Search results for: school dropout prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5475

Search results for: school dropout prediction

5325 Internet Use and Academic Procrastination Behavior in High School Students

Authors: Endah Mastuti, Prihastuti Sudaryono

Abstract:

The rapid development of Internet usage and technology influences the academic behavior of students in high schools. One of the consequences is the emergence of academic procrastination behavior. Academic procrastination behavior is students’ procrastinate behavior in completing assignments. This study aimed to see whether there are differences in the duration of using the internet with academic procrastinate behavior among high school students in Surabaya. The number of research subject is 498 high school students. Instruments of the research are academic procrastination scale and duration of the internet usage questionnaire. The results from One Way Anova shows F value 0.241 with a significance level of 0.868 This demonstrates that there is no difference between the duration of the use of the Internet with academic procrastination behavior in high school students.

Keywords: academic procrastination, duration of internet usage, students, senior high school

Procedia PDF Downloads 360
5324 The Autonomy Use of Preparatory School Students to Learn English Language

Authors: Mi̇hri̇ban Müge Aras

Abstract:

The present study aims to investigate the learner autonomy usage of prep school students. This research focuses on the prep school students' autonomy habits according to their self-regulated studies, age and duration of learning English. The research also analyzes whether prep school students have strong autonomy to learn the English language or depend on teachers and English classes only. The participants of the study consisted of 32 prep school students. The "Likert- type of questionnaire " was adopted by the researcher from the survey of Dede (2017). The scale was a one-dimensional 4-Likert type, which has the options of 1=never, 2= sometimes, 3=often, and 4=always. There are 19 questions in the questionnaire to understand the autonomy of students when they try to learn English. Descriptive statistics and OneANOVA were used to analyze the data. The results of the study showed that there is no significant correlation between their ages and their duration of learning English according to their autonomy studies for English.

Keywords: learner autonomy, self-regulated learning, independent learning, English language learning, prep school students

Procedia PDF Downloads 242
5323 A Comparative Study of Public and Private School Adolescent Girls on the Issues of Menstrual Hygiene and the Management Issues

Authors: Ashok Pandey, Rajan Adhikari

Abstract:

Introduction: Menstruation is part of the female reproductive cycle that starts when girls become sexually mature at the time of puberty. It is a phenomenon unique to the females. During a menstrual period, a woman bleeds from her uterus via the vagina. For decades, in many countries, academic school ‘type,’ private or public, as a predictor of or factor in future academic success has been researched and debated. MATERIAL AND METHODS: The comparative study was carried out with adolescent girls studying in both public and private schools of Kathmandu valley. A total of 100 girls participated in the survey, and out of them 21 participated in the FGD and 5 in the in- depth interview. Quantitative data from the survey was analyzed using SPSS 16.0 software. Informed verbal consent with the respective head of school and the respondents were taken before data collection. Results:The age of the respondents ranges from 11 to 18 years, with mean age of menarche being 12.37 years in both school adolescent girls. 70 percent of the public school adolescent girls and 72 percent of the private school adolescent girls are feeling upset and tension during menarche. There is a statistically significant difference on take rest during the period and good hygienic practice during menstruation of public/private school, at α=0. 05 level of significance. There is a statistically significant difference on overall score of practice during menstruation between public and private adolescent girls. Conclusion: Private schools children are more knowledgeable and maintain hygiene as compere to public school even though, it can be said that among the adolescent school girls both in public and private school, menstrual knowledge and perceptions are poor and practices often not optimal for proper hygiene. Often ignored issues of privacy affect the hygienic practices and daily lives.

Keywords: Comparison, Menstruation, Private school, Public School

Procedia PDF Downloads 441
5322 Health Status among Government and Private Primary School Children in the Central of Thailand

Authors: Petcharat Kerdonfag, Supunnee Thrakul

Abstract:

School health services through regular screening of school students’ health status have been the main responsibility for community or school health nurses. The purposes of these retrospective study were to assess and compare health problems between government and private primary school students in the central region of Thailand. The data were collected from the school health records in October at the end of the first semester in the academic year 2018. Two thousand and fifty primary school health records from government and private primary schools were gathered to assess health problems regarding anthropometric measurements, physical examination/personal hygiene, and clinical findings for this study. Descriptive statistics and Chi-square were used to be analyzed. The results revealed that health problems of all the school students remained high magnitude. The five top ranks for prevalence rate of health problems were dental caries (36.6%), visual acuity problem (27.7%), over-nutrition (16.8%), head lice (12.8%), and under-nutrition (6.8%), respectively. However, when compared between government and private schools among five health problems; dental caries (55.0% vs 19.9%), visual acuity problem (23.1% vs 31.9%), over-nutrition (20.2% vs 13.8%), head lice (26.5% vs 0.3%), and under-nutrition (10.6% vs 3.4%) with Chi-square analysis, there were significantly different (p < .001). The problem of visual acuity seems to be more serious in private schools while other health problems tend to be more critical in government schools. The findings have suggested that parents who have children in the private primary schools should pay more attention to visual health defects whereas parents with children in the government school should pay more vigilance regards to hygiene and health behavior problems.

Keywords: community health nursing, school health service, health status, primary school children

Procedia PDF Downloads 122
5321 The School Governing Council as the Impetus for Collaborative Education Governance: A Case Study of Two Benguet Municipalities in the Highlands of Northern Philippines

Authors: Maria Consuelo Doble

Abstract:

For decades, basic public education in the Philippines has been beleaguered by a governance scenario of multi-layered decision-making and the lack of collaboration between sectors in addressing issues on poor access to schools, high dropout rates, low survival rates, and poor student performance. These chronic problems persisted despite multiple efforts making it appear that the education system is incapable of reforming itself. In the mountainous rural towns of La Trinidad and Tuba, in the province of Benguet in Northern Philippines, collaborative education governance was catalyzed by the intervention of Synergeia Foundation, a coalition made up of individuals, institutions and organizations that aim to improve the quality of education in the Philippines. Its major thrust is to empower the major stakeholders at the community level to make education work by building the capacities of School Governing Councils (SGCs). Although mandated by the Department of Education in 2006, the SGCs in Philippine public elementary schools remained dysfunctional. After one year of capacity-building by Synergeia Foundation, some SGCs are already exhibiting active community-based multi-sectoral collaboration, while there are many that are not. With the myriad of factors hindering collaboration, Synergeia Foundation is now confronted with the pressing question: What are the factors that promote collaborative governance in the SGCs so that they can address the education-related issues that they are facing? Using Emerson’s (2011) framework on collaborative governance, this study analyzes the application of collaborative governance by highly-functioning SGCs in the public elementary schools of Tuba and La Trinidad. Findings of this action research indicate how the dynamics of collaboration composed of three interactive and iterative components – principled engagement, shared motivation and capacity for joint action – have resulted in meaningful short-term impact such as stakeholder engagement and decreased a number of dropouts. The change in the behavior of stakeholders is indicative of adaptation to a more collaborative approach in governing education in Benguet highland settings such as Tuba and La Trinidad.

Keywords: basic public education, Benguet highlands, collaborative governance, School Governing Council

Procedia PDF Downloads 290
5320 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 428
5319 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 450
5318 Relational Effect of Parent Interest, Basic School Attended, Gender, and Scare of Basic School Mathematics Teacher on Student Interest in Mathematics

Authors: Yarhands Dissou Arthur, Samuel Asiedu Addo, Jonathan Annan

Abstract:

Interest in subject specific is very essential in the quest to ensure effective teaching and learning. In building interest in subject specific areas requires certain factors and strategies well-spelled out.The factors such as the gender of the student, the type of basic school attended, the parent interest as well as the scare of the basic school mathematics teacher is very important to consider. The relational effect and the contribution these above mentioned variables on student have not been fully investigated and this paper address the effect of these factors on the student interest. In the attainment of this goal, the current paper addresses the effect of parent interest, the type of basic school attended, the scare by basic school mathematics teacher and its effect on student’s interest in mathematics. A cross sectional data collected from two hundred and sixty post-secondary school student were analyzed using descriptive and inferential statistical methods by aid of SPSS version 16. The study found that parent interest and value for mathematics significantly influenced students interest and joy in solving mathematical problems. Moreover, we also observed that the fear imposed by basic school mathematics teachers was found to significantly influence students’ interest. The study further found that the type of basic school attended and gender are factors that do not influence students’ interest in mathematics. In addition to concluding that a student’s interest is influenced by both parent interest and the fear of basic school mathematics teacher, the study also showed that the type of basic school attended and gender does not affect the students’ interest in mathematics.

Keywords: gender, mathematics interest, teacher interest, teacher interest, student interest

Procedia PDF Downloads 367
5317 Rethinking: Training Needs of Secondary School Teachers in Pakistan

Authors: Sidra Rizwan

Abstract:

The article focuses on the training needs of secondary school teachers related to the knowledge component of instructional planning and strategies as stated in the National professional standards for teachers in Pakistan. The study aimed to determine the training needs of secondary school teachers on different aspects of knowledge & understanding component of instructional planning and strategies. The target population of the study was the secondary school teachers across Pakistan. For this purpose, a sample of 400 secondary school teachers was selected through multistage sampling from all the four provinces and Federal capital area. Survey method was adopted to assess the training needs by using a self reporting tool. The tool helped to gauge the training needs through indirect inventory questions as well as a ranking list in which the respondents themselves prioritized their training areas. The results showed variation between the direct and indirect reporting of the teachers on the basis of which it was concluded that the secondary school teachers needed awareness about the knowledge component of instructional planning and strategies in order to redefine their actual training needs. The researcher further identified the training needs of secondary school teachers within each province and Islamabad capital territory; including an analysis of variations between strata. As teachers are considered agents of change, their training according to the professional standards should provide a solid base for “rethinking education”.

Keywords: training needs, secondary school teachers, instructional planning & strategies, knowledge & understanding

Procedia PDF Downloads 90
5316 The Influence of Environmental Attributes on Children's Pedestrian-Crash Risk in School Zones

Authors: Jeongwoo Lee

Abstract:

Children are the most vulnerable travelers and they are at risk for pedestrian injury. Creating a safe route to school is important because walking to school is one of the main opportunities for promotion of needed physical exercise among children. This study examined how the built environmental attributes near an elementary school influence traffic accidents among school-aged children. The study used two complementary data sources including the locations of police-reported pedestrian crashes and the built environmental characteristics of school areas. The environmental attributes of road segments were collected through GIS measurements of local data and actual site audits using the inventory developed for measuring pedestrian-crash risk scores. The inventory data collected at 840 road segments near 32 elementary schools in the city of Ulsan. We observed all segments in a 300-meter-radius area from the entrance of an elementary school. Segments are street block faces. The inventory included 50 items, organized into four domains: accessibility (17items), pleasurability (11items), perceived safety from traffic (9items), and traffic and land-use measures (13items). Elementary schools were categorized into two groups based on the distribution of the pedestrian-crash hazard index scores. A high pedestrian-crash zone was defined as an school area within the eighth, ninth, and tenth deciles, while no pedestrian-crash zone was defined as a school zone with no pedestrian-crash accident among school-aged children between 2013 and 2016. No- and high pedestrian-crash zones were compared to determine whether different settings of the built environment near the school lead to a different rate of pedestrian-crash incidents. The results showed that a crash risk can be influenced by several environmental factors such as a shape of school-route, number of intersections, visibility and land-use in a street, and a type of sidewalk. The findings inform policy for creating safe routes to school to reduce the pedestrian-crash risk among children by focusing on school zones.

Keywords: active school travel, school zone, pedestrian crash, safety route to school

Procedia PDF Downloads 245
5315 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 133
5314 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation

Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei

Abstract:

Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.

Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty

Procedia PDF Downloads 144
5313 Identifying and Exploring Top 10 Sustainable Leadership Practices of a School Leader to Improve School Leadership and Student Learning Outcomes

Authors: Sapana Purandare

Abstract:

The landscape of school leadership is evolving with the changing world of the 21st century. In this era, it is crucial to adapt our approaches to school leadership, with the school leader playing an important role in shaping the educational system. During the implementation of the LEAD project, the volume of 67 practices was impractical for any school leader to effectively incorporate. Consequently, this study aims to address this issue by administering a questionnaire to school leaders, including those from Kotak Education Foundation partner schools and others operating within similar contexts. The goal is to pinpoint the practices that can enhance school leadership and Student Learning Outcomes (SLO) both presently and in the near future. Utilizing the Qualtrics tool, a survey was conducted to identify the top 15 practices that respondents believe will be crucial for improving SLO over the next 10-15 years. Additionally, focus group discussions (FGDs) and interviews were conducted to elucidate the challenges hindering the implementation of these practices within schools. The recommendations derived from the identified top 15 practices will be instrumental in devising scalable models for LEAD and advocating for their adoption at the state level. Practices with higher standard deviations and average scores hold particular significance for future development. Furthermore, demographic factors such as age, gender, and years of service influence individuals' perceptions of these practices and thus warrant consideration in our analysis.

Keywords: exploring top sustainable practices, practice implementation, school leadership, student learning outcomes

Procedia PDF Downloads 48
5312 Whole School Environmental Mapping Framework in Preventing Childhood Obesity in Selangor

Authors: M. A. M. Hayati Adilin, D. Ajau, A. S. Siti Khuzaimah, K. Mastura, R. Nik Muhammad Syafiq, M. N. Noor Fatin Nadiah

Abstract:

The school environment is one of many factors related to the increment of overweight and obesity among children. There is an evidence to suggest that the school environmental factor has an independent effect towards health-related behaviour of children and school culture. It may have a significant impact towards the emergence of childhood obesity through their influence on eating pattern and physical activity level. The objective of this study is to identify the school environmental factors (i.e. physical, economic, political and socio-cultural) towards healthy eating and physical activity of urban and rural primary school children in preventing childhood obesity. This can be identified by examining the compliance of rural and urban school environment with whole-school environmental mapping framework. The study design was a cross-sectional study. A total of 60 schools were randomly selected (30 urban and 30 rural) in Selangor, Western Peninsular Malaysia in 2013 and 60 teachers (responsible for student affairs and the school curriculum) have been interviewed face to face by using a whole school mapping questionnaire followed by observation of the school environment . This study has demonstrated that schools in both areas (rural and urban) comply mostly with the physical environmental mapping (83.3%), followed by socio-cultural environmental mapping, 65%. Meanwhile, the political environmental mappings in both urban and rural schools show a low compliance percentage, which is 56.7%. For economic environmental mapping, only 10% of both schools are complied. As a conclusion, this study has demonstrated that schools in both areas do not fully comply with the whole school environmental mapping framework, especially economic and political. However, holistic approach is needed and many improvements can be proposed to promote healthy eating and physical activities among school children. Government, families and schools as well as communities and the media should be included together with any strategies for preventing childhood obesity.

Keywords: childhood obesity, healthy eating, physical activity, school environment

Procedia PDF Downloads 510
5311 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 155
5310 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study

Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa

Abstract:

Purpose: Candidemia was associated with high mortality in the critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analysing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia prior to ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86%, with no significant differences in demographics or comorbidities except for higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU, hospital LOS, and higher ICU in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al. (2021) had good sensitivity and a high negative prediction value. Thus, the risk prediction score was validated for candidemia prediction in critically ill patients.

Keywords: Candidemia, intensive care, acute kidney injury, clinical prediction rule, incidence

Procedia PDF Downloads 7
5309 Study on the Model Predicting Post-Construction Settlement of Soft Ground

Authors: Pingshan Chen, Zhiliang Dong

Abstract:

In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.

Keywords: prediction, model, post-construction settlement, soft ground

Procedia PDF Downloads 425
5308 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
5307 A Sense of Belonging: Music Learning and School Connectedness

Authors: Johanna Gamboa-Kroesen

Abstract:

School connectedness, or the sense of belonging at school, is a critical factor in adolescent health, academic achievement, and socioemotional well-being. In educational research, the construct of the psychological sense of school membership is often referred to as school engagement, school bonding, or school attachment. While current research recognizes school connectedness as integral to a child’s mental health and academic success, many schools have yet to develop adequate interventions to promote a child’s overall sense of belonging at school. However, prior researches in music education indicates that, among other benefits, music classrooms may provide an environment where students feel they belong. While studies indicates that music learning environments, specifically performing ensemble learning environments, instill a sense of school connectedness and, more broadly, contribute to a student’s socio-emotional development, there has been inadequate research on how the actions of music teachers contribute to this phenomenon. The purpose of this study was to examine the relationship between school connectedness and music learning environments with middle school music students enrolled in a school-based music ensemble. In addition, the study aimed to provide a descriptive analysis of the instructional practices that music teachers use to promote an inclusive environment in their classrooms and an overall sense of belonging in their students. Using 191 student surveys of school membership, student reflective writings, 5 teacher interviews, and 10 classroom observations, this study examined the relationship between 7th and 8th-grade student-reported levels of connectedness within their school-based music ensemble and teacher instructional practice. The study found that students reported high levels of positive school membership within their music classes. Students who participate in school-based orchestra ensembles reported a positive change in emotional state during music instruction. In addition, evidence in this study found that music teachers use instructional practices to build connectedness through de-emphasizing competition and strengthening a student’s sense of relational value within their music learning experience. The findings offer implications for future music teacher instruction to create environments of inclusion, strengthen student-teacher relationships, and promote strategies that enhance student connection to school.

Keywords: music education, belonging, instructional practice, school connectedness

Procedia PDF Downloads 69
5306 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
5305 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
5304 Urinary Schistosomiasis among Pre-School and School Aged Children in Two Peri-Urban Communities in Southwest Nigeria

Authors: Isiaka Akinwale, Tolulope Babatunde, Oladepo Sowemimo

Abstract:

A cross-sectional study was conducted between March and April, 2016 among pre-school and school-aged children in two peri-urban communities in Osun State, Southwest Nigeria. Urine samples were collected from the pre-school and school-aged children, tested for microhaematuria using reagent strips, processed and examined for Schistosoma haematobium ova. Out of 274 pupils examined, 132 (48.2%) had infection, with no statistically significant difference (P > 0.05) in infection between male (48.6%) and female pupils (47.6%). The prevalence of infection increases significantly with age (P < 0.05), with the peak (93.3%) of infection recorded in pupils aged 15 to 16 years and the lowest infection (10.0%) in pupils aged 3 to 4 years. There was no statistically significant association (P > 0.05) between intensity in male pupils (156.0 ± 34.5/10 ml) and female pupils (141.7 ± 29.5/10 ml). The prevalence of pupils with microhaematuria was 65.0% and it increased significantly with age (P < 0.001). The conclusion drawn from the study is that to reduce the transmission of S. haematobium in endemic communities, health education and provision of potable water are advocated.

Keywords: Schistosoma haematobium, microhaeamturia, prevalence, urinary schistosomiasis, school aged children, Nigeria

Procedia PDF Downloads 425
5303 Villar Settlement Farm School for the Aetas: Assimilation through American Colonial Education in Zambales, Philippines

Authors: Julian E. Abuso, Alberto T. Paala Jr.

Abstract:

The creation of settlement farm schools at the outset of American colonization of the Philippines was not a matter of accident; rather, their establishment was a major component of a grand plan on public education based on the benevolent assimilation policy of the United States. This argument is illustrated by the case of Villar Settlement Farm School, a school for the Aetas as a non-Christian tribal community in 1907. The study aims to: (1) identify and describe the antecedents for the establishment of Settlement Farm School, (2) explicate the cultural conflicts encountered by Aetas in school, (3) appraise the consequences of education as acculturation among Aeta population. The study made use of the following: historical data based on primary and secondary sources and life histories from primary informants. The Settlement Farm School for the Aetas was borne out of the American’s change in policy from military to civilian authority, recognition of education as a tool for benevolent assimilation. The narratives of informants manifested resistance to certain aspects of the educational process.

Keywords: settlement farm school Aetas, tribe, colonial education, Aeta, non-Christian tribal community

Procedia PDF Downloads 319
5302 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption

Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett

Abstract:

Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.

Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera

Procedia PDF Downloads 148
5301 Comparison of Student Grades in Dual-Enrollment Courses Taken Inside and Outside of Texas High Schools

Authors: Cynthia A. Gallardo, Kelly S. Hall, Kristopher Garza, Linda Challoo, Mais Nijim

Abstract:

Dual-enrollment programs have become more prevalent in college and high school settings. Also known as early college programs, dual-enrollment programs help students acquire a head start in earning college credit for post-secondary studies. The number and percentage of high school students who take college courses while in high school is growing. However, little is known about how dual-enrolled students fare. The classroom environment is important to learning. This study compares dually enrolled high school students who take courses that yield college credit either within their high school or at some other location. Mann-Whitney U was the statistical test used. Mean proportions were compared for each of the five standard letter grades earned across the state of Texas. Results indicated that students earn similar passing A, B, and C grades when they take dual-enrollment courses at their high school location but are more likely to fail if they take dual-enrollment courses at non-high school locations. Implications of results are that student success rate of dual-enrollment college courses may have a significant difference between the locations and student performance.

Keywords: educational leadership, dual-enrollment, student performance, college

Procedia PDF Downloads 99
5300 Unequal Traveling: How School District System and School District Housing Characteristics Shape the Duration of Families Commuting

Authors: Geyang Xia

Abstract:

In many countries, governments have responded to the growing demand for educational resources through school district systems, and there is substantial evidence that school district systems have been effective in promoting inter-district and inter-school equity in educational resources. However, the scarcity of quality educational resources has brought about varying levels of education among different school districts, making it a common choice for many parents to buy a house in the school district where a quality school is located, and they are even willing to bear huge commuting costs for this purpose. Moreover, this is evidenced by the fact that parents of families in school districts with quality education resources have longer average commute lengths and longer average commute distances than parents in average school districts. This "unequal traveling" under the influence of the school district system is more common in school districts at the primary level of education. This further reinforces the differential hierarchy of educational resources and raises issues of inequitable educational public services, education-led residential segregation, and gentrification of school district housing. Against this background, this paper takes Nanjing, a famous educational city in China, as a case study and selects the school districts where the top 10 public elementary schools are located. The study first identifies the spatio-temporal behavioral trajectory dataset of these high-quality school district households by using spatial vector data, decrypted cell phone signaling data, and census data. Then, by constructing a "house-school-work (HSW)" commuting pattern of the population in the school district where the high-quality educational resources are located, and based on the classification of the HSW commuting pattern of the population, school districts with long employment hours were identified. Ultimately, the mechanisms and patterns inherent in this unequal commuting are analyzed in terms of six aspects, including the centrality of school district location, functional diversity, and accessibility. The results reveal that the "unequal commuting" of Nanjing's high-quality school districts under the influence of the school district system occurs mainly in the peripheral areas of the city, and the schools matched with these high-quality school districts are mostly branches of prestigious schools in the built-up areas of the city's core. At the same time, the centrality of school district location and the diversity of functions are the most important influencing factors of unequal commuting in high-quality school districts. Based on the research results, this paper proposes strategies to optimize the spatial layout of high-quality educational resources and corresponding transportation policy measures.

Keywords: school-district system, high quality school district, commuting pattern, unequal traveling

Procedia PDF Downloads 97
5299 Artificial Neural Network in FIRST Robotics Team-Based Prediction System

Authors: Cedric Leong, Parth Desai, Parth Patel

Abstract:

The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.

Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)

Procedia PDF Downloads 513
5298 The Exploration of Preschool Teachers' Understanding of the Role of Socio-Emotional Development in School Readiness

Authors: A. Pedro, T. Goldschmidt

Abstract:

Socio-emotional development is considered to be an essential prerequisite for school readiness. To our best knowledge, research on socio-emotional development specifically from the views of teachers in the South African context is limited. This study explored preschool teachers’ understanding of the role that socio-emotional development plays in preparing the child for school. Using the social learning theory, a qualitative approach with an exploratory design was used for the study. A total of 12 preschool teachers from both community-based and school-based preschools were purposively recruited. Upon receiving ethics clearance from the University of the Western Cape and the Western Cape Education Department, semi-structured interviews were conducted and analysed by utilizing Braun and Clarke’s (2006) six phases of thematic analysis. Participants’ rights, anonymity, and confidentiality were upheld throughout the research process. Findings reveal that preschool teachers emphasise the importance of holistic development for school readiness. Teachers deemed socio-emotional development as absolutely crucial for preparing children for school as it eases the transition to formal schooling and adaptation to the classroom environment.

Keywords: early childhood, preschool teachers, school readiness, socio-emotional development

Procedia PDF Downloads 141
5297 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 94
5296 My Voice My Well-Being: A Participatory Research Study with Secondary School Students in Bangladesh

Authors: Saira Hossain

Abstract:

Well-being commonly refers to the concept that equates to a good life. Similarly, student well-being can be understood as a notion of a good life at school. What constitutes a good life at school for students? – is an emerging question that poses huge interest in this area of research. Student well-being is not only associated with a student’s socio-emotional and academic development at school but also success in life after school as an adult. Today, student well-being is a popular agenda for educators, policymakers, teachers, parents, and most importantly, for students. With the emergence of student well-being, student's voice in matters important to them at school is increasingly getting priority. However, the coin has another side too. Despite the growing importance of understanding student well-being, it is still an alien concept in countries like Bangladesh. The education system of Bangladesh is highly rigid, centralized, and exam-focused. Student's academic achievement has been given the utmost priority at school, whereas their voice, as well as their well-being, is grossly neglected in practice. In this regard, the study set out to explore students' conceptualization of well-being at school in Bangladesh. The study was qualitative. It employed a participatory research approach to elicit the views of 25 secondary school students of aged 14-16 in Bangladesh to explore the concept of well-being. Data analysis was conducted following the thematic analysis technique. The results suggested that student conceptualized well-being as a multidimensional concept with multiple domains, including having, being, relating, feeling, thinking, functioning, and striving. The future implication of the study findings is discussed. Additionally, the study also underscores the implication of the participatory approach as a research technique to explore students' opinion in Bangladesh, where there exists a culture of silence regarding the student's voice.

Keywords: Bangladesh, participatory research, secondary school, student well-being

Procedia PDF Downloads 137