Search results for: functional electrical stimulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4955

Search results for: functional electrical stimulation

4955 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation

Authors: R. Ruslee, H. Gollee

Abstract:

Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.

Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation

Procedia PDF Downloads 275
4954 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 111
4953 Comparison and Effectiveness of Cranial Electrical Stimulation Treatment, Brain Training and Their Combination on Language and Verbal Fluency of Patients with Mild Cognitive Impairment: A Single Subject Design

Authors: Firoozeh Ghazanfari, Kourosh Amraei, Parisa Poorabadi

Abstract:

Mild cognitive impairment is one of the neurocognitive disorders that go beyond age-related decline in cognitive functions, but in fact, it is not so severe which affects daily activities. This study aimed to investigate and compare the effectiveness of treatment with cranial electrical stimulation, brain training and their double combination on the language and verbal fluency of the elderly with mild cognitive impairment. This is a single-subject method with comparative intervention designs. Four patients with a definitive diagnosis of mild cognitive impairment by a psychiatrist were selected via purposive and convenience sampling method. Addenbrooke's Cognitive Examination Scale (2017) was used to assess language and verbal fluency. Two groups were formed with different order of cranial electrical stimulation treatment, brain training by pencil and paper method and their double combination, and two patients were randomly replaced in each group. The arrangement of the first group included cranial electrical stimulation, brain training, double combination and the second group included double combination, cranial electrical stimulation and brain training, respectively. Treatment plan included: A1, B, A2, C, A3, D, A4, where electrical stimulation treatment was given in ten 30-minutes sessions (5 mA and frequency of 0.5-500 Hz) and brain training in ten 30-minutes sessions. Each baseline lasted four weeks. Patients in first group who first received cranial electrical stimulation treatment showed a higher percentage of improvement in the language and verbal fluency subscale of Addenbrooke's Cognitive Examination in comparison to patients of the second group. Based on the results, it seems that cranial electrical stimulation with its effect on neurotransmitters and brain blood flow, especially in the brain stem, may prepare the brain at the neurochemical and molecular level for a better effectiveness of brain training at the behavioral level, and the selective treatment of electrical stimulation solitude in the first place may be more effective than combining it with paper-pencil brain training.

Keywords: cranial electrical stimulation, treatment, brain training, verbal fluency, cognitive impairment

Procedia PDF Downloads 57
4952 System for Mechanical Stimulation of the Mesenchymal Stem Cells Supporting Differentiation into Osteogenic Cells

Authors: Jana Stepanovska, Roman Matejka, Jozef Rosina, Marta Vandrovcova, Lucie Bacakova

Abstract:

The aim of this study was to develop a system for mechanical and also electrical stimulation controlling in vitro osteogenesis under conditions more similar to the in vivo bone microenvironment than traditional static cultivation, which would achieve good adhesion, growth and other specific behaviors of osteogenic cells in cultures. An engineered culture system for mechanical stimulation of the mesenchymal stem cells on the charged surface was designed. The bioreactor allows efficient mechanical loading inducing an electrical response and perfusion of the culture chamber with seeded cells. The mesenchymal stem cells were seeded to specific charged materials, like polarized hydroxyapatite (Hap) or other materials with piezoelectric and ferroelectric features, to create electrical potentials for stimulating of the cells. The material of the matrix was TiNb alloy designed for these purposes, and it was covered by BaTiO3 film, like a kind of piezoelectric material. The process of mechanical stimulation inducing electrical response is controlled by measuring electrical potential in the chamber. It was performed a series of experiments, where the cells were seeded, perfused and stimulated up to 48 hours under different conditions, especially pressure and perfusion. The analysis of the proteins expression was done, which demonstrated the effective mechanical and electrical stimulation. The experiments demonstrated effective stimulation of the cells in comparison with the static culture. This work was supported by the Ministry of Health, grant No. 15-29153A and the Grant Agency of the Czech Republic grant No. GA15-01558S.

Keywords: charged surface, dynamic cultivation, electrical stimulation, ferroelectric layers, mechanical stimulation, piezoelectric layers

Procedia PDF Downloads 266
4951 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation

Procedia PDF Downloads 195
4950 The Effectiveness of Transcranial Electrical Stimulation on Brain Wave Pattern and Blood Pressure in Patients with Generalized Anxiety Disorder

Authors: Mahtab Baghaei, Seyed Mahmoud Tabatabaei

Abstract:

Aim & Background: Electrical stimulation of transcranial direct current is considered one of the treatment methods for mental disorders. The aim of this study was to evaluate the effectiveness of transcranial electrical stimulation on the delta, theta, alpha, beta and systolic and diastolic blood pressure in patients with generalized anxiety disorder. Materials and Methods: The present study was a double-blind intervention with a pre-test and post-test design on people with generalized anxiety disorder in Tabriz in 1400. In this study, 30 patients with generalized anxiety disorder were selected by purposive sampling method based on the criteria specified in DSM-5 and randomly divided into an experimental group (n = 15) and a control group (n = 15). The experimental group received two sessions of 30 minutes of electrical stimulation of transcranial direct current with an intensity of 2 mA in the area of the lateral dorsal prefrontal cortex, and the control group also received artificial stimulation. Results: The results showed that transcranial electrical stimulation reduces delta and theta waves and increases beta and alpha brain waves in the experimental group. On the other hand, this method also showed a significant decrease in systolic and diastolic blood pressure in these patients (p <0.01). Conclusion: The results show that transcranial electrical stimulation has a statistically significant effect on brain waves and blood pressure, and this non-invasive method can be used as one of the treatment methods in people with generalized anxiety disorder.

Keywords: transcranial direct current electrical stimulation, brain waves, systolic blood pressure, diastolic blood pressure

Procedia PDF Downloads 65
4949 Extracorporeal Shock Wave Therapy versus Functional Electrical Stimulation on Spasticity, Function and Gait Parameters in Hemiplegic Cerebral Palsy

Authors: Mohamed A. Eid, Sobhy M. Aly

Abstract:

Background: About 75% of children with spastic hemiplegic cerebral palsy walk independently, but most still show abnormal gait patterns because of contractures across the joints and muscle spasticity. Objective: The purpose of this study was to investigate and compare the effects of extracorporeal shock wave therapy (ESWT) versus functional electrical stimulation (FES) on spasticity, function, and gait parameters in children with hemiplegic cerebral palsy (CP). Methods: A randomized controlled trail was conducted for 45 children with hemiplegic CP ranging in age from 6 to 9 years. They were assigned randomly using opaque envelopes into three groups. Physical Therapy (PT) group consisted of 15 children and received the conventional physical therapy program (CPTP) in addition to ankle foot orthosis (AFO). ESWT group consisted of 15 children and received the CPTP, AFO in addition to ESWT. FES group also consisted of 15 children and received the CPTP, AFO in addition to FES. All groups received the program of treatment 3 days/week for 12 weeks. Evaluation of spasticity by using the Modified Ashworth Scale (MAS), function by using the Pediatric Evaluation Disability Inventory (PEDI) and gait parameters by using the 3-D gait analysis was conducted at baseline and after 12 weeks of the treatment program. Results: Within groups, significant improvements in spasticity, function, and gait (P = 0.05) were observed in both ESWT and FES groups after treatment. While between groups, ESWT group showed significant improvements in all measured variables compared with FES and PT groups (P ˂ 0.05) after treatment. Conclusion: ESWT induced significant improvement than FES in decreasing spasticity and improving function and gait in children with hemiplegic CP. Therefore, ESWT should be included as an adjunctive therapy in the rehabilitation program of these children.

Keywords: cerebral palsy, extracorporeal shock wave therapy, functional electrical stimulation, function, gait, spasticity

Procedia PDF Downloads 101
4948 On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization

Authors: Diego Luján Villarreal

Abstract:

Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation.

Keywords: visual prosthetic devices, volume for stimulation, FEM discretization, 3D simulation

Procedia PDF Downloads 37
4947 The Functional Roles of Right Dorsolateral Prefrontal Cortex and Ventromedial Prefrontal Cortex in Risk-Taking Behavior

Authors: Aline M. Dantas, Alexander T. Sack, Elisabeth Bruggen, Peiran Jiao, Teresa Schuhmann

Abstract:

Risk-taking behavior has been associated with the activity of specific prefrontal regions of the brain, namely the right dorsolateral prefrontal cortex (DLPFC) and the ventromedial prefrontal cortex (VMPFC). While the deactivation of the rDLPFC has been shown to lead to increased risk-taking behavior, the functional relationship between VMPFC activity and risk-taking behavior is yet to be clarified. Correlational evidence suggests that the VMPFC is involved in valuation processes that involve risky choices, but evidence on the functional relationship is lacking. Therefore, this study uses brain stimulation to investigate the role of the VMPFC during risk-taking behavior and replicate the current findings regarding the role of the rDLPFC in this same phenomenon. We used continuous theta-burst stimulation (cTBS) to inhibit either the VMPFC or DLPFC during the execution of the computerized Maastricht Gambling Task (MGT) in a within-subject design with 30 participants. We analyzed the effects of such stimulation on risk-taking behavior, participants’ choices of probabilities and average values, and response time. We hypothesized that, compared to sham stimulation, VMPFC inhibition leads to a reduction in risk-taking behavior by reducing the appeal to higher-value options and, consequently, the attractiveness of riskier options. Right DLPFC (rDLPFC) inhibition, on the other hand, should lead to an increase in risk-taking due to a reduction in cognitive control, confirming existent findings. Stimulation of both the rDLPFC and the VMPFC led to an increase in risk-taking behavior and an increase in the average value chosen after both rDLPFC and VMPFC stimulation compared to sham. No significant effect on chosen probabilities was found. A significant increase in response time was observed exclusively after rDLPFC stimulation. Our results indicate that inhibiting DLPFC and VMPFC separately leads to similar effects, increasing both risk-taking behavior and average value choices, which is likely due to the strong anatomical and functional interconnection of the VMPFC and rDLPFC.

Keywords: decision-making, risk-taking behavior, brain stimulation, TMS

Procedia PDF Downloads 66
4946 A Self-Adaptive Stimulus Artifacts Removal Approach for Electrical Stimulation Based Muscle Rehabilitation

Authors: Yinjun Tu, Qiang Fang, Glenn I. Matthews, Shuenn-Yuh Lee

Abstract:

This paper reports an efficient and rigorous self-adaptive stimulus artifacts removal approach for a mixed surface EMG (Electromyography) and stimulus signal during muscle stimulation. The recording of EMG and the stimulation of muscles were performing simultaneously. It is difficult to generate muscle fatigue feature from the mixed signal, which can be further used in closed loop system. A self-adaptive method is proposed in this paper, the stimulation frequency was calculated and verified firstly. Then, a mask was created based on this stimulation frequency to remove the undesired stimulus. 20 EMG signal recordings were analyzed, and the ANOVA (analysis of variance) approach illustrated that the decreasing trend of median power frequencies was successfully generated from the 'cleaned' EMG signal.

Keywords: EMG, FES, stimulus artefacts, self-adaptive

Procedia PDF Downloads 368
4945 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study

Authors: Faris Tarlochan, Siva Mahesh Tangutooru

Abstract:

Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.

Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses

Procedia PDF Downloads 247
4944 Enhancing Neural Connections through Music and tDCS: Insights from an fNIRS Study

Authors: Dileep G., Akash Singh, Dalchand Ahirwar, Arkadeep Ghosh, Ashutosh Purohit, Gaurav Guleria, Kshatriya Om Prashant, Pushkar Patel, Saksham Kumar, Vanshaj Nathani, Vikas Dangi, Shubhajit Roy Chowdhury, Varun Dutt

Abstract:

Transcranial direct current stimulation (tDCS) has shown promise as a novel approach to enhance cognitive performance and provide therapeutic benefits for various brain disorders. However, the exact underlying brain mechanisms are not fully understood. We conducted a study to examine the brain's functional changes when subjected to simultaneous tDCS and music (Indian classical raga). During the study, participants in the experimental group underwent a 20-minute session of tDCS at two mA while listening to music (raga) for a duration of seven days. In contrast, the control group received a sham stimulation for two minutes at two mA over the same seven-day period. The objective was to examine whether repetitive tDCS could lead to the formation of additional functional connections between the medial prefrontal cortex (the stimulated area) and the auditory cortex in comparison to a sham stimulation group. In this study, 26 participants (5 female) underwent pre- and post-intervention scans, where changes were compared after one week of either tDCS or sham stimulation in conjunction with music. The study revealed significant effects of tDCS on functional connectivity between the stimulated area and the auditory cortex. The combination of tDCS applied over the mPFC and music resulted in newly formed connections. Based on our findings, it can be inferred that applying anodal tDCS over the mPFC enhances functional connectivity between the stimulated area and the auditory cortex when compared to the effects observed with sham stimulation.

Keywords: fNIRS, tDCS, neuroplasticity, music

Procedia PDF Downloads 34
4943 Patent on Brian: Brain Waves Stimulation

Authors: Jalil Qoulizadeh, Hasan Sadeghi

Abstract:

Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs.

Keywords: stimulation, brain, waves, betaOne

Procedia PDF Downloads 52
4942 In-Vitro Evaluation of the Long-Term Stability of PEDOT:PSS Coated Microelectrodes for Chronic Recording and Electrical Stimulation

Authors: A. Schander, T. Tessmann, H. Stemmann, S. Strokov, A. Kreiter, W. Lang

Abstract:

For the chronic application of neural prostheses and other brain-computer interfaces, long-term stable microelectrodes for electrical stimulation are essential. In recent years many developments were done to investigate different appropriate materials for these electrodes. One of these materials is the electrical conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), which has lower impedance and higher charge injection capacity compared to noble metals like gold and platinum. However the long-term stability of this polymer is still unclear. Thus this paper reports on the in-vitro evaluation of the long-term stability of PEDOT coated gold microelectrodes. For this purpose a highly flexible electrocorticography (ECoG) electrode array, based on the polymer polyimide, is used. This array consists of circular gold electrodes with a diameter of 560 µm (0.25 mm2). In total 25 electrodes of this array were coated simultaneously with the polymer PEDOT:PSS in a cleanroom environment using a galvanostatic electropolymerization process. After the coating the array is additionally sterilized using a steam sterilization process (121°C, 1 bar, 20.5 min) to simulate autoclaving prior to the implantation of such an electrode array. The long-term measurements were performed in phosphate-buffered saline solution (PBS, pH 7.4) at the constant body temperature of 37°C. For the in-vitro electrical stimulation a one channel bipolar current stimulator is used. The stimulation protocol consists of a bipolar current amplitude of 5 mA (cathodal phase first), a pulse duration of 100 µs per phase, a pulse pause of 50 µs and a frequency of 1 kHz. A PEDOT:PSS coated gold electrode with an area of 1 cm2 serves as the counter electrode. The electrical stimulation is performed continuously with a total amount of 86.4 million bipolar current pulses per day. The condition of the PEDOT coated electrodes is monitored in between with electrical impedance spectroscopy measurements. The results of this study demonstrate that the PEDOT coated electrodes are stable for more than 3.6 billion bipolar current pulses. Also the unstimulated electrodes show currently no degradation after the time period of 5 months. These results indicate an appropriate long-term stability of this electrode coating for chronic recording and electrical stimulation. The long-term measurements are still continuing to investigate the life limit of this electrode coating.

Keywords: chronic recording, electrical stimulation, long-term stability, microelectrodes, PEDOT

Procedia PDF Downloads 551
4941 Track and Evaluate Cortical Responses Evoked by Electrical Stimulation

Authors: Kyosuke Kamada, Christoph Kapeller, Michael Jordan, Mostafa Mohammadpour, Christy Li, Christoph Guger

Abstract:

Cortico-cortical evoked potentials (CCEP) refer to responses generated by cortical electrical stimulation at distant brain sites. These responses provide insights into the functional networks associated with language or motor functions, and in the context of epilepsy, they can reveal pathological networks. Locating the origin and spread of seizures within the cortex is crucial for pre-surgical planning. This process can be enhanced by employing cortical stimulation at the seizure onset zone (SOZ), leading to the generation of CCEPs in remote brain regions that may be targeted for disconnection. In the case of a 24-year-old male patient suffering from intractable epilepsy, corpus callosotomy was performed as part of the treatment. DTI-MRI imaging, conducted using a 3T MRI scanner for fiber tracking, along with CCEP, is used as part of an assessment for surgical planning. Stimulation of the SOZ, with alternating monophasic pulses of 300µs duration and 15mA current intensity, resulted in CCEPs on the contralateral frontal cortex, reaching a peak amplitude of 206µV with a latency of 31ms, specifically in the left pars triangularis. The related fiber tracts were identified with a two-tensor unscented Kalman filter (UKF) technique, showing transversal fibers through the corpus callosum. The CCEPs were monitored through the progress of the surgery. Notably, the SOZ-associated CCEPs exhibited a reduction following the resection of the anterior portion of the corpus callosum, reaching the identified connecting fibers. This intervention demonstrated a potential strategy for mitigating the impact of intractable epilepsy through targeted disconnection of identified cortical regions.

Keywords: CCEP, SOZ, Corpus callosotomy, DTI

Procedia PDF Downloads 25
4940 Corticomotor Excitability after Two Different Repetitive Transcranial Magnetic Stimulation Protocols in Ischemic Stroke Patients

Authors: Asrarul Fikri Abu Hassan, Muhammad Hafiz bin Hanafi, Jafri Malin Abdullah

Abstract:

This study is to compare the motor evoked potential (MEP) changes using different settings of repetitive transcranial magnetic stimulation (rTMS) in the post-haemorrhagic stroke patient which treated conservatively. The goal of the study is to determine changes in corticomotor excitability and functional outcome after repetitive transcranial magnetic stimulation (rTMS) therapy regime. 20 post-stroke patients with upper limb hemiparesis were studied due to haemorrhagic stroke. One of the three settings; (I) Inhibitory setting, or (II) facilitatory setting, or (III) control group, no excitatory or inhibitory setting have been applied randomly during the first meeting. The motor evoked potential (MEP) were recorded before and after application of the rTMS setting. Functional outcomes were evaluated using the Barthel index score. We found pre-treatment MEP values of the lesional side were lower compared to post-treatment values in both settings. In contrast, we found that the pre-treatment MEP values of the non-lesional side were higher compared to post-treatment values in both settings. Interestingly, patients with treatment, either facilitatory setting and inhibitory setting have faster motor recovery compared to the control group. Our data showed both settings might improve the MEP of the upper extremity and functional outcomes in the haemorrhagic stroke patient.

Keywords: Barthel index, corticomotor excitability, motor evoked potential, repetitive transcranial magnetic stimulation, stroke

Procedia PDF Downloads 126
4939 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 90
4938 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering

Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo

Abstract:

One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.

Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli

Procedia PDF Downloads 46
4937 The Common Location and the Intensity of Surface Electrical Stimulation on the Thorax and Abdomen Areas: A Systematic Review

Authors: Vu Hoang Thu Huong

Abstract:

Background: Surface electrical stimulation (SES) is a popular non-invasive approach that offers a wide range of treatments for many diseases of physical therapy. It involves applying electrical stimulation to the skin via surface electrodes to stimulate nerve fibers. SES was regularly used to treat the back and upper or lower extremities, but it was rarely used to treat the chest and abdomen. SES on the thorax and abdomen should be administered with more attention because crucial organs are under those areas (i.e., heart, lungs, liver, etc.). In these areas, safety precautions are suggested, and some SES applications might even be a contraindication. The fact that physical therapists have less experience with SES in these situations can also be attributed to these. Although a few earlier studies applied it to these settings and discovered hopeful results, none of them highlight the relationship between the intensity of SES and its depth of impact for safety considerations. Objective: To assure feasibility when using SES in these areas, the purpose of this study is to summarize the common location and intensity of those areas that have been conducted in previous studies. Method: A thorough systematic review was conducted to determine the common surface electrode position for the thorax and abdomen areas. The studies with the randomized controlled design were systematically searched using inclusion and exclusion criteria through nine electronic databases, including Pubmed, Scopus, etc., between 1975 and Dec 2021. Results: Thirty-three studies with over 1800 participants and 4 types of SES (TENS, IFC, NMES, and FES) with various categories of department hospitals were found. Following an anterior, lateral, and posterior observation, the particular SES positions found that it concentrated on 6 regions (the thoracic, abdomen, upper lateral, lower lateral, upper back, and lower back regions), and its intensity for each region was also summarized. Conclusion: This systematic review figured out the popular locations of SES in the thorax and abdominal areas as well as a summarized maximum of intensity that was found in previous studies with outstanding outcomes.

Keywords: surface electrical stimulation, electrical stimulation, thoracic, abdomen, abdominal.

Procedia PDF Downloads 52
4936 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors

Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran

Abstract:

Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.

Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold

Procedia PDF Downloads 207
4935 Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study

Authors: Shi-Uk Lee, Chae Young Lim

Abstract:

Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort.

Keywords: magnetic stimulation, lumbar multifidus, strengthening, ultrasonography

Procedia PDF Downloads 330
4934 The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study

Authors: Najmeh Hoseini

Abstract:

Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case.

Keywords: tDCS, stroke, case study, physical therapy

Procedia PDF Downloads 58
4933 Developing a Thermo-Sensitive Conductive Stretchable Film to Allow Cell Sheet Harvest after Mechanical and Electrical Treatments

Authors: Wei-Wen Hu, Yong-Zhi Zhong

Abstract:

Depositing conductive polypyrrole (PPy) onto elastic polydimethylsiloxane (PDMS) substrate can obtain a highly stretchable conductive film, which can be used to construct a bioreactor to cyclically stretch and electrically stimulate surface cells. However, how to completely harvest these stimulated muscle tissue to repair damaged muscle is a challenge. To address this concern, N-isopropylacrylamide (NIPAAm), a monomer of temperature-sensitive polymer, was added during the polymerization of pyrrole on PDMS so that the resulting P(Py-co-NIPAAm)/PDMS should own both conductivity and thermo-sensitivity. Therefore, cells after stimulation can be completely harvested as cell sheets by reducing temperature. Mouse skeletal myoblast, C2C12 cells, were applied to examine our hypothesis. In electrical stimulation, C2C12 cells on P(Py-co-NIPAAm)/PDMS demonstrated the best myo-differentiation under the electric field of 1 V/cm. Regarding cyclic stretching, the strain equal to or higher than 9% can highly align C2C12 perpendicular to the stretching direction. The Western blotting experiments demonstrated that the cell sheets harvested by cooling reserved more extracellular matrix (ECM) than cells collected by the traditional trypsin digestion method. Immunostaining of myosin heavy chain protein (MHC) indicated that both mechanical and electrical stimuli effectively increased the number of myotubes and the differentiation ratio, and the myotubes can be aligned by cyclic stretching. Stimulated cell sheets can be harvested by cooling, and the alignment of myotubes was still maintained. These results suggested that the deposition of P(Py-co-NIPAAm) on PDMS can be applied to harvest intact cell sheets after cyclic stretching and electrical stimulation, which increased the feasibility of bioreactor for the application of tissue engineering and regenerative medicine.

Keywords: bioreactor, cell sheet, conductive polymer, cyclic stretching, electrical stimulation, muscle tissue engineering, myogenesis, thermosensitive hydrophobicity

Procedia PDF Downloads 60
4932 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 63
4931 Selective Effect of Occipital Alpha Transcranial Alternating Current Stimulation in Perception and Working Memory

Authors: Andreina Giustiniani, Massimiliano Oliveri

Abstract:

Rhythmic activity in different frequencies could subserve distinct functional roles during visual perception and visual mental imagery. In particular, alpha band activity is thought to play a role in active inhibition of both task-irrelevant regions and processing of non-relevant information. In the present blind placebo-controlled study we applied alpha transcranial alternating current stimulation (tACS) in the occipital cortex both during a basic visual perception and a visual working memory task. To understand if the role of alpha is more related to a general inhibition of distractors or to an inhibition of task-irrelevant regions, we added a non visual distraction to both the tasks.Sixteen adult volunteers performed both a simple perception and a working memory task during 10 Hz tACS. The electrodes were placed over the left and right occipital cortex, the current intensity was 1 mA peak-to-baseline. Sham stimulation was chosen as control condition and in order to elicit the skin sensation similar to the real stimulation, electrical stimulation was applied for short periods (30 s) at the beginning of the session and then turned off. The tasks were split in two sets, in one set distracters were included and in the other set, there were no distracters. Motor interference was added by changing the answer key after subjects completed the first set of trials.The results show that alpha tACS improves working memory only when no motor distracters are added, suggesting a role of alpha tACS in inhibiting non-relevant regions rather than in a general inhibition of distractors. Additionally, we found that alpha tACS does not affect accuracy and hit rates during the visual perception task. These results suggest that alpha activity in the occipital cortex plays a different role in perception and working memory and it could optimize performance in tasks in which attention is internally directed, as in this working memory paradigm, but only when there is not motor distraction. Moreover, alpha tACS improves working memory performance by means of inhibition of task-irrelevant regions while it does not affect perception.

Keywords: alpha activity, interference, perception, working memory

Procedia PDF Downloads 220
4930 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface

Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu

Abstract:

It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.

Keywords: robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation

Procedia PDF Downloads 359
4929 Effects of EMS on Foot Drop Associated with Grade III Wound: A Case Report

Authors: Mirza Obaid Baig, MaimoonaYaqub

Abstract:

A 51 year old lady; known case of diabetes mellitus, post wound debridement i.e. 4 open wounds of grade III presented to us with foot drop, with prominent sensory deficit over right lower leg/foot i.e. 0 on Nottingham scale for impaired sensation, marked pedal edema and 5/10 – 6/10 pain on VAS during day and night respectively, Wounds were poorly granulated and foul smelling. Physiotherapy sessions were planned including twice a day electrical muscle stimulation sessions, strategies to decrease edema and improve muscle action which resulted in noticeable improvement in motor and sensory ability, pain levels, edema and psychological status of patient. Thus, this study gives evidence of the effect of Electrical muscle stimulation in grade III open wounds associated with motor/sensory weakness post-surgery.

Keywords: EMS, foot drop, grade III wound, diabetes mellitus

Procedia PDF Downloads 386
4928 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 301
4927 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial

Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra

Abstract:

Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.

Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke

Procedia PDF Downloads 249
4926 Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review

Authors: Ana Lucia Molina

Abstract:

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters.

Keywords: urinary incontinence, non-invasive neuromodulation, sacral neuromodulation, transcranial magnetic stimulation.

Procedia PDF Downloads 55