Search results for: contact zones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2767

Search results for: contact zones

997 Remote Building: An Integrated Approach to Domestic Rainwater Harvesting System Implementation in a Rural Village in Himachal Pradesh, India

Authors: Medha Iyer, Anshul Paul, Aunnesha Bhowmick, Anahita Banerjee, Sana Prasad, Anoushka Singal, Lauren Sinopoli, Pooja Bapat, Shivi Jain

Abstract:

In Himachal Pradesh, India, a majority of the population lives in rural villages spread throughout its hilly regions; many of these households rely on subsistence farming as their main source of livelihood. The student-run non-profit organization affiliated with this study, Project RISHI (Rural India Social and Health Improvement), works to promote sustainable development practices in Bharog Baneri, a gram panchayat, or union, of villages in Himachal Pradesh. In 2017, an established rainwater harvesting (RWH) project group within Project RISHI had surveyed many families, finding that the most common issue regarding food and water access was a lack of accessible water sources for agricultural use in the dry season. After a prototype build in 2018, the group built 6 systems for eligible residents that demonstrated need in 2019. Subsequently, the project went through an evaluation period, including self-evaluation of project goals and post-impact surveying of system recipients. The group used the social impact assessment model to optimize the implementation of domestic RWH systems in Bharog Baneri. Assessing implementation after in-person builds produced three pillars of focus — system design, equitable recipient selection, and community involvement. After two years of remote involvement during COVID-19, the group prepared to visit Bharog Baneri to build 10 new systems in the Summer 2022. First, the group created a more durable and cost-effective design that could withstand debris and heavy rains to prevent gutter failure. The domestic system design is a rooftop RWH catchment system with two tanks attached, an overflow pipe, debris filtration, and a spigot for accessibility. The group also developed a needs-based eligibility methodology with assistance from village leaders and surveying in Bharog Baneri and set up the groundwork for a future community board. COVID-19 has strengthened remote work, telecommunications, and other organizational support systems. As sustainable development evolves to encompass these practices in a post-pandemic world, the potential for new RWH system design and implementation processes has emerged as well. This raises the question: how can a social impact assessment of rural RWH projects inform an integrated approach to post-pandemic RWH system practices? The objective of this exploratory study is to investigate and evaluate a novel remote build infrastructure that brings access to reliable and sustainable sources of water for agricultural use. To construct the remote build approach, the group identified and assigned a point of contact who was experienced with previous RWH system builds. The recipients were selected based on demonstrated need and ease of building. The contact visited each of the houses and coordinated supplier relations and transportation of the materials in accordance with the participatory approach to sustainable development. Over the course of two months, the group completed four system builds with the resulting infrastructure. The infrastructure adhered to the social impact assessment model by centering supplier relations, material transportation, and construction logistics within the community. The conclusion of this exploration is that post-pandemic rural RWH practices should be rooted in strengthening villager communication and utilizing local assets. Through this, non-profit organizations can incorporate remote build strategies into their long-term goals.

Keywords: capturing run-off from rooftops, domestic rainwater harvesting, Implementation approaches and strategies, rainwater harvesting and management in rural sectors

Procedia PDF Downloads 77
996 The Moveable Cathode Water Cold Atmospheric Pressure Plasma Jet for Titanium Surface Treatment of Dental Implant

Authors: Nazanin Gerami, Shirin Adlparvar

Abstract:

In the present time in the laboratory, one can create an ionized gas, that is to say, plasma from room temperature up to ten times more than the temperature of the sun center (150,000,000). All these temperature spectrums of plasma have applications in different disciplines, including dentistry, medicine, science, surface treatment, nuclear waste disinfection, nuclear fusion technology, etc. However, for the sick of simplicity, all these plasma temperature spectrums are classified as cold or low-pressure non-thermal plasma and warm or high-pressure equilibrium plasma. The cold plasma, as we are interested in this paper, exists at lower ion and neutral temperatures with respect to electron temperature, but in the equilibrium plasma, the temperatures of ion and electron are fairly equal. The cold plasma is a partially ionized gas comprising ions, electrons, ultraviolet photons and reactive neutrals such as radicals, excited and ground-state molecules. Cold atmospheric pressure plasmas are widely used in diverse fields of dental medicine, such as the titanium surface of dental implants, which helps in reducing contact angle and supporting the spread of osteoblastic cells and is known to aid in osteoblastic proliferation and osseointegration, thus increasing the success rates of implants. This article focuses on the anticipated uses of a newly designed water-cooled adjustable cathode cold atmospheric pressure plasma Jet (CAPPJ) for titanium surface treatment in dental implant placement.

Keywords: CAPPJ, surface modification, osseointegration, plasma medicine, dentistry

Procedia PDF Downloads 123
995 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers

Authors: Ahmed R. Ballil

Abstract:

Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.

Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design

Procedia PDF Downloads 130
994 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 120
993 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 372
992 Using Social Media to Amplify Social Entrepreneurial Message

Authors: Irfan Khairi

Abstract:

It is arguable that today's social media has dramatically redefined human contact, and chiefly because the platforms enable communication opportunities unprecedented. Without question, billions of individuals globally engage in the media, a reality by no means lost on businesses and social entrepreneurs desirous of generating interest in a cause, movement, or other social effort. If, however, the opportunities are immense, so too is the competition. Private persons and entrepreneurial concerns alike virtually saturate the popular sites of Facebook, Twitter, and Instagram, and most are intent on capturing as much external interest as possible. At the same time, however, the social entrepreneur possesses an advantage over the individual concerned only the social aspects of the sites, as they express interests in, and measures applicable to, important causes of which the public at large may be unaware. There is, unfortunately, no single means of assuring success in using the media outlets to generate interest. Nonetheless, a general awareness of how social media sites function, as well as the psychological elements relevant to the functioning, is necessary. It is as important to comprehend basic realities of the platforms and approaches that fail as it is to develop strategy, for the latter relies on knowledge of the former. This awareness in place, the social entrepreneur is then better enabled to determine strategy, in terms of which sites to focus upon and how to most effectively convey their message. What is required is familiarity with the online communities, with attention to the specific advantages each provides. Ultimately, today's social entrepreneur may establish a highly effective platform of promotion and engagement, provided they fully comprehend the social investment necessary for success.

Keywords: social media, marketing, e-commerce, internet business

Procedia PDF Downloads 193
991 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 264
990 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: numerical modeling, open pit mine, shear zone, slope stability

Procedia PDF Downloads 285
989 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity

Authors: William Middleton, Nodumo Zulu, Sue Harrison

Abstract:

Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.

Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design

Procedia PDF Downloads 75
988 reconceptualizing the place of empire in european women’s travel writing through the lens of iberian texts

Authors: Gayle Nunley

Abstract:

Between the mid-nineteenth and early twentieth century, a number of Western European women broke with gender norms of their time and undertook to write and publish accounts of their own international journeys. In addition to contributing to their contemporaries’ progressive reimagining of the space and place of female experience within the public sphere, these often orientalism-tinged texts have come to provide key source material for the analysis of gendered voice in the narration of Empire, particularly with regard to works associated with Europe’s then-ascendant imperial powers, Britain and France. Incorporation of contemporaneous writings from the once-dominant Empires of Iberian Europe introduces an important additional lens onto this process. By bringing to bear geographic notions of placedness together with discourse analysis, the examination of works by Iberian Europe’s female travelers in conjunction with those of their more celebrated Northern European peers reveals a pervasive pattern of conjoined belonging and displacement traceable throughout the broader corpus, while also underscoring the insufficiency of binary paradigms of gendered voice. The re-situating of women travelers’ participation in the European imperial project to include voices from the Iberian south creates a more robust understanding of these writers’ complex, and often unexpectedly modern, engagement with notions of gender, mobility, ‘otherness’ and contact-zone encounter acted out both within and against the imperial paradigm.

Keywords: colonialism, orientalism, Spain, travel writing, women travelers

Procedia PDF Downloads 95
987 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS

Authors: Melis Inalpulat, Tugce Civelek, Unal Kizil, Levent Genc

Abstract:

Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.

Keywords: GIS, livestock, LULC, remote sensing, suitable lands

Procedia PDF Downloads 274
986 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India

Authors: Preethi Grace Theva Neethi Dhas

Abstract:

A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.

Keywords: fecal sludge management, nutrient cycle, soil health, composting

Procedia PDF Downloads 44
985 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone

Authors: Meshal Al-Samhan, Abdullah Al-Marshed

Abstract:

Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.

Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability

Procedia PDF Downloads 80
984 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index

Procedia PDF Downloads 116
983 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis

Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba

Abstract:

In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.

Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece

Procedia PDF Downloads 257
982 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification

Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane

Abstract:

This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.

Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption

Procedia PDF Downloads 16
981 Glutharaldyde Free Processing of Patch for Cardiovascular Repair Is Associated with Improved Outcomes on Rvot Repair, Rat Model

Authors: Parnaz Boodagh, Danila Vella, Antonio Damore, Laura Modica De Mohac, Sang-Ho Ye, Garret Coyan, Gaetano Burriesci, William Wagner, Federica Cosentino

Abstract:

The use of cardiac patches is among the main therapeutic solution for cardiovascular diseases, a leading mortality cause in the world with an increasing trend, responsible of 19 millions deaths in 2020. Several classes of biomaterials serve that purpose, both of synthetic origin and biological derivation, and many bioengineered treatment alternatives were proposed to satisfy two main requirements, providing structural support and promoting tissue remodeling. The objective of this paper is to compare the mechanical properties and the characterization of four cardiac patches: the Adeka, PhotoFix, CorPatch, and CardioCel patches. In vitro and in vivo tests included: biaxial, uniaxial, ball burst, suture retention for mechanical characterization; 2D surface topography, 3D volume and microstructure, and histology assessments for structure characterization; in vitro test to evaluate platelet deposition, calcium deposition, and macrophage polarization; rat right ventricular outflow tract (RVOT) models at 8- and 16-week time points to characterize the patch-host interaction. Lastly, the four patches were used to produce four stented aortic valve prosthesis, subjected to hydrodynamic assessment as well as durability testing to verify compliance with the standard ISO.

Keywords: cardiac patch, cardiovascular disease, cardiac repair, blood contact biomaterial

Procedia PDF Downloads 133
980 Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions

Authors: Claudia Vergara, Oscar Valdes, Jaime Tapia, Leonardo Santos

Abstract:

The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions.

Keywords: asparagine, cellulose, PAMAM dendrimer, uranyl ions

Procedia PDF Downloads 121
979 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 497
978 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 98
977 Shear Strengthening of Reinforced Concrete Flat Slabs Using Prestressing Bars

Authors: Haifa Saleh, Kamiran Abduka, Robin Kalfat, Riadh Al-Mahaidi

Abstract:

The effectiveness of using pre-stressing steel bars for shear strengthening of high strength reinforced concrete (RC) slabs was assessed. Two large-scale RC slabs were tested, one without shear reinforcement and the second strengthened against punching shear failure using pre-stressing steel bars. The two slabs had the same dimensions, flexural reinforcement ratio, loading and support arrangements. The experimental program including the method of strengthening, set up and instrumentation are described in this paper. The experimental results are analyzed and discussed in terms of the structural behavior of the RC slabs, the performance of pre-stressing steel bolts and failure modes. The results confirmed that the shear strengthening technique increased the shear capacity, ductility and yield capacity of the slab by up to 15%, 44%, and 22%, respectively compared to the unstrengthened slab. The strengthening technique also successfully contributed to changing the failure mode from a brittle punching shear mode to ductile flexural failure mode. Vic3D digital image correlation system (photogrammetry) was also used in this research. This technique holds several advantages over traditional contact instrumentations including that it is inexpensive, it produces results that are simple to analyze and it is remote visualization technique. The displacement profile along the span of the slab and rotation has been found and compared with the results obtained from traditional sensors. The performance of the photogrammetry technique was very good and the results of both measurements were in very close agreement.

Keywords: flat slab, photogrammetry, punching shear, strengthening

Procedia PDF Downloads 146
976 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields

Authors: Babak Rezaei, Arash Zargar Shoushtari

Abstract:

Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.

Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields

Procedia PDF Downloads 343
975 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 153
974 Comparative Study of Antimicrobial, Antioxidant and Physicochemical Properties of Four Culinary Herbs Grown in Sri Lanka

Authors: Thilini Kananke

Abstract:

Culinary herbs have long been considered as significant dietary sources of many potential health-promoting compounds. The present research focused on analysis of antimicrobial, antioxidant and physicochemical properties in selected four culinary herbs namely Murraya koenigii (Curry leaves), Pandanus amaryllifolius (Pandan leaves), Cymbopogon citrates (Lemon grass leaves), and Mentha Piperita (Minchi leaves) obtained from several market sites in Ratnapura District, Sri Lanka. The antimicrobial activity of ethanolic, chloroform and distilled water extracts of culinary herbs were evaluated against the strains of Staphylococcus aureus, Salmonella typhi and Shigella spp. Total phenolic content and the radical scavenging activity (using DPPH assay) of culinary herbs were determined. Four heavy metals (Cu, Cd, Pb and Fe) were analyzed in the selected culinary herbs using the atomic absorption spectroscopy (AAS). Proximate compositions of the selected herbs were analyzed using AOAC official methods. Antimicrobial activity of all selected culinary herbs showed relativity high inhibition zones against S. aureus. Pandan leaves showed the least antimicrobial activity against selected bacterial strains compared with other culinary herbs. Both the highest radical scavenging activity (lower IC50 value) and the total phenolic content (25.57 ±3.54µg GAE/100g) were reported in Mentha piperita extract. The highest concentrations of Cu, Fe and Cd were reported in Curry leaves (29.15 mg/kg), Lemon grass leaves (257.98 mg/kg) and Pandan leaves (6.05 mg/kg) respectively. The heavy metal contents detected in all culinary herbs were below the permitted limits set by WHO/FAO, except Cd. The highest moisture (85.00±0.00%) and fiber (10.66± 2.00%) contents were found in Pandan leaves, while the highest protein (8.94±0.29%), fat (12.3± 2.52%) and ash (3.50± 0.17%) contents were reported in curry leaves. The information obtained from this study highlights the importance of further investigation of other antioxidant, antimicrobial and health promoting compounds of culinary herbs available in Sri Lanka for a detailed comparison.

Keywords: antimicrobial, antioxidant, culinary herbs, proximate analysis

Procedia PDF Downloads 157
973 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: debonding, dynamic response, finite element modelling, novel FRP beams

Procedia PDF Downloads 105
972 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins

Authors: Sameh A. S. Thabit Alariqi

Abstract:

Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.

Keywords: biodegradation, γ-irradiation, polyolefins, stabilization

Procedia PDF Downloads 375
971 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor

Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin

Abstract:

Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.

Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator

Procedia PDF Downloads 84
970 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors

Authors: Ravindra Raju, Vidhu Kampurath

Abstract:

For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.

Keywords: ANSYS, clutch, composite materials, creo

Procedia PDF Downloads 273
969 In-Situ Fabrication of ZnO PES Membranes for Treatment of Pharmaceuticals

Authors: Oranso T. Mahlangi, Bhekie B. Mamba

Abstract:

The occurrence of trace organic compounds (TOrCs) in water has raised health concerns for living organisms. The majority of TorCs, including pharmaceuticals and volatile organic compounds, are poorly monitored, partly due to the high cost of analysis and less strict water quality guidelines in South Africa. Therefore, the removal of TorCs is important to guarantee safe potable water. In this study, ZnO nanoparticles were fabricated in situ in polyethersulfone (PES) polymer solutions. This was followed by membrane synthesis using the phase inversion technique. Techniques such as FTIR, Raman, SEM, AFM, EDS, and contact angle measurements were used to characterize the membranes for several physicochemical properties. The membranes were then evaluated for their efficiency in treating pharmaceutical wastewater and resistance to organic (sodium alginate) and protein (bovine serum albumin) fouling. EDS micrographs revealed uniform distribution of ZnO nanoparticles within the polymer matrix, while SEM images showed uniform fingerlike structures. The addition of ZnO increased membrane roughness as well as hydrophilicity (which in turn improved water fluxes). The membranes poorly rejected monovalent and divalent salts (< 10%), making them resistant to flux decline due to concentration polarization effects. However, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen by over 50%. ZnO PES membranes were resistant to organic and protein fouling compared to the neat membrane. ZnO PES ultrafiltration membranes may provide a solution in the reclamation of wastewater.

Keywords: trace organic compounds, pharmaceuticals, membrane fouling, wastewater reclamation

Procedia PDF Downloads 127
968 The Prevalence of Blood-Borne Viral Infections among Autopsy Cases in Jordan

Authors: Emad Al-Abdallat, Faris G. Bakri, Azmi Mahafza, Rayyan Al Ali, Nidaa Ababneh, Ahmed Idhair

Abstract:

Background: Morgues are high-risk areas for the spread of infection from the cadavers to the staff during the postmortem examination. Infection can spread from corpses to workers by the airborne route, by direct contact, or from needle and sharp object injuries. Objective: Knowledge about the prevalence of these infections among autopsies is prudent to appreciate any risk of transmission and to further enforce safety measures. Method: A total of 242 autopsies were tested. Age ranged from 3 days to 94 years (median 75.5 years, mean 45.3 (21.9 ± SD)). There were 172 (71%) males. Results: The cause of death was considered natural in 137 (56.6%) cases, accidental in 89 (36.8%), homicidal in 9 (3.7%), suicidal in 4 (1.7%), and unknown in 3 (1.2%). Hepatitis B surface antigen was positive in 5 (2.1%) cases. Hepatitis C virus antibody was detected in 5 (2.1%) cases and the hepatitis C virus polymerase chain reaction was positive in 2 of them (0.8%). HIV antibody was not detected in any of the cases. Conclusions: Autopsies can be associated with exposure to blood borne viruses. Autopsies performed during the study period were tested for hepatitis B surface antigen, hepatitis C virus antibody, and human immunodeficiency virus antibody. Positive tests were subsequently confirmed by polymerase chain reaction. There is low prevalence of infections with these viruses in our autopsy cases. However, the risk of transmission remains a threat. Healthcare workers in the forensic departments should adhere to standard precautions.

Keywords: autopsy, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Jordan

Procedia PDF Downloads 366