Search results for: incomplete data
25155 Immigrant Workers’ Perspectives of Occupational Health and Safety and Work Conditions that Challenge Work Safety
Authors: Janki Shankar, Shu-Ping Chen
Abstract:
This Canadian study explored the perspectives of recent immigrant workers regarding occupational health and safety (OHS) and workplace conditions that increase workers’ vulnerability to sustaining injury or illness. Using an interpretive research approach and semi structured qualitative interviews, 42 recent immigrant workers from a range of industries operating in two cities in a province in Canada were interviewed. A constant comparative approach was used to identify key themes across the workers’ experiences. The findings revealed that these workers have an incomplete understanding of OHS. In many workplaces, poor job training, little worker support, lack of power in the workplace, and a poor workplace safety culture make it difficult for recent immigrant workers to acquire OHS information and implement safe work practices. This study proposes workplace policies and practices that will improve worker OHS awareness and make workplaces safer for immigrant workers.Keywords: new immigrant workers, occupational health and safety, workplace challenges, policy, practice
Procedia PDF Downloads 11325154 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands
Authors: Julio Albuja, David Zaldumbide
Abstract:
Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.Keywords: algorithms, data, decision tree, transformation
Procedia PDF Downloads 37425153 SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment
Authors: Wenqing Fan, Yixuan Cheng, Wei Huang
Abstract:
The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence.Keywords: DIR triad model, DVE, vulnerability intelligence, vulnerability recurrence
Procedia PDF Downloads 12125152 Application of Blockchain Technology in Geological Field
Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu
Abstract:
Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.Keywords: blockchain, intellectual property protection, geological data, big data management
Procedia PDF Downloads 9125151 Efficient Reduction of Organophosphate Pesticide from Fruits and Vegetables Using Cost Effective Neutralizer
Authors: Debjani Dasgupta, Aman Zalawadia, Anuj Thapa, Pranjali Sing, Ashish Dabade
Abstract:
Organophosphate group pesticides are common pesticide group, which gain entry into food product due to incomplete removal of pesticide residues. The current food industry raw material handling process is not sufficient to eliminate pesticide residues. A neutralizer was used to neutralize the residues of pesticide on Vitis vinifera (Grapes). The water based dilution of neutralizer was demonstrated on fruits like grapes. Analysis for pesticides in water wash and neutralizer wash was carried out using GCMS. Fruits washed with neutralizer exhibited 72.95% removal of pesticides compared with normal water wash method. An economical chemical neutralizer can be used to remove such residues in raw material handling at industrial scale with minor modification in process to achieve minimum pesticide entry into final food products.Keywords: GCMS, organophosphate, raw material handling, Vitis vinifera, pesticide neutralizer
Procedia PDF Downloads 27325150 Frequent Item Set Mining for Big Data Using MapReduce Framework
Authors: Tamanna Jethava, Rahul Joshi
Abstract:
Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.Keywords: frequent item set mining, big data, Hadoop, MapReduce
Procedia PDF Downloads 43625149 The Role Of Data Gathering In NGOs
Authors: Hussaini Garba Mohammed
Abstract:
Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.Keywords: reliable information, data assessment, data mining, data communication
Procedia PDF Downloads 17925148 Moving Beyond the Limits of Disability Inclusion: Using the Concept of Belonging Through Friendship to Improve the Outcome of the Social Model of Disability
Authors: Luke S. Carlos A. Thompson
Abstract:
The medical model of disability, though beneficial for the medical professional, is often exclusionary, restrictive and dehumanizing when applied to the lived experience of disability. As a result, a critique of this model was constructed called the social model of disability. Much of the language used to articulate the purpose behind the social model of disability can be summed up within the word inclusion. However, this essay asserts that inclusiveness is an incomplete aspiration. The social model, as it currently stands, does not aid in creating a society where those with impairments actually belong. Rather, the social model aids in lessening the visibility, or negative consequence of, difference. Therefore, the social model does not invite society to welcome those with physical and intellectual impairments. It simply aids society in ignoring the existence of impairment by removing explicit forms of exclusion. Rather than simple inclusion, then, this essay uses John Swinton’s concept of friendship and Jean Vanier’s understanding of belonging to better articulate the intended outcome of the social model—a society where everyone can belong.Keywords: belong, community, differently-able, disability, exclusion, friendship, inclusion, normality
Procedia PDF Downloads 44825147 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 85225146 To Handle Data-Driven Software Development Projects Effectively
Authors: Shahnewaz Khan
Abstract:
Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.Keywords: data, data-driven projects, data science, NLP, software project
Procedia PDF Downloads 8325145 The Relationship Between Artificial Intelligence, Data Science, and Privacy
Authors: M. Naidoo
Abstract:
Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.Keywords: artificial intelligence, data science, law, policy
Procedia PDF Downloads 10625144 Simulation Data Summarization Based on Spatial Histograms
Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura
Abstract:
In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.Keywords: simulation data, data summarization, spatial histograms, exploration, visualization
Procedia PDF Downloads 17625143 Quantifying Firm-Level Environmental Innovation Performance: Determining the Sustainability Value of Patent Portfolios
Authors: Maximilian Elsen, Frank Tietze
Abstract:
The development and diffusion of green technologies are crucial for achieving our ambitious climate targets. The Paris Agreement commits its members to develop strategies for achieving net zero greenhouse gas emissions by the second half of the century. Governments, executives, and academics are working on net-zero strategies and the business of rating organisations on their environmental, social and governance (ESG) performance has grown tremendously in its public interest. ESG data is now commonly integrated into traditional investment analysis and an important factor in investment decisions. Creating these metrics, however, is inherently challenging as environmental and social impacts are hard to measure and uniform requirements on ESG reporting are lacking. ESG metrics are often incomplete and inconsistent as they lack fully accepted reporting standards and are often of qualitative nature. This study explores the use of patent data for assessing the environmental performance of companies by focusing on their patented inventions in the space of climate change mitigation and adaptation technologies (CCMAT). The present study builds on the successful identification of CCMAT patents. In this context, the study adopts the Y02 patent classification, a fully cross-sectional tagging scheme that is fully incorporated in the Cooperative Patent Classification (CPC), to identify Climate Change Adaptation Technologies. The Y02 classification was jointly developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) and provides means to examine technologies in the field of mitigation and adaptation to climate change across relevant technologies. This paper develops sustainability-related metrics for firm-level patent portfolios. We do so by adopting a three-step approach. First, we identify relevant CCMAT patents based on their classification as Y02 CPC patents. Second, we examine the technological strength of the identified CCMAT patents by including more traditional metrics from the field of patent analytics while considering their relevance in the space of CCMAT. Such metrics include, among others, the number of forward citations a patent receives, as well as the backward citations and the size of the focal patent family. Third, we conduct our analysis on a firm level by sector for a sample of companies from different industries and compare the derived sustainability performance metrics with the firms’ environmental and financial performance based on carbon emissions and revenue data. The main outcome of this research is the development of sustainability-related metrics for firm-level environmental performance based on patent data. This research has the potential to complement existing ESG metrics from an innovation perspective by focusing on the environmental performance of companies and putting them into perspective to conventional financial performance metrics. We further provide insights into the environmental performance of companies on a sector level. This study has implications of both academic and practical nature. Academically, it contributes to the research on eco-innovation and the literature on innovation and intellectual property (IP). Practically, the study has implications for policymakers by deriving meaningful insights into the environmental performance from an innovation and IP perspective. Such metrics are further relevant for investors and potentially complement existing ESG data.Keywords: climate change mitigation, innovation, patent portfolios, sustainability
Procedia PDF Downloads 8325142 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 46025141 Advanced Catechol-Modified Chitosan Hydrogels with the Inducement of Iron (III) Ion at Acidic Condition
Authors: Ngoc Quang Nguyen, Daewon Sohn
Abstract:
Chitosan (CS) is a natural polycationic polysaccharide and pH-sensitive polymer with incomplete deacetylation from claiming chitin. It is also a guaranteeing material in terms of pharmaceutical, chemical, and sustenance industry due to its exceptional structure (reactive –OH and –NH2 groups). In this study, a catechol-functionalized chitosan (CCS, for an eminent level for substitution) was synthesized and propelled by marine mussel cuticles in place on research those intricate connections between Fe³⁺ and catechol under acidic conditions. The ratios of catechol, chitosan and other reagents decide the structure of the hydrogel. The gel formation is then well-maintained by dual cross-linking through electrostatic interactions between Fe³⁺ and CCS and covalent catechol-coupling-based coordinate bonds. The hydrogels showed enhanced cohesiveness and shock-absorbing properties with increasing pH due to coordinate bonds inspired by mussel byssal threads. Thus, the gelation time, rheological properties, UV-vis and ¹H-Nuclear Magnetic Resonance spectroscopy, and the morphologic aspects were elucidated to describe those crosslinking components and the physical properties of the chitosan backbones and hydrogel frameworks.Keywords: catechol, chitosan, iron ion, gelation, hydrogel
Procedia PDF Downloads 14225140 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 50125139 Estimation of Gaseous Pollutants at Kalyanpur, Dhaka City
Authors: Farhana Tarannum
Abstract:
Ambient (outdoor) air pollution is now recognized as an important problem, both nationally and worldwide. The concentrations of gaseous pollutants (SOx, NOx, CO and O3) have been determined from samples collected at Kallyanpur along Shamoli corridor in Dhaka city. Pollutants were determined in a sample collected at ground level and a roof of a 7-storied building. These pollutants are emitted largely from stationary sources like fossil fuel fired power plants, industrial plants, and manufacturing facilities as well as mobile sources. The incomplete combustion of fuel, wood and the Sulphur containing fuel used in the vehicles are one of the main causes of CO and SOx respectively in our natural environment. When the temperature of combustion in high enough and some of that nitrogen reacts with oxygen in the air, various nitrogen oxides (NOx) are then formed. The VOCs react with NOx in the presence of sunlight to form O3. UV Visible spectrophotometric method has been used for the determination of SOx, NOx and O3. The sensor type device was used for the estimation of CO. It was found that the air pollutants (CO, SOx, NOx and O3) of a sample collected at the roof of a building were lower compared to the ground level; it indicated that ground level people are mostly affected by the gaseous pollutants.Keywords: gaseous pollutants, UV-visible spectrophotometry, ambient air quality, Dhaka city
Procedia PDF Downloads 34725138 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques
Authors: Tosin Ige
Abstract:
Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique
Procedia PDF Downloads 17325137 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.Keywords: big data, big data analytics, Hadoop, cloud
Procedia PDF Downloads 31125136 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 41825135 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 13425134 Kant’s Conception of Human Dignity and the Importance of Singularity within Commonality
Authors: Francisco Lobo
Abstract:
Kant’s household theory of human dignity as a common feature of all rational beings is the starting point of any intellectual endeavor to unravel the implications of this normative notion. Yet, it is incomplete, as it neglects considering the importance of the singularity or uniqueness of the individual. In a first, deconstructive stage, this paper describes the Kantian account of human dignity as one among many conceptions of human dignity. It reads carefully into the original wording used by Kant in German and its English translations, as well as the works of modern commentators, to identify its shortcomings. In a second, constructive stage, it then draws on the theories of Aristotle, Alexis de Tocqueville, John Stuart Mill, and Hannah Arendt to try and enhance the Kantian conception, in the sense that these authors give major importance to the singularity of the individual. The Kantian theory can be perfected by including elements from the works of these authors, while at the same time being mindful of the dangers entailed in focusing too much on singularity. The conclusion of this paper is that the Kantian conception of human dignity can be enhanced if it acknowledges that not only morality has dignity, but also the irreplaceable human individual to the extent that she is a narrative, original creature with the potential to act morally.Keywords: commonality, dignity, Kant, singularity
Procedia PDF Downloads 28325133 Evaluation of Forensic Pathology Practice Outside Germany – Experiences From 20 Years of Second Look Autopsies in Cooperation with the Institute of Legal Medicine Munich
Authors: Michael Josef Schwerer, Oliver Peschel
Abstract:
Background: The sense and purpose of forensic postmortem examinations are undoubtedly the same in Institutes of Legal Medicine all over the world. Cause and manner of death must be determined, persons responsible for unnatural death must be brought to justice, and accidents demand changes in the respective scenarios to avoid future mishaps. The latter particularly concerns aircraft accidents, not only regarding consequences from criminal or civil law but also in pursuance of the International Civil Aviation Authority’s regulations, which demand lessons from mishap investigations to improve flight safety. Irrespective of the distinct circumstances of a given casualty or the respective questions in subsequent death investigations, a forensic autopsy is the basis for all further casework, the clue to otherwise hidden solutions, and the crucial limitation for final success when not all possible findings have been properly collected. This also implies that the targeted work of police forces and expert witnesses strongly depends on the quality of forensic pathology practice. Deadly events in foreign countries, which lead to investigations not only abroad but also in Germany, can be challenging in this context. Frequently, second-look autopsies after the repatriation of the deceased to Germany are requested by the legal authorities to ensure proper and profound documentation of all relevant findings. Aims and Methods: To validate forensic postmortem practice abroad, a retrospective study using the findings in the corresponding second-look autopsies in the Institute of Legal Medicine Munich over the last 20 years was carried out. New findings unreported in the previous autopsy were recorded and judged for their relevance to solving the respective case. Further, the condition of the corpse at the time of the second autopsy was rated to discuss artifacts mimicking evidence or the possibility of lost findings resulting from, e.g., decomposition. Recommendations for future handling of death cases abroad and efficient autopsy practice were pursued. Results and Discussion: Our re-evaluation confirmed a high quality of autopsy practice abroad in the vast majority of cases. However, in some casework, incomplete documentation of pathology findings was revealed along with either insufficient or misconducted dissection of organs. Further, some of the bodies showed missing parts of some organs, most probably resulting from sampling for histology studies during the first postmortem. For the aeromedical evaluation of a decedent’s health status prior to an aviation mishap, particularly lost or obscured findings in the heart, lungs, and brain impeded expert testimony. Moreover, incomplete fixation of the body or body parts for repatriation was seen in several cases. This particularly involved previously dissected organs deposited back into the body cavities at the end of the first autopsy. Conclusions and Recommendations: Detailed preparation in the first forensic autopsy avoids the necessity of a second-look postmortem in the majority of cases. To limit decomposition changes during repatriation from abroad, special care must be taken to include pre-dissected organs in the chemical fixation process, particularly when they are separated from the blood vessels and just deposited back into the body cavities.Keywords: autopsy practice, second-look autopsy, retrospective study, quality standards, decomposition changes, repatriation
Procedia PDF Downloads 5025132 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 5725131 Seismic Hazard Assessment of Tehran
Authors: Dorna Kargar, Mehrasa Masih
Abstract:
Due to its special geological and geographical conditions, Iran has always been exposed to various natural hazards. Earthquake is one of the natural hazards with random nature that can cause significant financial damages and casualties. This is a serious threat, especially in areas with active faults. Therefore, considering the population density in some parts of the country, locating and zoning high-risk areas are necessary and significant. In the present study, seismic hazard assessment via probabilistic and deterministic method for Tehran, the capital of Iran, which is located in Alborz-Azerbaijan province, has been done. The seismicity study covers a range of 200 km from the north of Tehran (X=35.74° and Y= 51.37° in LAT-LONG coordinate system) to identify the seismic sources and seismicity parameters of the study region. In order to identify the seismic sources, geological maps at the scale of 1: 250,000 are used. In this study, we used Kijko-Sellevoll's method (1992) to estimate seismicity parameters. The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitude Mmax, activity rate λ, and the Gutenberg-Richter parameter b) from incomplete data files is extended to the case of uncertain magnitude values. By the combination of seismicity and seismotectonic studies of the site, the acceleration with antiseptic probability may happen during the useful life of the structure is calculated with probabilistic and deterministic methods. Applying the results of performed seismicity and seismotectonic studies in the project and applying proper weights in used attenuation relationship, maximum horizontal and vertical acceleration for return periods of 50, 475, 950 and 2475 years are calculated. Horizontal peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.12g, 0.30g, 0.37g and 0.50, and Vertical peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.08g, 0.21g, 0.27g and 0.36g.Keywords: peak ground acceleration, probabilistic and deterministic, seismic hazard assessment, seismicity parameters
Procedia PDF Downloads 7025130 Connecting Students and Faculty Research Efforts through the Research and Projects Portal
Authors: Havish Nalapareddy, Mark V. Albert, Ranak Bansal, Avi Udash, Lin Lin
Abstract:
Students engage in many course projects during their degree programs. However, impactful projects often need a time frame longer than a single semester. Ideally, projects are documented and structured to be readily accessible to future students who may choose to continue the project, with features that emphasize the local community, university, or course structure. The Research and Project Portal (RAPP) is a place where students can post both their completed and ongoing projects with all the resources and tools used. This portal allows students to see what other students have done in the past, in the same university environment, related to their domain of interest. Computer science instructors or students selecting projects can use this portal to assign or choose an incomplete project. Additionally, this portal allows non-computer science faculty and industry collaborators to document their project ideas for students in courses to prototype directly, rather than directly soliciting the help of instructors in engaging students. RAPP serves as a platform linking students across classes and faculty both in and out of computer science courses on joint projects to encourage long-term project efforts across semesters or years.Keywords: education, technology, research, academic portal
Procedia PDF Downloads 13725129 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis
Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang
Abstract:
Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries
Procedia PDF Downloads 14425128 Manifestation of Behavioral and Emotional Disturbances in News Reporters Covering Traumatic Events
Authors: Misbah Shahzadi
Abstract:
The present study was conducted to identify the emotional and behavioral disturbances among the News Reporters covering Traumatic events. In the present study, a sample of 50 News Reporters belonging to the national and the local news agencies were selected from Rawalpindi and Islamabad who had covered any traumatic event in the past one year. Rotter’s Incomplete Sentence Blank (RISB) and Impact of Event Scale interpretations were used to assess a variety of emotional and behavioral patterns of News Reporters. Results showed that some of the frequent emotional and behavioral reactions exhibited by individuals like withdrawal, anxiety\depression, aggression, hyperarousal and avoidance behavior whereas gender-based comparisons indicated that there is no significant gender difference in the News Reporters in manifestations of behavioral and emotional disturbances. It is concluded that significant negative emotional and behavioral reactions are exhibited by the News Reporters who cover traumatic events. The study identifies the negative emotional and behavioral reactions/disturbances after trauma, which can be helpful for identifying problematic areas for counseling and therapeutic interventions for these News Reporters.Keywords: behavioural disturbance, emotional disturbance, news reporters, traumatic events
Procedia PDF Downloads 43125127 The Economic Limitations of Defining Data Ownership Rights
Authors: Kacper Tomasz Kröber-Mulawa
Abstract:
This paper will address the topic of data ownership from an economic perspective, and examples of economic limitations of data property rights will be provided, which have been identified using methods and approaches of economic analysis of law. To properly build a background for the economic focus, in the beginning a short perspective of data and data ownership in the EU’s legal system will be provided. It will include a short introduction to its political and social importance and highlight relevant viewpoints. This will stress the importance of a Single Market for data but also far-reaching regulations of data governance and privacy (including the distinction of personal and non-personal data, data held by public bodies and private businesses). The main discussion of this paper will build upon the briefly referred to legal basis as well as methods and approaches of economic analysis of law.Keywords: antitrust, data, data ownership, digital economy, property rights
Procedia PDF Downloads 8225126 Protecting the Cloud Computing Data Through the Data Backups
Authors: Abdullah Alsaeed
Abstract:
Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.
Procedia PDF Downloads 87