Search results for: antibiotics prophylaxis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 553

Search results for: antibiotics prophylaxis

403 Antimicrobial Efficacy of Some Antibiotics Combinations Tested against Some Molecular Characterized Multiresistant Staphylococcus Clinical Isolates, in Egypt

Authors: Nourhan Hussein Fanaki, Hoda Mohamed Gamal El-Din Omar, Nihal Kadry Moussa, Eva Adel Edward Farid

Abstract:

The resistance of staphylococci to various antibiotics has become a major concern for health care professionals. The efficacy of the combinations of selected glycopeptides (vancomycin and teicoplanin) with gentamicin or rifampicin, as well as that of gentamicin/rifampicin combination, was studied against selected pathogenic staphylococcus isolated from Egypt. The molecular distribution of genes conferring resistance to these four antibiotics was detected among tested clinical isolates. Antibiotic combinations were studied using the checkerboard technique and the time-kill assay (in both the stationary and log phases). Induction of resistance to glycopeptides in staphylococci was tried in the absence and presence of diclofenac sodium as inducer. Transmission electron microscopy was used to study the effect of glycopeptides on the ultrastructure of the cell wall of staphylococci. Attempts were made to cure gentamicin resistance plasmids and to study the transfer of these plasmids by conjugation. Trials for the transformation of the successfully isolated gentamicin resistance plasmid to competent cells were carried out. The detection of genes conferring resistance to the tested antibiotics was performed using the polymerase chain reaction. The studied antibiotic combinations proved their efficacy, especially when tested during the log phase. Induction of resistance to glycopeptides in staphylococci was more promising in presence of diclofenac sodium, compared to its absence. Transmission electron microscopy revealed the thickening of bacterial cell wall in staphylococcus clinical isolates due to the presence of tested glycopeptides. Curing of gentamicin resistance plasmids was only successful in 2 out of 9 tested isolates, with a curing rate of 1 percent for each. Both isolates, when used as donors in conjugation experiments, yielded promising conjugation frequencies ranging between 5.4 X 10-2 and 7.48 X 10-2 colony forming unit/donor cells. Plasmid isolation was only successful in one out of the two tested isolates. However, low transformation efficiency (59.7 transformants/microgram plasmid DNA) of such plasmids was obtained. Negative regulators of autolysis, such as arlR, lytR and lrgB, as well as cell-wall associated genes, such as pbp4 and/or pbp2, were detected in staphylococcus isolates with reduced susceptibility to the tested glycopeptides. Concerning rifampicin resistance genes, rpoBstaph was detected in 75 percent of the tested staphylococcus isolates. It could be concluded that in vitro studies emphasized the usefulness of the combination of vancomycin or teicoplanin with gentamicin or rifampicin, as well as that of gentamicin with rifampicin, against staphylococci showing varying resistance patterns. However, further in vivo studies are required to ensure the safety and efficacy of such combinations. Diclofenac sodium can act as an inducer of resistance to glycopeptides in staphylococci. Cell-wall thickness is a major contributor to such resistance among them. Gentamicin resistance in these strains could be chromosomally or plasmid mediated. Multiple mutations in the rpoB gene could mediate staphylococcus resistance to rifampicin.

Keywords: glycopeptides, combinations, induction, diclofenac, transmission electron microscopy, polymerase chain reaction

Procedia PDF Downloads 297
402 In Vitro Antibacterial Effect of Hydroalcoholic Extract of Lawsonia Inermis, Malva Sylvestris and Boswellia Serrata on Aggregatibacter Actinomycetemcomitans

Authors: Surena V.

Abstract:

Background and Aim: Periodontal diseases are among the most common infectious diseases all around the world, even in developed countries. Considering the increased rate of microbial resistance to antibiotics and the chemical side effects of antibiotics and antiseptics used for the treatment of periodontal disease, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal herbs have recently become popular as antimicrobial and preventive agents. This study aimed to assess the antibacterial effects of hydroalcoholic extracts of Lawsonia inermis, Malva sylvestris and Boswellia serrata on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Materials and Methods: Hydroalcoholic extracts of the three medicinal plants were obtained by the maceration technique and A. actinomycetemcomitans was cultured. The antimicrobial efficacy of the three medicinal plants was compared with that of 0.2% chlorhexidine (CHX) according to the CLSI protocol using agar disc diffusion and broth microdilution techniques. All tests were repeated three times. Results: Hydroalcoholic extracts of all three plants had antimicrobial activity against A. actinomycetemcomitans. The minimum inhibitory concentration (MIC) of Lawsonia inermis, Malva sylvestris, and Boswellia serrata was 78.1, 156.2, and 1666 µg/mL with no significant difference between them. The MIC of CHX was 3.33 µg/mL, which was significantly higher than that of Boswellia serrata extract. Conclusion: Given that, further in vivo studies confirm other properties of these extracts and their safety in terms of cytotoxicity and mutagenicity, hydroalcoholic extracts of Lawsonia inermis and Malva sylvestris may be used in mouthwashes or local delivery systems to affect periodontal biofilm.

Keywords: actinobacilus actinomycetem commitans, lawsonia inermis, malva sylvestris, boswellia serrata

Procedia PDF Downloads 62
401 Evaluation of Chemical Compositions and Biological Activities of Five Essential Oils

Authors: G. Ozturk, B. Demirci

Abstract:

It is well known that essential oils used for therapeutic purposes for many years. In this study, five different Pharmacopoeia grade essential oils (Achillea millefolium L., Pimpinella anisum L., Matricaria recutita L., Eucalyptus globulus L., Salvia officinalis L.) which obtained from commercial sources were evaluated for chemical compositions, synergistic antimicrobial activities, and lipoxygenase enzyme inhibitions. Volatile components were determined by gas chromatography/flame ionization detector and gas chromatography/mass spectrometer, simultaneously. The potential antimicrobial activity of essential oils was tested against oral pathogenic standard strains such as Streptococcus mutans, Streptococcus sanguinis, Staphylococcus aureus, Corynebacterium striatum, Candida albicans and Candida krusei by broth microdilution methods. Ciprofloxacin and ketoconazole were used positive controls. It has been observed that the essential oils tested have average inhibitory antimicrobial activity against oral pathogens with a Minimum Inhibition Concentration of 20-0.625 mg/mL. The active essential oils have been combined with antibiotics and synergistic effects have been evaluated by Checkerboard method. ƩFIC values were determined. In combination with antibiotics M. recutita essential oil has been shown to have a synergistic effect against S. aureus in combination with tetracycline (ƩFIC 0.46). In addition, 5-LOX inhibitory activity was measured by modifying the spectrophotometric method developed by Baylac and Racine. As a result, 5-LOX % inhibition of S. officinalis, E. globulus and M. recutita were calculated as 34.0 ± 6.66, 72.7 ± 2.78 and 27.7 ± 0.60, respectively.

Keywords: antimicrobial activity, essential oils, synergistic activity, 5-lipoxygenase inhibition

Procedia PDF Downloads 109
400 Sulfamethoxazole Degradation by Conventional Fenton and Microwave-Assisted Fenton Reaction

Authors: Derradji Chebli, Abdallah Bouguettoucha, Zoubir Manaa, Amrane Abdeltif

Abstract:

Pharmaceutical products, such as sulfamethoxazole (SMX) are rejected in the environment at trace level by human and animals (ng/L to mg/L), in their original form or as byproducts. Antibiotics are toxic contaminants for the aquatic environment, owing to their adverse effects on the aquatic life and humans. Even at low concentrations, they can negatively impact biological water treatment leading to the proliferation of antibiotics-resistant pathogens. It is therefore of major importance to develop efficient methods to limit their presence in the aquatic environment. In this aim, advanced oxidation processes (AOP) appear relevant compared to other methods, since they are based on the production of highly reactive free radicals, and especially ●OH. The objective of this work was to evaluate the degradation of SMX by microwave-assisted Fenton reaction (MW/Fe/H2O2). Hydrogen peroxide and ferrous ions concentrations, as well as the microwave power were optimized. The results showed that the SMX degradation by MW/Fe/H2O2 followed a pseudo-first order kinetic. The treatment of 20 mg/L initial SMX by the Fenton reaction in the presence of microwave showed the positive impact of this latter owing to the higher degradation yields observed in a reduced reaction time if compared to the conventional Fenton reaction, less than 5 min for a total degradation. In addition, increasing microwave power increased the degradation kinetics. Irrespective of the application of microwave, the optimal pH for the Fenton reaction remained 3. Examination of the impact of the ionic strength showed that carbonate and sulfate anions increased the rate of SMX degradation.

Keywords: antibiotic, degradation, elimination, fenton, microwave, polluant

Procedia PDF Downloads 403
399 Direct Phoenix Identification and Antimicrobial Susceptibility Testing from Positive Blood Culture Broths

Authors: Waad Al Saleemi, Badriya Al Adawi, Zaaima Al Jabri, Sahim Al Ghafri, Jalila Al Hadhramia

Abstract:

Objectives: Using standard lab methods, a positive blood culture requires a minimum of two days (two occasions of overnight incubation) to obtain a final identification (ID) and antimicrobial susceptibility results (AST) report. In this study, we aimed to evaluate the accuracy and precision of identification and antimicrobial susceptibility testing of an alternative method (direct method) that will reduce the turnaround time by 24 hours. This method involves the direct inoculation of positive blood culture broths into the Phoenix system using serum separation tubes (SST). Method: This prospective study included monomicrobial-positive blood cultures obtained from January 2022 to May 2023 in SQUH. Blood cultures containing a mixture of organisms, fungi, or anaerobic organisms were excluded from this study. The result of the new “direct method” under study was compared with the current “standard method” used in the lab. The accuracy and precision were evaluated for the ID and AST using Clinical and Laboratory Standards Institute (CLSI) recommendations. The categorical agreement, essential agreement, and the rates of very major errors (VME), major errors (ME), and minor errors (MIE) for both gram-negative and gram-positive bacteria were calculated. Passing criteria were set according to CLSI. Result: The results of ID and AST were available for a total of 158 isolates. Of 77 isolates of gram-negative bacteria, 71 (92%) were correctly identified at the species level. Of 70 isolates of gram-positive bacteria, 47(67%) isolates were correctly identified. For gram-negative bacteria, the essential agreement of the direct method was ≥92% when compared to the standard method, while the categorical agreement was ≥91% for all tested antibiotics. The precision of ID and AST were noted to be 100% for all tested isolates. For gram-positive bacteria, the essential agreement was >93%, while the categorical agreement was >92% for all tested antibiotics except moxifloxacin. Many antibiotics were noted to have an unacceptable higher rate of very major errors including penicillin, cotrimoxazole, clindamycin, ciprofloxacin, and moxifloxacin. However, no error was observed in the results of vancomycin, linezolid, and daptomycin. Conclusion: The direct method of ID and AST for positive blood cultures using SST is reliable for gram negative bacteria. It will significantly decrease the turnaround time and will facilitate antimicrobial stewardship.

Keywords: bloodstream infection, oman, direct ast, blood culture, rapid identification, antimicrobial susceptibility, phoenix, direct inoculation

Procedia PDF Downloads 69
398 Diversities, Antibiogram and Antibiotic Resistance Genes in Staphylococcus Species in Raw Meat from a Research Farm

Authors: Anthony Ayodeji Adegoke, Olayinka Ayobami Aiyegoro, Thor Axel Stenstrom

Abstract:

A study to investigate the species diversities, antibiogram and antibiotic resistance genes in Staphylococcus species from raw meat and dairy products collected from an abattoir and a farm shop of a research institute in Irene, South Africa over a six-month period was conducted. Polymerase Chain Reaction was used to speciate the bacteria and to detect the presence and otherwise of resistance genes. Antibiotic susceptibility testing was performed by disk diffusion method on Mueller-Hinton agar according to the Clinical Laboratory Standards Institute standards. A total of twenty-six (26) antibiotics were used to determine the antibiotic susceptibility. S. xylosus was the predominant isolate with 30% total occurrence, followed by S. epidermis, S. aureus, S. saprophyticus and S. haemolyticus with 25%, 15%, 15%, and 10% abundance respectively. The isolates were resistant to ceftezidime, gentamycin, nalidixic acid, nortrafuration, ampicillin, penicillin, oxytetracycline, tetracycline, doxycycline, clindamycin and lincomycin. mecA genes was detected among the methicillin resistant Staphylococcus species (MRSS) but no vancomycin resistance genes (van A and van B) were detected in these isolates. The presence of MRSS and multidrug resistant Staphylococcus species in meat affirms the need to avoid consumption of partially cooked meat currently rampant in South Africa, to avoid the spread of difficult to control pathogens in epidemiological proportion.

Keywords: Staphylococcus species, antibiotics, antibiotic resistance genes, food products, methicillin resistance, mecA gene

Procedia PDF Downloads 306
397 Inappropriate Antibiotic Use: An Online Survey in Thailand

Authors: Surarong Chinwong, Namthip Intarakumhang Na Rachasima, Siyaporn Kuikhiew, Dujrudee Chinwong

Abstract:

Irrational use of medicines is a major problem in public health. Half of all patients take medicines incorrectly. An inappropriate use of antibiotics is one of the common types of irrational medicine use; for example, patients use antibiotic for treatment of common cold or diarrhea. Objectives: This cross-sectional study aimed to investigate the behaviors on antibiotic use, using amoxicillin and norfloxacin as examples, as well as sources of received health information. Methods: An online self-administered questionnaire was used to collect data from participants in Thailand between September and December 2015. Participants were asked about their behaviors on antibiotic use. Data were analyzed using descriptive statistics. Results: Of all 405 participants, most were female (65.3 %), aged 18-30 years (49.4 %), undergraduate or lower (69.7%), and civil servant or state enterprises (31.7 %). We found inappropriate behaviors in use of amoxicillin or norfloxacin: 1) there were 201/400 participants (50.3%) taking amoxicillin right away in case of having a common cold, such as having sore throat, running nose, and cough; 2) there were 170/405 participants (42.0%) using amoxicillin for relieving inflammatory symptoms, e.g. muscle inflammation or osteoarthritis; 3) there were 71/398 participants (17.8%) using amoxicillin as a muscle relaxant; 4) there were 135/398 participants (33.9%) using norfloxacin for treating diarrhea. Sources of health information received by the participants were from the internet (78.5%), the radio and/or television (42.2%), advertising publishing (33.3 %), and word of mouth (30.1%). Conclusion: This study showed improper behaviors in antibiotic use especially amoxicillin and norfloxacin. Health care providers including pharmacists should raise the public awareness on dangers of inappropriate antibiotic use and promote the rational use of antibiotics.

Keywords: antibiotic use, amoxicillin, norfloxacin, rational drug use

Procedia PDF Downloads 276
396 Prevalence of Extended Spectrum of Beta Lactamase Producers among Gram Negative Uropathogens

Authors: Y. V. S. Annapurna, V. V. Lakshmi

Abstract:

Urinary tract infection (UTI) is one of the most common infectious diseases at the community level with a high rate of morbidity . This is further augmented by increase in the number of resistant and multi resistant strains of bacteria particularly by those producing Extended spectrum of beta lactamases. The present study was aimed at analysis of antibiograms of E.coli and Klebsiella sp causing urinary tract infections. Between November 2011 and April 2013, a total of 1120 urine samples were analyzed,. Antibiotic sensitivity testing was done with 542(48%) isolates of E.coli and 446(39%) of Klebsiella sp using the standard disc diffusion method against eleven commonly used antibiotics .Organisms showed high susceptibility to Amikacin and Netilimicin and low susceptibility to Cephalosporins. MAR index was calculated for the multidrug resistant strains. Maximum MAR index detected among the isolates was 0.9. Phenotypic identification for ESBL production was confirmed by double disk synergy test (DDST) according to CLSI guidelines. Plasmid profile of the isolates was carried out using alkaline hydrolysis method. Agarose-gel electrophoresis showed presence of high-molecular weight plasmid DNA among the ESBL strains. This study emphasizes the importance of indiscriminate use of antibiotics which if discontinued, in turn would prevent further development of bacterial drug resistance. For this, a proper knowledge of susceptibility pattern of uropathogens is necessary before prescribing empirical antibiotic therapy and it should be made mandatory.

Keywords: escherichia coli, extended spectrum of beta lactamase, Klebsiella spp, Uropathogens

Procedia PDF Downloads 371
395 Determining the Efficacy of Phenol, Sodium Hypochlorite and Ethanol for Inactivation of Carbapenem-Resistant Strain of Acinetobacter baumannii

Authors: Deepika Biswas

Abstract:

Acinetobacter baumannii, a hospital-acquired pathogen, causes nosocomial infections including pneumonia, urinary tract infection, and secondary meningitis. Carbapenem is most effective antibiotics against it. Its increased resistance to carbapenems has been a rising global concern. Antibiotics such as carbapenem are unable to use on hospital setups to eradicate A. baumannii, hence different concentrations of disinfectants including phenol; sodium hypochlorite and ethanol are increasingly being used. The objective of the present study is to find an effective concentration of above disinfectants against carbapenem-resistant strain RS307 of A. baumannii. Growth kinetics of RS307 has been determined using UV-Vis spectrophotometer in the presence and absence of disinfectants in triplicate and its standard deviation has also been calculated which make the results more reliable. Differential growth curves were plotted, which showed the effective concentration among all the concentrations of phenol, sodium hypochlorite and ethanol. On disc diffusion assay, antimicrobial effect was observed by comparing all the concentrations of disinfectants to check its synergy with imipenem, most effective carbapenem. All the results collectively revealed that 0.5% phenol, 0.5% sodium hypochlorite, and 70% ethanol could preferably be used as disinfectant for hospital setup against the carbapenem-resistant strain of A. baumannii. SDS PAGE analysis showed differential expression in the protein profile of A. baumannii after treatment. The present study highlighted that few disinfectants even in low concentration had shown better antimicrobial activity hence may be recommended for regular use in the hospitals, which will be cost effective and less harmful.

Keywords: Acenatobacter bomunii, phenol, sodium hypoclirite, ethanol, carbapenem resistance, disinfectant

Procedia PDF Downloads 261
394 Probiotics as an Alternative to Antibiotic Use in Pig Production

Authors: Z. C. Dlamini, R. L. S. Langa, A. I. Okoh, O. A. Aiyegoro

Abstract:

The indiscriminate usage of antibiotics in swine production have consequential outcomes; such as development of bacterial resistance to prophylactic antibiotics and possibility of antibiotic residues in animal products. The use of probiotics appears to be the most effective procedure with positive metabolic nutritional implications. The aim of this study was to investigate the efficacy of probiotic bacteria (Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956) administered as direct-fed microorganisms in weaned piglets. 45 weaned piglets blocked by weight were dived into 5 treatments groups: diet with antibiotic, diet with no-antibiotic and no probiotic, and diet with probiotic and diet with combination of probiotics. Piglets performance was monitored during the trials. Faecal and Ileum samples were collected for microbial count analysis. Blood samples were collected from pigs at the end of the trial, for analysis of haematological, biochemical and IgG stimulation. The data was analysed by Split-Plot ANOVA using SAS statistically software (SAS 9.3) (2003). The difference was observed between treatments for daily weight and feed conversion ratio. No difference was observed in analysis of faecal samples in regards with bacterial counts, difference was observed in ileums samples with enteric bacteria colony forming unit being lower in P2 treatment group as compared with lactic acid and total bacteria. With exception of globulin and albumin, biochemistry blood parameters were not affected, likewise for haematology, only basophils and segmented neutrophils were differed by having higher concentration in NC treatment group as compared with other treatment groups. Moreover, in IgG stimulation analysis, difference was also observed, with P2 treatment group having high concentration of IgG in P2 treatment group as compared to other groups. The results of this study suggest that probiotics have a beneficial effect on growth performances, blood parameters and IgG stimulation of pigs, most effective when they are administered in synergy form. This means that it is most likely that these probiotics will offer a significant benefit in pig farming by reducing risk of morbidity and mortality and produce quality meat that is more affordable to poorer communities, and thereby enhance South African pig industry’s economy. In addition, these results indicate that there is still more research need to be done on probiotics in regards with, i.e. dosage, shelf life and mechanism of action.

Keywords: antibiotics, biochemistry, haematology, IgG-stimulation, microbial count, probiotics

Procedia PDF Downloads 307
393 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates

Authors: Sarra Boughaba

Abstract:

The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.

Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study

Procedia PDF Downloads 118
392 Bacteriocin-Antibiotic Synergetic Consortia: Augmenting Antimicrobial Activity and Expanding the Inhibition Spectrum of Vancomycin Resistant and Methicillin Resistant Staphylococcus aureus

Authors: Asma Bashir, Neha Farid, Kashif Ali, Kiran Fatima

Abstract:

Background: Bacteriocins are a subclass of antimicrobial peptides that are becoming extremely important in treatments. It is possible to utilise bacteriocins in place of or in addition to traditional antibiotics. It is possible to treat a variety of infections, including Vancomycin-Resistant Staphylococcus aureus (VRSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), using the targeted spectrum of activity of these microorganisms. Method: This study aimed to examine the efficiency of antibiotics and bacteriocin against VRSA and MRSA. The effects of bacteriocins, such as enterocin KAE01, enterocin KAE03, enterocin KAE05, and enterocin KAE06 isolated from Enterococcus faecium strains, alone and in combination with vancomycin and methicillin antibiotics were examined. The selection technique utilized the minimum inhibitory concentrations (MICs) against Gram-positive indicator strain ATCC 6538 Methicillin-Resistant Staphylococcus aureus (MRSA) and indicator strain KSA 02 Vancomycin-Resistant Staphylococcus aureus (VRSA). Results: We report the isolation and identification of enterocins KAE01, KAE03, KAE05, and KAE06 from food isolates of Enterococcus faecium (KAE01, KAE03, KAE05, and KAE06). After isolating the protein, it was partially purified with ammonium sulphate precipitation and purified with fast protein liquid chromatography (FPLC) procedures. Combinations of enterocin KAE01, 1 citric acid, 1 lactic acid, and microcin J25, 1 reuterin, 1 citric acid, and microcin J25, 1 reuterin, 1 lactic acid shown synergistic benefits (FIC index = 0.5) against Vancomycin-Resistant Staphylococcus aureus (VRSA). In addition, a moderately synergistic (FIC index = 0.75) interaction was seen between pediocin PA-1, 1 citric acid, 1 lactic acid, and reuterin 1 citric acid, 1 lactic acid against L. ivanovii HPB28. In the presence of acids, nisin Z exhibited a modestly synergistic effect (FIC index = 0.625-0.75); however, it exhibited additive effects (FIC index = 1) when combined with reuterin or pediocin PA-1 against L. ivanovii HPB28. The efficacy of synergistic consortiums against Gram-positive bacteria was examined. Conclusion: Combining antimicrobials with various modes of action boosted efficacy and expanded the spectrum of inhibition, particularly against multidrug-resistant pathogens, according to our research.

Keywords: Enterococcus faecium, bacteriocin, antimicrobial resistance, antagonistic activity, vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus aureus

Procedia PDF Downloads 153
391 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli

Authors: B. Chandar, M. K. Ramasamy, P. Madasamy

Abstract:

The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.

Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1

Procedia PDF Downloads 460
390 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015

Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.

Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.

Procedia PDF Downloads 293
389 Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis

Authors: Eheneden Iyobosa, Rongchang Wang, Adesina Odunayo Blessing, Gaoxiang Chen, Haijing Ren, Jianfu Zhao

Abstract:

In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity.

Keywords: ammonium-rich wastewater, microalgae-bacteria consortium, sulfamethoxazole removal, microbial community diversity, biomass growth

Procedia PDF Downloads 29
388 In vitro Studies on Antimycobacterial and Efflux Pump Inhibition of C. roseus and P. nigrum against Clinical Isolates of Ofloxacin Resistant M. tuberculosis

Authors: Raja Arunprasath, P. Gajalakshmi

Abstract:

Antimycobacterial activity of C. roseus rosea and piperine was evaluated against ofloxacin resistant M. tuberculosis. Among the 68 suspected sputum samples, 32 were AFB positive belongs to age group of 40-50years. Susceptibility of M. tuberculosis was evaluated against ofloxacin and streptomycin by colorimetric assay. Of these 32 positive samples, 20 isolates were resistant to ofloxacin, 12 were resistant to Streptomycin and none of them were found to be multidrug resistant. The sensitivity pattern of ofloxacin resistant M. tuberculosis against two tested plant extracts showed potent tubercular activity. Antimycobacterial activity of C. roseus was 22 + 2.21mm and piperine was found to be 20 + 1.08 mm. The percentage of relative inhibitory zone of C. roseus was 133 % and piperine was found to be 111 %. The MIC of C. roseus and piperine was found at 50 µg/ml. Based on the FICI value 0.37 confirms that both the tested phytochemicals were synergistically active against M. tuberculosis. The MIC of ofloxacin was reduced from 8 mg to 2 mg/l in the presence of piperine but not by C. roseus. This is the first report on Synergistic bioactivity of C. roseus rosea and piperine fractionation leads development of novel antimycobacterial prophylaxis in future.

Keywords: C. roseus, ofloxacin, piperine, synergistic

Procedia PDF Downloads 465
387 Optimal Approach for Siewert Type Ⅱ Adenocarcinoma of the Esophagogastric Junction: A Systematic Review and Metanalysis

Authors: Maatouk Mohamed, Nouira Mariem

Abstract:

Background and aims: Healthcare-associated infections (HAI) represent a major public health problem worldwide. They represent one of the most serious adverse events in health care. The objectives of our study were to estimate the prevalence of HAI at the Charles Nicolle Hospital (CNH) and to identify the main associated factors as well as to estimate the frequency of antibiotic use. Methods: It was a cross sectional study at the CNH with a unique passage per department (OctoberDecember 2018). All patients present at the wards for more than 48 hours were included. All patients from outpatient consultations, emergency and dialysis departments were not included. The site definitions of infections proposed by the Centers for Disease Control and Prevention (CDC) were used. Only clinically and/or microbiologically confirmed active HAIs were included. Results: A total of 318 patients were included with a mean age of 52 years and a sex ratio (Female/Male) of 1.05. A total of 41 patients had one or more active HAIs, corresponding to a prevalence of 13.1% (95% CI: 9.3%-16.9%). The most frequent sites infections were urinary tract infections and pneumonia. Multivariate analysis among adult patients (>=18 years) (n=261), revealed that infection on admission (p=0.01), alcoholism (p=0.01), high blood pressure (p=0.008), having at least one invasive device inserted (p=0.004), and history of recent surgery (p=0.03), increased significantly the risk of HAIs. More than 1 of 3 patients (35.4%) were under antibiotics on the day of the survey, of which more than half (57.4%) were under 2 or more types of antibiotics. Conclusion: The prevalence of HAIs and antibiotic prescriptions at the CNH were considerably high. An infection prevention and control committee, as well as the development of an Antibiotic stewardship program with continuous monitoring using repeated prevalence surveys must be implemented to limit the frequency of these infections effectively.

Keywords: tumors, oesophagectomy, esophagogastric junction, systematic review

Procedia PDF Downloads 86
386 Predictive Factors of Healthcare-Associated Infections and Antibiotic Use Patterns: A Cross-Sectional Survey at the Charles Nicolle Hospital of Tunis

Authors: Nouira Mariem, Ennigrou Samir

Abstract:

Background and aims: Healthcare-associated infections (HAI) represent a major public health problem worldwide. They represent one of the most serious adverse events in health care. The objectives of our study were to estimate the prevalence of HAI at the Charles Nicolle Hospital (CNH) and to identify the main associated factors as well as to estimate the frequency of antibiotic use. Methods: It was a cross-sectional study at the CNH with a unique passage per department (October-December 2018). All patients present at the wards for more than 48 hours were included. All patients from outpatient consultations, emergency, and dialysis departments were not included. The site definitions of infections proposed by the Centers for Disease Control and Prevention (CDC) were used. Only clinically and/or microbiologically confirmed active HAIs were included. Results: A total of 318 patients were included, with a mean age of 52 years and a sex ratio (female/male) of 1.05. A total of 41 patients had one or more active HAIs, corresponding to a prevalence of 13.1% (95% CI: 9.3%-16.9%). The most frequent site infections were urinary tract infections and pneumonia. Multivariate analysis among adult patients (>=18 years) (n=261) revealed that infection on admission (p=0.01), alcoholism (p=0.01), high blood pressure (p=0.008), having at least one invasive device inserted (p=0.004), and history of recent surgery (p=0.03), increased the risk of HAIs significantly. More than 1 of 3 patients (35.4%) were under antibiotics on the day of the survey, of which more than half (57.4%) were under two or more types of antibiotics. Conclusion: The prevalence of HAIs and antibiotic prescriptions at the CNH were considerably high. An infection prevention and control committee, as well as the development of an antibiotic stewardship program with continuous monitoring using repeated prevalence surveys, must be implemented to limit the frequency of these infections effectively.

Keywords: prevalence, healthcare associated infection, antibiotic, Tunisia

Procedia PDF Downloads 89
385 Determination of the Presence of Antibiotic Resistance from Vibrio Species in Northern Italy

Authors: Tramuta Clara, Masotti Chiara, Pitti Monica, Adriano Daniela, Battistini Roberta, Serraca Laura, Decastelli Lucia

Abstract:

Oysters are considered filter organisms, and their raw consumption may increase health risks for consumers: it is often associated with outbreaks of gastroenteritis or enteric illnesses. Most of these foodborne diseases are caused by Vibrio strains, enteric pathogens also involved in the diffusion of genetic determinants of antibiotic resistance and their entrance along the food chain. The European Food Safety Authority (EFSA), during the European Union report on antimicrobial resistance in 2017, focused the attention about the role of food as a possible carrier of antibiotic-resistant bacteria or antibiotic-resistance genes that determine health risks for humans. This study wants to determine antibiotic resistance and antibiotic-resistance genes in Vibrio spp. isolated from Crassostrea gigas oysters collected in the Golfo della Spezia (Liguria, Italy). A total of 47 Vibrio spp. strains were isolated (ISO21872-2:2017) during the summer of 2021 from oysters of Crassostrea gigas. The strains were identified by MALDI-TOF (Bruker, Germany) mass spectrometry and tested for antibiotic susceptibility using a broth microdiluition method (ISO20776-1:2019) using Sensititre EUVSEC plates (Thermo-Fisher Scientific) to obtain the Minimum Inhibitory Concentration (MIC). The strains were tested with PCR-based biomolecular methods, according to previous works, to define the presence of 23 resistance genes of the main classes of antibiotics used in human and veterinary medicine: tet (B), tet (C), tet (D), tet (A), tet (E), tet (G ), tet (K), tet (L), tet (M), tet (O), tet (S) (tetracycline resistance); blaCTX-M, blaTEM, blaOXA, blaSHV (β-lactam resistance); mcr-1 and mcr-2 (colistin resistance); qnrA, qnrB, and qnrS (quinolone resistance); sul1, sul2 and sul3 (sulfonamide resistance). Six different species have been identified: V. alginolyticus 34% (n=16), V. harveyi 28% (n=13), V. fortis 15% (n=7), V. pelagius 8% (n=4), V. parahaemolyticus 11% (n=5) e V. chagasii 4% (n=2). The PCR assays showed the presence of the blaTEM gene on 40% of the strains (n=19). All the other genes were not detected, except for a V. alginolyticus positive for anrS gene. The broth microdiluition method results showed an high level of resistance for ciprofloxacin (62%; n=29), ampicillin (47%; n=22), and colistin (49%; n=23). Furthermore, 32% (n=15) of strains can be considered multiresistant bacteria for the simultaneous presence of resistance for three different antibiotic classes. Susceptibility towards meropenem, azithromycin, gentamicin, ceftazidime, cefotaxime, chloramphenicol, tetracycline and sulphamethoxazole reached 100%. The Vibrio species identified in this study are widespread in marine environments and can cause gastrointerstinal infections after the ingestion of raw fish products and bivalve molluscs. The level of resistance to antibiotics such as ampicillin, ciprofloxacin and colistin can be connected to anthropic factors (industrial, agricultural and domestic wastes) that promote the spread of resistance to these antibiotics. It can be also observed a strong correlation between phenotypic (resistant MIC) and genotypic (positive blaTEM gene) resistance for ampicillin on the same strains, probably due to the transfer of genetic material between bacterial strains. Consumption of raw bivalve molluscs can represent a risk for consumers heath due to the potentially presence of foodborne pathogens, highly resistant to different antibiotics and source of transferable antibiotic-resistant genes.

Keywords: vibrio species, blaTEM genes, antimicrobial resistance, PCR

Procedia PDF Downloads 80
384 Effect of a Polyherbal Gut Therapy Protocol in Changes of Gut and Behavioral Symptoms of Antibiotic Induced Dysbiosis of Autistic Babies

Authors: Dinesh K. S., D. R. C. V. Jayadevan

Abstract:

Autism is the most prevalent of a subset of the disorders organized under the umbrella of pervasive developmental disorders. After the publication of Andrew Wakefield's paper in lancet, many critiques deny this connection even without looking in to the matter. The British Medical Journal even put an editorial regarding this issue. BMJ 2010; 340:c1807. But ayurveda has ample of evidences to believe this connectivity. Dysbiosis, yeast growth of the gut, nutritional deficiencies, enzyme deficiencies, essential fatty acid deficiencies, Gastro esophageal reflux disease, indigestion, inflammatory bowel, chronic constipation & its cascade are few of them to note. The purpose of this paper is to present the observed changes in the behavioural symptoms of autistic babies after a gut management protocol which is a usual programme of our autism treatment plan especially after dysbiotic changes after antibiotic administration. Is there any correlation between changes (if significant) in gut symptoms and behavioral problems of autistic babies especially after a dysbiosis induced by antibiotics. Retrospective analysis of the case sheets of autistic patients admitted in Vaidyaratnam P.S.Varier Ayurveda College hospital, kottakkal,kerala, india from September 2010 are taken for the data processing. Autistic patients are used to come to this hospital as a part of their usual course of treatment. We investigated 40 cases diagnosed as autistic by clinical psychologists from different institutions who had dysbiosis induced by antibiotics. Significant change in gut symptoms before and after treatment p<0.05 in most of its components Significant change in behavioral symptoms before and after treatments p<0.05 in most of the components Correlation between gut symptoms change and behavioral symptoms changes after treatment is + 0.86. Conclusion : Selected Polyherbal Ayurveda treatment has significant role to play to make changes abnormal behaviors in autistic babies and has a positive correlation with changes in gut symptoms induced by dysbiosis of antibiotic intake.

Keywords: ayurveda, autism, dysbiosis, antibiotic

Procedia PDF Downloads 632
383 Antibacterial Activity and Kinetic Parameters of the Essential Oils of Drypetes Gossweileri S.Moore, Ocimun Gratissimum L. and Cymbopogon Citratus DC Stapf on 5 Multidrug-Resistant Strains of Shigella

Authors: Elsa Makue Nguuffo, Esther Del Florence Moni Ndedi, Jacky Njiki Bikoï, Jean Paul Assam Assam, Maximilienne Ascension Nyegue

Abstract:

Aims: The present study aims to evaluate the kinetic parameters of essential oils (EOs) and combinations fromDrypetes gossweileri Stem Bark, Ocimum gratissimum leaves, Cymbopogon citratusleaves after evaluation of their antibacterial activityonmultidrug-resistant strains ofShigella. Material and Methods:fiveclinical strains of Shigellaisolated from patients with diarrhoeaincluding Shigella flexneri, and 4 otherstrains of Shigella sppwere selected. Their antibiotic profile was established using agar test diffusion with seven antibiotics belonging to seven classes.EOs were extracted from each plant using hydrodistillation process. The activity of Ciprofloxacin®, OEs, and their combination formulatedinthe followingratios(w/w/w): C1: 1/1/1; C2: 2/1/1; C3: 1/2/1, C4:1/1/2 was evaluated microdilution assay. The various interactions of OEs in the different combinations were determined then the OE and the most active combination were retained to determine their kinetic parameters on S. flexneri. Results: Antibiotic susceptibility tests revealed that most Shigella isolates (n = 4) were resistant to six antibiotics tested. Ciprofloxacin (40%), Nalidixic acid (60%), Tetracycline (80%), Amoxicillin (100%), Cefotaxime (80%), Erythromycin (100%), and Cotrimoxazole (80%) were the profiles found in the different strains of Shigella. About the antibacterial activity of OEs, Drypetes gossweileriOE and C2 combination had shown a higher Shigellicide property with a Minimal Inhibitory Concentration(MIC) respectivelyranging from 0.078 mg/mL to 0.312 mg/mL and 0.012 to 1.562 mg/mL. Combinations of OEs showed various interactions whose synergistic effects were mostly encountered. The best deactivation was obtained by the combination C2 at 16 MIC withb= 1.962. Conclusion: the susceptibility of Shigella to OEs and their combinations justifies their use in traditional medicine in the treatment of shigellosis.

Keywords: shigella, multidrug-resistant, EOs, kinetic

Procedia PDF Downloads 102
382 Preventive Effect of Three Kinds of Bacteriophages to Control Vibrio coralliilyticus Infection in Oyster Larvae

Authors: Hyoun Joong Kim, Jin Woo Jun, Sib Sankar Giri, Cheng Chi, Saekil Yun, Sang Guen Kim, Sang Wha Kim, Jeong Woo Kang, Se Jin Han, Se Chang Park

Abstract:

Vibrio corallilyticus is a well-known pathogen of coral. It is also infectious to a variety of shellfish species, including Pacific oyster (Crassostrea gigas) larvae. V. corallilyticus is remained to be a major constraint in marine bivalve aquaculture practice, especially in artificial seed production facility. Owing to the high mortality and contagious nature of the pathogen, large amount of antibiotics has been used for disease prevention and control. However, indiscriminate use of antibiotics may result in food and environmental pollution, and development of antibiotic resistant strains. Therefore, eco-friendly disease preventative measures are imperative for sustainable bivalve culture. The present investigation proposes the application of bacteriophage (phage) as an effective alternative method for controlling V. corallilyticus infection in marine bivalve hatcheries. Isolation of phages from sea water sample was carried out using drop or double layer agar methods. The host range, stability and morphology of the phage isolates were studied. In vivo phage efficacy to prevent V. corallilyticus infection in oyster larvae was also performed. The isolated phages, named pVco-5 and pVco-7 was classified as a podoviridae and pVco-14, was classified as a siphoviridae. Each phages were infective to four strains of seven V. corallilyticus strains tested. When oyster larvae were pre-treated with the phage before bacterial challenge, mortality of the treated oyster larvae was lower than that in the untreated control. This result suggests that each phages have the potential to be used as therapeutic agent for controlling V. corallilyticus infection in marine bivalve hatchery.

Keywords: bacteriophage, Vibrio coralliilyticus, Oyster larvae, mortality

Procedia PDF Downloads 226
381 Synthesis of Functionalized-2-Aryl-2, 3-Dihydroquinoline-4(1H)-Ones via Fries Rearrangement of Azetidin-2-Ones

Authors: Parvesh Singh, Vipan Kumar, Vishu Mehra

Abstract:

Quinoline-4-ones represent an important class of heterocyclic scaffolds that have attracted significant interest due to their various biological and pharmacological activities. This heterocyclic unit also constitutes an integral component in drugs used for the treatment of neurodegenerative diseases, sleep disorders and in antibiotics viz. norfloxacin and ciprofloxacin. The synthetic accessibility and possibility of fictionalization at varied positions in quinoline-4-ones exemplifies an elegant platform for the designing of combinatorial libraries of functionally enriched scaffolds with a range of pharmacological profles. They are also considered to be attractive precursors for the synthesis of medicinally imperative molecules such as non-steroidal androgen receptor antagonists, antimalarial drug Chloroquine and martinellines with antibacterial activity. 2-Aryl-2,3-dihydroquinolin-4(1H)-ones are present in many natural and non-natural compounds and are considered to be the aza-analogs of favanones. The β-lactam class of antibiotics is generally recognized to be a cornerstone of human health care due to the unparalleled clinical efficacy and safety of this type of antibacterial compound. In addition to their biological relevance as potential antibiotics, β-lactams have also acquired a prominent place in organic chemistry as synthons and provide highly efficient routes to a variety of non-protein amino acids, such as oligopeptides, peptidomimetics, nitrogen-heterocycles, as well as biologically active natural and unnatural products of medicinal interest such as indolizidine alkaloids, paclitaxel, docetaxel, taxoids, cyptophycins, lankacidins, etc. A straight forward route toward the synthesis of quinoline-4-ones via the triflic acid assisted Fries rearrangement of N-aryl-βlactams has been reported by Tepe and co-workers. The ring expansion observed in this case was solely attributed to the inherent ring strain in β-lactam ring because -lactam failed to undergo rearrangement under reaction conditions. Theabovementioned protocol has been recently extended by our group for the synthesis of benzo[b]-azocinon-6-ones via a tandem Michael addition–Fries rearrangement of sorbyl anilides as well as for the single-pot synthesis of 2-aryl-quinolin-4(3H)-ones through the Fries rearrangement of 3-dienyl-βlactams. In continuation with our synthetic endeavours with the β-lactam ring and in view of the lack of convenient approaches for the synthesis of C-3 functionalized quinolin-4(1H)-ones, the present work describes the single-pot synthesis of C-3 functionalized quinolin-4(1H)-ones via the trific acid promoted Fries rearrangement of C-3 vinyl/isopropenyl substituted β-lactams. In addition, DFT calculations and MD simulations were performed to investigate the stability profles of synthetic compounds.

Keywords: dihydroquinoline, fries rearrangement, azetidin-2-ones, quinoline-4-ones

Procedia PDF Downloads 252
380 Exploring the Role of Phosphorylation on the β-lactamase Activity of OXA24/40

Authors: Dharshika Rajalingam, Jeffery W. Peng

Abstract:

Acinetobacter baumannii is a challenging threat to global health, recognized as a multidrug-resistant pathogen. -lactamase is one of the principal resistant mechanisms developed by A. baumannii to survive against -lactam antibiotics. OXA24/40 is one of the types of -lactamases, a well-documented carbapenem hydrolyzing class D -lactamases (CHDL). It was revealed that OXA24/40 showed resistivity against doripenem, one of the carbapenems, by two different mechanisms as hydrolysis and -lactonization. Furthermore, it undergoes genetic mutations to broaden the -lactamase activity to survive against antibiotic environments. One of the crucial characterizations of prokaryotes to develop adaptation is post-translational modification (PTM), mainly phosphorylation. However, the PTM of OXA24/40 is an unknown feature, and the impact of PTM on antibiotic resistivity is yet to be explored. We approached these hypotheses using NMR and MS techniques and found that the OXA24/40 could be phosphorylated in vitro. The Ser81 at the active STFK motif of OXA24/40 of catalytic pocket was identified as the site of phosphorylation using 1D 31P NMR experiment, whereas S81 is required to form an acyl-enzyme complex between enzyme and -lactam antibiotics. The activity of completely phosphorylated OXA24/40 wild type against doripenem revealed that the phosphorylation of active Ser inactivates the -lactamases activity of OXA24/40. The 1D 1H CPMG NMR-based activity assay of phosphorylated OXA24/40 against doripenem confirmed that both deactivating mechanisms are inhibited by phosphorylation. Carbamylated Lysine at the active STFK motif is one of the critical features of CHDL required for the acylation and deacylation reactions of the enzyme. The 1D 13C NMR experiment confirmed that the K84 of phosphorylated OXA24/40 is de-carbamylated. Phosphorylation of OXA24/40 affects both active S81 and carbamylated K84 of OXA24 that are required for the resistivity of -lactamase. So, phosphorylation could be one of the reasons for the genetic mutation of OXA24/40 for the development of antibiotic resistivity. Further research can lead to an understanding of the effect of phosphorylation on the clinical mutants of the OXA24-like -lactamase family on the broadening of -lactamase activity.

Keywords: OXA24/40, phosphorylation, clinical mutants, resistivity

Procedia PDF Downloads 83
379 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10

Authors: Sofia Papadimitriou

Abstract:

INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.

Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score

Procedia PDF Downloads 159
378 Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes

Authors: Teodora Mocan, Matea Cristian, Cornel Iancu, Flaviu A. Tabaran, Florin Zaharie, Bartos Dana, Lucian Mocan

Abstract:

Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system.

Keywords: anticancer vaccine, colon cancer, gold nanoparticles, tumor antigen

Procedia PDF Downloads 454
377 Biomimetic Strategies to Design Non-Toxic Antimicrobial Textiles

Authors: Isabel Gouveia

Abstract:

Antimicrobial textile materials may significantly reduce the risk of infections and because they are able to absorb substances from the skin and release therapeutic compounds to the skin, they can also find applications as complementary therapy of skin-diseases as part of standard management. Although functional textiles may be a promising area in skin disease/injury management, as part of standard management, few offer complementary treatment even though they are well known to reduce scratching and aiding emollient absorption, reducing infection, and alleviating pruritus. The reason for this may rely on the low quality of supporting evidence and negative effect that antimicrobial agents may exert on skin microbiome, as for example additional irritation of the vulnerable skin, and by causing resistant bacteria. Several antimicrobial agents have been tested in textiles: quaternary ammonium compounds, silver, polyhexamethylene-biguanides and triclosan have been used, with success. They have powerful bactericidal activity but the majority have a reduce spectrum of microbial inhibition and may cause skin irritation, ecotoxicity and bacteria resistance. Furthermore, the rising flow of strains resistant to last-resort antibiotics rekindles interest in alternative strategies. In this regard, new functional textiles incorporating highly specific antimicrobial agents towards pathogenic bacteria, are required. Recent research has been conducted on naturally occurring antimicrobials as novel alternatives to antibiotics. Conscious of this need our team firstly reported new approaches using L-cysteine and antimicrobial peptides (AMP). Briefly, we were able to develop different immobilization processes towards 6 Log Reduction against bacteria such as S. aureus and K. pneumoniae. Therefore, here we present several innovative antimicrobial textiles incorporating AMP and L-Cysteine which may open new avenues for the medical textiles market and biomaterials in general. Team references will be discussed as an overview and for comparison purposes in terms of potential therapeutic applications.

Keywords: Antimicrobials, Antimicrobial Textiles, Biomedical Textiles, Biomimetic surface functionalization

Procedia PDF Downloads 123
376 PrEP and Risk: Challenges for an Emerging Sanitary Pact

Authors: Roberto Rubem Silva-Brandao, Aurea Maria Zollner Ianni

Abstract:

This article discusses the use and the incorporation of Pre-exposure Prophylaxis for HIV (PrEP) within a risk society context. Considering contemporary social theoreticians, we discuss implications of biotechnological uses for health enhancement. Firstly, we explore examples of biological manipulation and its consequences of use on given ecological dynamics, particularly taking into account other Sexually Transmitted Infections. In addition, we discuss how HIV resistance cases occurred with people on PrEP and its possible consequences on population-based interventions. Moreover, we present recent studies that analyze biological modifications on bodies of those who are on consistent use of PrEP, and how these body modifications are addressed on common practices of Public Health. Secondly, we present our theoretical references, which are intended to the analysis that situates our contemporary society in the reflexive stage of modernization. We discuss limits of biological use by individuals and how this can fabric feelings of freedom and autonomy within the individualization process and health. Finally, we argue that biotechnological uses on health, specifically on Public Health, tackling the risk aspects of its application, shows that another sanitary pact is needed.

Keywords: PrEP, public health, social sciences, risk society

Procedia PDF Downloads 396
375 The Effect of Antibiotic Use on Blood Cultures: Implications for Future Policy

Authors: Avirup Chowdhury, Angus K. McFadyen, Linsey Batchelor

Abstract:

Blood cultures (BCs) are an important aspect of management of the septic patient, identifying the underlying pathogen and its antibiotic sensitivities. However, while the current literature outlines indications for initial BCs to be taken, there is little guidance for repeat sampling in the following 5-day period and little information on how antibiotic use can affect the usefulness of this investigation. A retrospective cohort study was conducted using inpatients who had undergone 2 or more BCs within 5 days between April 2016 and April 2017 at a 400-bed hospital in the west of Scotland and received antibiotic therapy between the first and second BCs. The data for BC sampling was collected from the electronic microbiology database, and cross-referenced with data from the hospital electronic prescribing system. Overall, 283 BCs were included in the study, taken from 92 patients (mean 3.08 cultures per patient, range 2-10). All 92 patients had initial BCs, of which 83 were positive (90%). 65 had a further sample within 24 hours of commencement of antibiotics, with 35 positive (54%). 23 had samples within 24-48 hours, with 4 (17%) positive; 12 patients had sampling at 48-72 hours, 12 at 72-96 hours, and 10 at 96-120 hours, with none positive. McNemar’s Exact Test was used to calculate statistical significance for patients who received blood cultures in multiple time blocks (Initial, < 24h, 24-120h, > 120h). For initial vs. < 24h-post BCs (53 patients tested), the proportion of positives fell from 46/53 to 29/53 (one-tailed P=0.002, OR 3.43, 95% CI 1.48-7.96). For initial vs 24-120h (n=42), the proportions were 38/42 and 4/42 respectively (P < 0.001, OR 35.0, 95% CI 4.79-255.48). For initial vs > 120h (n=36), these were 33/36 and 2/36 (P < 0.001,OR ∞). These were also calculated for a positive in initial or < 24h vs. 24-120h (n=42), with proportions of 41/42 and 4/42 (P < 0.001, OR 38.0, 95% CI 5.22-276.78); and for initial or < 24h vs > 120h (n=36), with proportions of 35/36 and 2/36 respectively (P < 0.001, OR ∞). This data appears to show that taking an initial BC followed by a BC within 24 hours of antibiotic commencement would maximise blood culture yield while minimising the risk of false negative results. This could potentially remove the need for as many as 46% of BC samples without adversely affecting patient care. BC yield decreases sharply after 48 hours of antibiotic use, and may not provide any clinically useful information after this time. Further multi-centre studies would validate these findings, and provide a foundation for future health policy generation.

Keywords: antibiotics, blood culture, efficacy, inpatient

Procedia PDF Downloads 177
374 Antibacterial Activities of Lactic Acid Bacteria on Potential Multidrug - Resistant Pathogens Isolated from Rabbit

Authors: Checkfaith I. Aizebeoje, Temitope O. Lawal, Bolanle A. Adeniyi

Abstract:

The overuse and abuse of antibiotics in treating zoonotic infections in humans and opportunistic infections in rabbit has contributed to the increase in antimicrobial drug resistance, therefore, an alternative to antibiotics is needed in treating these infections. The study was carried out to determine the antimicrobial activity of lactic acid bacteria (LAB) isolated from rabbit’s faeces against multidrug-resistant (MDR) pathogens isolated from the same rabbit. Twelve faecal samples and twelve swabs from fur samples were randomly collected aseptically from apparently healthy rabbits from Ajibode, Ibadan and University of Ibadan research farm in Ibadan, Oyo state, Nigeria. Lactic acid bacteria and multidrug-resistant pathogens were isolated using appropriate agar media and identified by partial sequencing of the 16SrRNA gene. Antibiotic susceptibility pattern of isolated bacteria and LAB were determined by the agar diffusion method. The antibacterial activity of the LAB against the test pathogens was determined using the agar overlay and agar diffusion methods. The pathogens Myroides gitamensis, Citrobacter rodentium, Acinetobacter johnsonii, Enterobacter oryzendophyticus and Serratia marcescens as well as twenty-eight (28) species of LAB belonging to Acetobacter and Lactobacillus genera were identified and characterized. Lactobacillus plantarum had the highest (60.71%) occurrence of the LAB. Viable cells and cell free supernatant (CFS) of isolated LAB inhibited the growth of the test organisms with the largest zone of inhibition (40 mm) produced by Lactobacillus plantarum against Citrobacter rodentium. This study showed that LAB from rabbit possess considerable antibacterial activity against multidrug-resistant bacteria from the same environment.

Keywords: antibacterial activities, cell-free supernatant, lactic acid bacteria; multidrug-resistant pathogens, rabbits’ faeces

Procedia PDF Downloads 139