challenges that businesses can solve whilst creating economic value. This study thus reviews literature on CSR, conceptualizing the shift to creating shared value and finally viewing its potential significance in Africa’s development.Keywords: africapitalism, corporate social responsibility, development, shared value
Procedia PDF Downloads 283831 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 356830 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 35