Search results for: sound absorption coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3035

Search results for: sound absorption coating

2885 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

Authors: E. Ebru Demirci, Remzi Şahin

Abstract:

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Keywords: capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete

Procedia PDF Downloads 307
2884 Green Synthesis Approach for Renewable Textile Coating and Their Mechanical and Thermal Properties

Authors: Heba Gamal Abd Elhaleem Elsayed, Nour F Attia

Abstract:

The extensive use of textile and textile based materials in various applications including industrial applications are increasing regularly due to their interesting properties which require rapid development in their functions to be adapted to these applications [1-3]. Herein, green, new and renewable smart coating was developed for furniture textile fabrics. Facile and single step method was used for synthesis of green coating based on mandarin peel and chitosan. As, the mandarin peel as fruit waste material was dried, grinded and directly dispersed in chitosan solution producing new green coating composite and then coated on textile fabrics. The mass loadings of green mandarin peel powder was varied on 20-70 wt% and optimized. Thermal stability of coated textile fabrics was enhanced and char yield was improved compared to uncoated one. The charring effect of mandarin peel powder coated samples was significantly enhanced anticipating good flame retardancy effect. The tensile strength of the coated textile fabrics was improved achieved 35% improvement compared to uncoated sample. The interaction between the renewable coating and textile was evaluated. The morphology of uncoated and coated textile fabrics was studied using microscopic technique. Additionally, based on thermal properties of mandarin peel powder it could be promising flame retardant for textile fabrics. This study open new avenues for finishing textile fabrics with enhanced thermal, flame retardancy and mechanical properties with cost-effective and renewable green and effective coating

Keywords: flame retardant , Thermal Properties, Textile Coating , Renewable Textile

Procedia PDF Downloads 119
2883 A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings

Authors: Emmanuel A. Oriaifo, Noel Perera, Alan Guy, Pak. S. Leung, Kian T. Tan

Abstract:

Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC.

Keywords: corrosion test, hygrothermal cycling, coating test protocols, water ballast tanks

Procedia PDF Downloads 409
2882 Tool Wear of Aluminum/Chromium/Tungsten Based Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, (Al, Cr, W)N-coating film, (Al, Cr, W)(C, N)-coating film, sintered steel

Procedia PDF Downloads 354
2881 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 182
2880 Effects of Titanium Dioxide Coatings on Building Composites for Sustainable Construction Applications

Authors: Ifeyinwa Ijeoma Obianyo, Luqman Adedeji Taiwo, Olugbenga O. Amu, Azikiwe Peter Onwualu

Abstract:

Improving the durability of building materials saves maintenance costs, construction time, and energy. In this study, titanium dioxide coated conventional and non-conventional composites were produced, and the effects of titanium dioxide coatings were investigated. Conventional composites were produced using river sand and Portland cement, whereas non-conventional composites were produced by partially replacing river sand and Portland cement with quarry dust and rice husk ash. Water absorption and thickness swelling tests were conducted on the produced coated and non-coated block samples. A reduction in water absorption was observed in the coated composite samples when compared to the non-coated composite samples, and this is an indication of the improved durability of the samples coated with titanium dioxide. However, there was an increase in the thickness swelling of coatings on the coated block samples, but this increase has a slight influence on the compressive strength of the coated samples. The outcome of this study indicates that coating composite building blocks with titanium dioxide will improve theirdurability. Also, the site exposure experiments revealed the self-cleansing properties of TiO2-coated composite block samples, while the Rhodamine B discolouration test confirmed the photocatalytic features of TiO2-coated composite block samples.

Keywords: titanium dioxide, water absorption, durability, mechanical properties, building composite

Procedia PDF Downloads 82
2879 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray

Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry

Abstract:

Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.

Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion

Procedia PDF Downloads 69
2878 Perception of Eco-Music From the Contents the Earth’s Sound Ecosystem

Authors: Joni Asitashvili, Eka Chabashvili, Maya Virsaladze, Alexander Chokhonelidze

Abstract:

Studying the soundscape is a major challenge in many countries of the civilized world today. The sound environment and music itself are part of the Earth's ecosystem. Therefore, researching its positive or negative impact is important for a clean and healthy environment. The acoustics of nature gave people many musical ideas, and people enriched musical features and performance skills with the ability to imitate the surrounding sound. For example, a population surrounded by mountains invented the technique of antiphonal singing, which mimics the effect of an echo. Canadian composer Raymond Murray Schafer viewed the world as a kind of musical instrument with ever-renewing tuning. He coined the term "Soundscape" as a name of a natural environmental sound, including the sound field of the Earth. It can be said that from which the “music of nature” is constructed. In the 21st century, a new field–Ecomusicology–has emerged in the field of musical art to study the sound ecosystem and various issues related to it. Ecomusicology considers the interconnections between music, culture, and nature–According to the Aaron Allen. Eco-music is a field of ecomusicology concerning with the depiction and realization of practical processes using modern composition techniques. Finding an artificial sound source (instrumental or electronic) for the piece that will blend into the soundscape of Sound Oases. Creating a composition, which sounds in harmony with the vibrations of human, nature, environment, and micro- macrocosm as a whole; Currently, we are exploring the ambient sound of the Georgian urban and suburban environment to discover “Sound Oases" and compose Eco-music works. We called “Sound Oases" an environment with a specific sound of the ecosystem to use in the musical piece as an instrument. The most interesting examples of Eco-music are the round dances, which were already created in the BC era. In round dances people would feel the united energy. This urge to get united revealed itself in our age too, manifesting itself in a variety of social media. The virtual world, however, is not enough for a healthy interaction; we created plan of “contemporary round dance” in sound oasis, found during expedition in Georgian caves, where people interacted with cave's soundscape and eco-music, they feel each other sharing energy and listen to earth sound. This project could be considered a contemporary round dance, a long improvisation, particular type of art therapy, where everyone can participate in an artistic process. We would like to present research result of our eco-music experimental performance.

Keywords: eco-music, environment, sound, oasis

Procedia PDF Downloads 40
2877 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 51
2876 Synthesis and Characterization of Renewable Resource Based Green Epoxy Coating

Authors: Sukanya Pradhan, Smita Mohanty, S. K Nayak

Abstract:

Plant oils are a great renewable source for being a reliable starting material to access new products with a wide spectrum of structural and functional variations. Even though petroleum products might also render the same, but it would also impose a high risk factor of environmental and health hazard. Since epoxidized vegetable oils are easily available, eco-compatible, non-toxic and renewable, hence these have drawn much of the attentions in the polymer industrial sector especially for the development of eco-friendly coating materials. In this study a waterborne epoxy coating was prepared from epoxidized soyabean oil by using triethanolamine. Because of its hydrophobic nature, it was a tough and tedius task to make it hydrophilic. The hydrophobic biobased epoxy was modified into waterborne epoxy by the help of a plant based anhydride as curing agent. Physico-mechanical, chemical resistance tests and thermal analysis of the green coating material were carried out which showed good physic-mechanical, chemical resistance properties as well as environment friendly. The complete characterization of the final material was done in terms of scratch hardness, gloss test, impact resistance, adhesion and bend test.

Keywords: epoxidized soybean oil, waterborne, curing agent, green coating

Procedia PDF Downloads 521
2875 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: exciton, refractive index change, extinction ratio, GaAs

Procedia PDF Downloads 553
2874 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species

Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu

Abstract:

Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.

Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species

Procedia PDF Downloads 337
2873 Analysis of the Effect of Food Veils on the Preservation of Button and Oyster Mushrooms, Case Study: Zein Corn Coating

Authors: Mohamad Javad Shakouri, Hamid Tavakkolipour, Mahdis Jamshidi Tehranian

Abstract:

The inclination toward using food coatings is increasing daily, due to containing natural elements and not producing environmental pollution. Food coatings are uniform and thin layers of natural substances that cover the food product and act as a barrier against moisture, oxygen, and substances dissolved in food. Using food coatings on fruits and vegetables can delay water dissipation, losing aroma, decolorization, and improve the appearance of the product, and in general, preserve and protect the quality of fresh produce. When fruits and vegetables grow, they are equipped with a natural shield, called cuticle– a layer of wax. Washing the products, after harvest, the cuticle – this protective coating – is removed. In order to replace the cuticle, we can use an edible protective coating. This coating delays dehydration and deterioration and hence increases the life of the product while keeping its moisture. In this study, it was concluded that using food coatings, such as corn zein, carrageenan, and starch can have a substantial effect on the quantitative and qualitative preservation of food products, such as fruits, vegetables, and mushrooms.

Keywords: food coating, corn zein, button and oyster mushrooms, ascorbic and citric acids

Procedia PDF Downloads 275
2872 Effect of Post Treatment Temperature on Ni-20Cr Wire Arc Spray Coating to Thermal Resistance

Authors: Ken Ninez Nurpramesti Prinindya, Yuli Setiyorini

Abstract:

Crown enclosure high temperature flares damaged and reduced dimensions crown. Generally crown on EHTF could have a life time up to twenty years. Therefore, this study aims to increase the value of thermal resistance with the effect post treatment on NiCr coated arc spray method. The variation of post treatment temperature, was at 650°C, 750°C, and 850°C. Morphology on the surface and the adhesion strength was analyzed by SEM-EDX, Surface Roughness and Pull - off test. XRD testing was conducted to determine the contained in NiCr coated. Thermal stability of NiCr coated was tested by DSC-TGA. The most optimal results was owned by NiCr coating with post treated at 850°C. It has good thermal stability until 1000°C because of Cr2O3 formation in coated specimen. The higher temperature of post treatment coating was showed better result on porosity and roughness surface value.

Keywords: Arc spray process, NiCr wire, post-treatment coating, high temperature-corrosion resistance

Procedia PDF Downloads 436
2871 The Effect of Substrate Surface Roughness for Hot Dip Aluminizing of IN718 Alloy

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

The hot dip aluminizing (HDA) process involves immersing a metallic substrate into a molten aluminum bath for several minutes, and removed from the bath and cooled down to room temperature. After the HDA process, various aluminide layers are formed as a result of interdiffusion between the substrate and the molten aluminum and between the aluminide layers. In order to form a uniform aluminide layer, the specimen must be covered and wet well by the molten aluminum. Surface roughness plays an important role in wettability, and thus, surface preparation is an important stage in determining the final surface roughness. In this study, different roughness values were achieved by grinding the surface with emery papers as 180, 320 and 600 grids. After the surface preparation, the HDA process was performed in a molten Al-Si bath at 700 ᴼC for 10 minutes. After the HDA process, a microstructural examination of the coating was carried out to evaluate the uniformity of the coating and adhesion between the substrate and the coating. According to the results, the best adhesion at the interface was observed on the specimen, which was prepared by 320 grid emery paper having a mean surface roughness (Ra) of 0.097 µm.

Keywords: hot-dip aluminizing, microstructure, surface roughness, coating

Procedia PDF Downloads 39
2870 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa

Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu

Abstract:

After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.

Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration

Procedia PDF Downloads 45
2869 Evaluation of Thermal Barrier Coating According to Temperature and Curvature

Authors: Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

To avoid the damage of gas turbine blade from high-temperature, thermal barrier coating (TBC) is applied on the blade. However, it is damaged by thermal fatigue during the operation of gas turbine, and this damage lead to delamination of TBC between top coat and bond coat. The blade can be damaged after the failure of TBC, so durability evaluation of TBC should be performed. The durability of thermal barrier coating was decreased according to the increase of temperature, because thermal stress according to increase of temperature. Also, the curvature can be affect to durability of TBC, because the stress is determined by the shape of the TBC. Therefore, the effect of temperature and curvature on the stress should be evaluated. In this study, finite element analysis according to temperature and curvature were performed in the same condition of Kim et al. Finally, the stress was evaluated from the finite element analysis results according to temperature and curvature.

Keywords: curvature, finite element analysis, thermal barrier coating, thermal fatigue, temperature

Procedia PDF Downloads 539
2868 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance

Procedia PDF Downloads 148
2867 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test

Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour

Abstract:

Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.

Keywords: sandwich panel, aluminium foam, perforation, energy absorption

Procedia PDF Downloads 400
2866 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Sound System in Students of Special Needs

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Background & Objectives: Audio-visual aids and computer-assisted language instruction (CALI) effects are strong in teaching language components (sound system, grammatical structures and vocabulary) to students of special needs. To explore the effects of the audio-visual aids and CALI in teaching sound system to this class of students by speech language therapists (SLTs), an experiment has been undertaken to evaluate their performance during their study of the sound system course. Methods: Forty students (males and females) of special needs at al-Malādh school for teaching students of special needs in Dhamar (Yemen) range between 8 and 18 years old underwent this experimental study while they were studying language sound system course. Pre-and-posttests have been administered at the begging and end of the semester. Students' treatment was compared to a similar group (control group) of the same number under the same environment. Whereas the first group was taught using audio-visual aids and CALI, the second was not. Students' performances were linguistically and statistically evaluated. Results & conclusions: Compared with the control group, the treatment group showed significantly higher scores in the posttest (72.32% vs. 31%). Compared with females, males scored higher marks (1421 vs. 1472). Thus, we should take the audio-visual aids and CALI into consideration in teaching sound system to students of special needs.

Keywords: language components, sound system, audio-visual aids, CALI, students, special needs, SLTs

Procedia PDF Downloads 9
2865 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 260
2864 Development of Transparent Nano-Structured Super-Hydrophobic Coating on Glass and Evaluation of Anti-Dust Properties

Authors: Abhilasha Mishra, Neha Bhatt

Abstract:

Super-hydrophobicity is an effect in which a surface roughness and chemical composition are combined to produce unusual water and dust repellent surface. The super-hydrophobic surface is widely used in many applications such as windshields of the automobile, aircraft, lens, solar cells, roofing, boat hull, paints, etc. Four coating solutions were prepared by varying compositions of 1,1,1,3,3,3 hexametyldisilazane (HDMS) and tetraethylorthosilicate (TEOS) sol. These solutions were coated on glass slides by a spin coating method and etched at a high temperature ranging 250 -350 oC. All the coatings were studied for its different properties like water repellent, anti-dust, and transparency and contact angle measurements. Stability of coatings was also studied with respect to temperature, external environment, and pH. It was found that all coatings impart a significant super-hydrophobicity on a glass surface with contact angle ranging from 156o to 162o and have good stability in the external environment. The results of the different coatings were observed and compared with each other. On increasing layers of coatings the super-hydrophobicity and anti-dust properties increases but after 3 coatings the transparency of coating starts decreasing.

Keywords: super-hydrophobic, contact angle, coating, anti-dust

Procedia PDF Downloads 234
2863 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers

Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati

Abstract:

Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.

Keywords: cocoa bean shell, paper, beeswax, coating, contact angle

Procedia PDF Downloads 125
2862 Effect of Chitosan and Ascorbic Acid Coating on the Refrigerated Tilapia Fish Fillet (Oreochromis niliticus)

Authors: Jau-Shya Lee, Rossita Shapawi, Vin Cent Pua

Abstract:

Tilapia is a popular cultured fresh-water fish in Malaysia. The highly perishable nature of the fish and increasing demand for high-quality ready-to-cook fish has intensified the search for better fish preservation method. Chitosan edible coating has been evident to extend the shelf life of fish fillet. This work was attempted to explore the potential of ascorbic acid in enhancing the shelf life extension ability of chitosan coated Tilapia fillet under refrigeration condition (4 ± 1oC). A 3 2 Factorial Design which comprising of three concentrations of chitosan (1, 1.5 and 2%) and two concentrations of ascorbic acids (2.5 and 5%) was used. The fish fillets were analyzed for total viable count, thiobarbituric acid (TBA) value, pH, aw and colour changes at 3-day interval over 15-day storage. The shelf life of chitosan coated (1.5% and 2%) fillet was increased to 15 days as compared to uncoated fish fillet which can only last for nine days. The inhibition of microbial growth of fish fillet was enhanced with the addition of 5% of ascorbic acids in 2% of chitosan. The TBA value, pH and aw for chitosan coated samples were found lower than that of uncoated sample (p<0.05). The colour stability of the fish fillet was also improved by the composite coating. Overall, 2% of chitosan and 5% of ascorbic acid formed the most effective coating to enhance the quality and to lengthen the shelf life of refrigerated Tilapia fillet.

Keywords: ascorbic acid, chitosan, edible coating, fish fillet

Procedia PDF Downloads 368
2861 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation

Procedia PDF Downloads 25
2860 Acoustic Characteristics of Ḫijaiyaḫ Letters Pronunciation by Indonesian Native Speaker

Authors: Romi Hardiyansyah, Raden Sugeng Joko Sarwono, Agus Samsi

Abstract:

Indonesian people have a mother language but not Arabic. Meanwhile, they must be able to pronounce the Arabic because Islam is the biggest religion in Indonesia. Arabic is composed by ḫijaiyaḫ letters which has its own pronunciation. Sound production process in humans can be divided into three physiological processes, namely: the formation of airflow from the lungs, the change in airflow from the lungs into the sound, and articulation (the modulation/sound setting into a specific sound). Ḫijaiyaḫ letters has its own articulation, some of which seem strange for most people in Indonesia. Those letters come out from the middle and upper throat so that the letters has its own acoustic characteristics. Acoustic characteristics of voice can be observed by source-filter approach that has parameters: pitch, formant, and formant bandwidth. Pitch is the basic tone in every human being. Formant is the resonance frequency of the human voice. Formant bandwidth is the time-width of a formant. After recording the sound from 21 subjects, data is processed by software Praat version 5.3.39. The analysis showed that each pronunciation, syakal (vowel changer), and the place of discharge letters has the same timbre which are determined by third and fourth formant.

Keywords: ḫijaiyaḫ, articulation, pitch, formant, formant bandwidth, timbre

Procedia PDF Downloads 370
2859 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications

Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong

Abstract:

High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.

Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition

Procedia PDF Downloads 102
2858 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient

Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid

Abstract:

Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.

Keywords: macronutrients absorption, optical spectroscopy, soil, absorption

Procedia PDF Downloads 263
2857 Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC

Authors: Gürol Önal, Kevser Dinçer, Salih Yayla

Abstract:

In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC.

Keywords: fuel cell, Polymer Electrolyte Membrane (PEM), membrane, spin method

Procedia PDF Downloads 532
2856 Surface Coatings of Boards Made from Alternative Materials

Authors: Stepan Hysek, Petra Gajdacova

Abstract:

In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.

Keywords: coating, surface, annual plant, composites, particleboard

Procedia PDF Downloads 233