Search results for: capillary water absorption
9672 Effect of Control Lasers Polarization on Absorption Coefficient and Refractive Index of a W-Type 4- Level Cylindrical Quantum Dot in the Presence Of Electromagnetically Induced Transparency (ETI)
Authors: Marziehossadat Moezzi
Abstract:
In this paper, electromagnetically induced transparency (EIT) is investigated in a cylindrical quantum dot (QD) with a parabolic confinement potential. We study the effect of control lasers polarization on absorption coefficient, refractive index and also on the generation of the double transparency windows in this system. Considering an effective mass method, the time-independent Schrödinger equation is solved to obtain the energy structure of the QD. Also, we study the effect of structural characteristics of the QD on refraction and absorption of the QD in the presence of EIT.Keywords: electromagnetically induced transparency, cylindrical quantum dot, absorption coefficient, refractive index
Procedia PDF Downloads 1989671 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting
Authors: Hoda Aleali, Nastran Mansour, Maryam Mirzaie
Abstract:
In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.Keywords: nanoscale materials, silver sulfide nanoparticles, nonlinear absorption, nonlinear scattering, optical limiting
Procedia PDF Downloads 3969670 Deformation and Energy Absorption of Corrugated Tubes
Authors: Mohammad R. Rahim, Shagil Akhtar, Prem K. Bharti, Syed Muneeb Iqbal
Abstract:
Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations.Keywords: ANSYS Workbench, deformation and energy absorption, corrugated tubes, quasi-static compression
Procedia PDF Downloads 3869669 Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography
Authors: Chan Jong Park, Hye Min Park, Jeong Ho Kim, Ki Hyun Park, Koan Sik Joo
Abstract:
This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25μm, 50μm, and 75μm. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated.Keywords: X-ray, MCNPX, filter, semiconductor, damage
Procedia PDF Downloads 4239668 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black
Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega
Abstract:
Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light
Procedia PDF Downloads 1709667 Experimental Study of the Sound Absorption of a Geopolymer Panel with a Textile Component Designed for a Railway Corridor
Authors: Ludmila Fridrichová, Roman Knížek, Pavel Němeček, Katarzyna Ewa Buczkowska
Abstract:
The design of the sound absorption panel, which consists of three layers, is presented in this study. The first layer of the panel is perforated and provides sound transmission to the inner part of the panel. The second layer is composed of a bulk material whose purpose is to absorb as much noise as possible. The third layer of the panel has two functions: the first function is to ensure the strength of the panel, and the second function is to reflect the sound back into the bulk layer. Experimental results have shown that the size of the holes in the perforated panel affects the sound absorption of the required frequency. The percentage of filling of the perforated area affects the quantity of sound absorbed.Keywords: sound absorption, railway corridor, health, textile waste, natural fibres, concrete
Procedia PDF Downloads 159666 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan
Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan
Abstract:
Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.Keywords: heavy metals, soil, groundwater, tannery effluents, food chain
Procedia PDF Downloads 3469665 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks
Authors: Anna Stepien
Abstract:
The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.Keywords: bricks, fiber, glass, microstructure
Procedia PDF Downloads 3479664 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert
Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh
Abstract:
The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara
Procedia PDF Downloads 1589663 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions
Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer
Abstract:
Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization
Procedia PDF Downloads 1309662 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 3969661 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene
Authors: Berkas Khaoula
Abstract:
Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging
Procedia PDF Downloads 909660 Testing Plastic-Sand Construction Blocks Made from Recycled Polyethylene Terephthalate (rPET)
Authors: Cassi Henderson, Lucia Corsini, Shiv Kapila, Egle Augustaityte, Tsemaye Uwejamomere Zinzan Gurney, Aleyna Yildirim
Abstract:
Plastic pollution is a major threat to human and planetary health. In Low- and Middle-Income Countries, plastic waste poses a major problem for marginalized populations who lack access to formal waste management systems. This study explores the potential for converting waste plastic into construction blocks. It is the first study to analyze the use of polyethylene terephthalate (PET) as a binder in plastic-sand bricks. Unlike previous studies of plastic sand-bricks, this research tests the properties of bricks that were made using a low-cost kiln technology that was co-designed with a rural, coastal community in Kenya. The mechanical strength, resistance to fire and water absorption properties of the bricks are tested in this study. The findings show that the bricks meet structural standards for mechanical performance, fire resistance and water absorption. It was found that 30:70 PET to sand demonstrated the best overall performance.Keywords: recycling, PET, plastic, sustainable construction, sustainable development
Procedia PDF Downloads 1259659 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector
Authors: Salma Parvin, M. A. Alim
Abstract:
The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.Keywords: DASC, forced convection, mass flow rate, nanofluid
Procedia PDF Downloads 2949658 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes
Authors: R. Faiez, M. Mashhoudi, F. Najafi
Abstract:
Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.Keywords: computer simulation, fluid flow, interface shape, thermos-capillary effect
Procedia PDF Downloads 2469657 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities
Authors: Nacer Hamza
Abstract:
Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.Keywords: norms, radon concentration, produced water, heavy metals
Procedia PDF Downloads 1479656 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects.Keywords: concrete, durability, pumice, SCC, transport, zeolite
Procedia PDF Downloads 1879655 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece
Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris
Abstract:
Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.Keywords: chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management
Procedia PDF Downloads 2349654 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures
Authors: Jitka Hroudová, Martin Sedlmajer, Jiří Zach
Abstract:
Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.Keywords: thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.
Procedia PDF Downloads 3049653 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section
Authors: Mohammed Alrajhi
Abstract:
Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.Keywords: cross-section, neutron, photon, coefficient, mathematics
Procedia PDF Downloads 3719652 Properties of Compressed Earth Blocks Enhanced with Clay Pozzolana
Authors: Humphrey Danso, Seth Adu
Abstract:
The high cost of cement and its greenhouse effect on the environment have led to the use of alternative building materials in the production of block and bricks. This study seeks to investigate the properties of compressed earth blocks (CEBs) enhanced with clay pozzolana. CEBs of size 290 × 140 × 100 mm were prepared with 10, 20 and 30 % weight of clay pozzolana. The CEBs were compressed at a constant pressure of 5 MPa and cured for 28 days. The blocks, after 7, 14, 21 and 28 days of curing were tested for density, water absorption, compressive strength and erosion. It was found that amount of pozzolana content did not have much influence on blocks’ density. There was a decline in water absorption of the stabilised blocks ranged between 32.8% and 252.2% over the unstabilised blocks. The highest compressive strength (3.75MPa) of the stabilized blocks was achieved at 28th day of curing with 30% clay pozzolana content, which showed an improvement of 116.8% strength over the unstabilised blocks. Furthermore, there was a statistically significant difference in the erosion resistance between the stabilized blocks and the unstabilised blocks. The study concludes that the inclusion of the clay pozzolana increased the properties of the CEBs, and therefore recommended for use in the building of houses.Keywords: clay pozzolana, compressed earth blocks (CEBs), compressive strength, erosion test
Procedia PDF Downloads 2809651 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing
Authors: Ali Rabiee, Hessam Ghasemnejad
Abstract:
Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.Keywords: through-thickness stitching, 3D enforcement, energy absorption, tubular composite structures
Procedia PDF Downloads 2629650 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method
Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai
Abstract:
In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon
Procedia PDF Downloads 1619649 Relation between Energy Absorption and Box Dimension of Rock Fragments under Impact Loading
Authors: Li Hung-Hui, Chen Chi-Chieh, Yang Zon-Yee
Abstract:
This study aims to explore the impact energy absorption in the fragmented processes of rock samples during the split-Hopkinson-pressure-bar tests. Three kinds of rock samples including granite, marble and sandstone were tested. The impact energy absorptions were calculated according to the incident, reflected and transmitted strain wave histories measured by a oscilloscope. The degree of fragment rocks after tests was quantified by the box dimension of the fractal theory. The box dimension of rock fragments was obtained from the particle size distribution curve by the sieve analysis. The results can be concluded that: (1) the degree of rock fragments after tests can be well described by the value of box dimension; (2) with the impact energy absorption increasing, the degrees of rock fragments are varied from the very large fragments to very small fragments, and the corresponding box dimension varies from 2.9 to 1.2.Keywords: SHPB test, energy absorption, rock fragments, impact loading, box dimension
Procedia PDF Downloads 4509648 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles
Authors: Saud Hamdan Alshammari
Abstract:
Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles
Procedia PDF Downloads 229647 Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD
Authors: Mahmoudi Noureddine, Kaou Abdellah
Abstract:
Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used.Keywords: Energy absorption, crash, PEHD
Procedia PDF Downloads 4999646 Layer-By-Layer Deposition of Poly (Amidoamine) and Poly (Acrylic Acid) on Grafted-Polylactide Nonwoven with Different Surface Charge
Authors: Sima Shakoorjavan, Mahdieh Eskafi, Dawid Stawski, Somaye Akbari
Abstract:
In this study, poly (amidoamine) dendritic material (PAMAM) and poly (acrylic acid) (PAA) as polycation and polyanion were deposited on surface charged polylactide (PLA) nonwoven to study the relationship of dye absorption capacity of layered-PLA with the number of deposited layers. To produce negatively charged-PLA, acrylic acid (AA) was grafted on the PLA surface (PLA-g-AA) through a chemical redox reaction with the strong oxidizing agent. Spectroscopy analysis, water contact measurement, and FTIR-ATR analysis confirm the successful grafting of AA on the PLA surface through the chemical redox reaction method. In detail, an increase in dye absorption percentage by 19% and immediate absorption of water droplets ensured hydrophilicity of PLA-g-AA surface; and the presence of new carbonyl bond at 1530 cm-¹ and a wide peak of hydroxyl between 3680-3130 cm-¹ confirm AA grafting. In addition, PLA as linear polyester can undergo aminolysis, which is the cleavage of ester bonds and replacement with amid bonds when exposed to an aminolysis agent. Therefore, to produce positively charged PLA, PAMAM as amine-terminated dendritic material was introduced to PLA molecular chains at different conditions; (1) at 60 C for 0.5, 1, 1.5, 2 hours of aminolysis and (2) at room temperature (RT) for 1, 2, 3, and 4 hours of aminolysis. Weight changes and spectrophotometer measurements showed a maximum in weight gain graph and K/S value curve indicating the highest PAMAM attachment at 60 C for 1 hour and RT for 2 hours which is considered as an optimum condition. Also, the emerging new peak around 1650 cm-1 corresponding to N-H bending vibration and double wide peak at around 3670-3170 cm-1 corresponding to N-H stretching vibration confirm PAMAM attachment in selected optimum condition. In the following, regarding the initial surface charge of grafted-PLA, lbl deposition was performed and started with PAA or PAMAM. FTIR-ATR results confirm chemical changes in samples due to deposition of the first layer (PAA or PAMAM). Generally, spectroscopy analysis indicated that an increase in layer number costed dye absorption capacity. It can be due to the partial deposition of a new layer on the previously deposited layer; therefore, the available PAMAM at the first layer is more than the third layer. In detail, in the case of layer-PLA starting lbl with negatively charged, having PAMAM as the first top layer (PLA-g-AA/PAMAM) showed the highest dye absorption of both cationic and anionic model dye.Keywords: surface modification, layer-by-layer technique, dendritic materials, PAMAM, dye absorption capacity, PLA nonwoven
Procedia PDF Downloads 849645 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water
Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli
Abstract:
Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.Keywords: drinking water, health risk assessment, heavy metals, pollution index
Procedia PDF Downloads 1309644 Performance of the Hybrid Loop Heat Pipe
Authors: Nandy Putra, Imansyah Ibnu Hakim, Iwan Setyawan, Muhammad Zayd A.I
Abstract:
A two-phase cooling technology of passive system sometimes can no longer meet the cooling needs of an increasingly challenging due to the inherent limitations of the capillary pumping for example in terms of the heat flux that can lead to dry out. In this study, intended to overcome the dry out with the addition of a diaphragm, they pump to accelerate the fluid transportation from the condenser to the evaporator. Diaphragm pump installed on the bypass line. When it did not happen dry out then the hybrid loop heat pipe will be work passively using a capillary pressure of wick. Meanwhile, when necessary, hybrid loop heat pipe will be work actively, using diaphragm pump with temperature control installed on the evaporator. From the results, it can be said that the pump has been successfully overcome dry out and can distribute working fluid from the condenser to the evaporator and reduce the temperature of the evaporator from 143°C to 100°C as a temperature controlled where the pump start actively at set point 100°C.Keywords: hybrid, heat pipe, dry out, assisted, pump
Procedia PDF Downloads 3529643 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption
Authors: Binyam Teferi
Abstract:
Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation
Procedia PDF Downloads 128