Search results for: multivariate logistic regression
2070 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2072069 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 2952068 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 732067 Negative Perceptions of Ageing Predicts Greater Dysfunctional Sleep Related Cognition Among Adults Aged 60+
Authors: Serena Salvi
Abstract:
Ageistic stereotypes and practices have become a normal and therefore pervasive phenomenon in various aspects of everyday life. Over the past years, renewed awareness towards self-directed age stereotyping in older adults has given rise to a line of research focused on the potential role of attitudes towards ageing on seniors’ health and functioning. This set of studies has showed how a negative internalisation of ageistic stereotypes would discourage older adults in seeking medical advice, in addition to be associated to negative subjective health evaluation. An important dimension of mental health that is often affected in older adults is represented by sleep quality. Self-reported sleep quality among older adults has shown to be often unreliable when compared to their objective sleep measures. Investigations focused on self-reported sleep quality among older adults have suggested how this portion of the population would tend to accept disrupted sleep if believed to be up to standard for their age. On the other hand, unrealistic expectations, and dysfunctional beliefs towards sleep in ageing, might prompt older adults to report sleep disruption even in the absence of objective disrupted sleep. Objective of this study is to examine an association between personal attitudes towards ageing in adults aged 60+ and dysfunctional sleep related cognition. More in detail, this study aims to investigate a potential association between personal attitudes towards ageing, sleep locus of control and dysfunctional beliefs towards sleep among this portion of the population. Data in this study were statistically analysed in SPSS software. Participants were recruited through the online participants recruitment system Prolific. Inclusion of attention check questions throughout the questionnaire and consistency of responses were looked at. Prior to the commencement of this study, Ethical Approval was granted (ref. 39396). Descriptive statistics were used to determine the frequency, mean, and SDs of the variables. Pearson coefficient was used for interval variables, independent T-test for comparing means between two independent groups, analysis of variance (ANOVA) test for comparing the means in several independent groups, and hierarchical linear regression models for predicting criterion variables based on predictor variables. In this study self-perceptions of ageing were assessed using APQ-B’s subscales, while dysfunctional sleep related cognition was operationalised using the SLOC and the DBAS16 scales. Of the final subscales taken in consideration in the brief version of the APQ questionnaire, Emotional Representations (ER), Control Positive (PC) and Control and Consequences Negative (NC) have shown to be of particularly relevance for the remits of this study. Regression analysis show how an increase in the APQ-B subscale Emotional Representations (ER) predicts an increase in dysfunctional beliefs and attitudes towards sleep in this sample, after controlling for subjective sleep quality, level of depression and chronological age. A second regression analysis showed that APQ-B subscales Control Positive (PC) and Control and Consequences Negative (NC) were significant predictors in the change of variance of SLOC, after controlling for subjective sleep quality, level of depression and dysfunctional beliefs about sleep.Keywords: sleep-related cognition, perceptions of aging, older adults, sleep quality
Procedia PDF Downloads 1022066 Predicting College Students’ Happiness During COVID-19 Pandemic; Be optimistic and Well in College!
Authors: Michiko Iwasaki, Jane M. Endres, Julia Y. Richards, Andrew Futterman
Abstract:
The present study aimed to examine college students’ happiness during COVID19-pandemic. Using the online survey data from 96 college students in the U.S., a regression analysis was conducted to predict college students’ happiness. The results indicated that a four-predictor model (optimism, college students’ subjective wellbeing, coronavirus stress, and spirituality) explained 57.9% of the variance in student’s subjective happiness, F(4,77)=26.428, p<.001, R2=.579, 95% CI [.41,.66]. The study suggests the importance of learned optimism among college students.Keywords: COVID-19, optimism, spirituality, well-being
Procedia PDF Downloads 2232065 Driving towards Better Health: A Cross-Sectional Study of the Prevalence and Correlates of Obesity among Commercial Drivers in East London, South Africa
Authors: Daniel Ter Goon, Aanuoluwa O. Adedokun, Eyitayo Omolara Owolabi, Oladele Vincent Adeniyi, Anthony Idowu Ajayi
Abstract:
Background: The unhealthy food choices and sedentary lifestyle of commercial drivers predisposes them to obesity and obesity related diseases. Yet, no attention has been paid to obesity burden among this high risk group in South Africa. This study examines the prevalence of obesity and its risk factors among commercial drivers in East London, South Africa. Methods: This cross-sectional study utilized the WHO STEP wise approach to screen for obesity among 403 drivers in Buffalo City Metropolitan Municipality (BCMM), South Africa. Anthropometric, blood pressure and blood glucose measurements were taken following a standard procedure. Overweight and obesity was defined as a body mass index (BMI) of 25.0 kgm⁻²–29.9 kg/m² and≥ 30 kg/ m², respectively. Bivariate and multivariate analysis were used to determine the prevalence and determinants of obesity. Result: The mean age of the participants was 43.3 (SD12.5) years, mean height (cm) and weight (kg) were 170.1(6.2cm) and 83(SD18.7), respectively. The prevalence of overweight and obesity was 34.0% and 38.0%, respectively. After adjusting for confounding factors, only age (OR 1.6, CI 1.0-2.7), hypertension (OR 3.6, CI 2.3-5.7) and non-smoking (OR 2.0, CI 1.3-3.1) were independent predictors of obesity. Conclusion: The prevalence of overweight and obesity is high among commercial drivers. Age, hypertension, and non-smoking were independent predictors of obesity among the sample. Measures aimed at promoting health and reducing obesity should be prioritized among this group.Keywords: obesity and overweight, commercial taxi drivers, risk factors, South Africa
Procedia PDF Downloads 3432064 External Business Environment and Sustainability of Micro, Small and Medium Enterprises in Jigawa State, Nigeria
Authors: Shehu Isyaku
Abstract:
The general objective of the study was to investigate ‘the relationship between the external business environment and the sustainability of micro, small and medium enterprises (MSMEs) in Jigawa state’, Nigeria. Specifically, the study was to examine the relationship between 1) the economic environment, 2) the social environment, 3) the technological environment, and 4) the political environment and the sustainability of MSMEs in Jigawa state, Nigeria. The study was drawn on Resource-Based View (RBV) Theory and Knowledge-Based View (KBV). The study employed a descriptive cross-sectional survey design. A researcher-made questionnaire was used to collect data from the 350 managers/owners who were selected using stratified, purposive and simple random sampling techniques. Data analysis was done using means and standard deviations, factor analysis, Correlation Coefficient, and Pearson Linear Regression analysis. The findings of the study revealed that the sustainability potentials of the managers/owners were rated as high potential (economic, environmental, and social sustainability using 5 5-point Likert scale. Mean ratings of effectiveness of the external business environment were; as highly effective. The results from the Pearson Linear Regression Analysis rejected the hypothesized non-significant effect of the external business environment on the sustainability of MSMEs. Specifically, there is a positive significant relationship between 1) economic environment and sustainability; 2) social environment and sustainability; 3) technological environment and sustainability and political environment and sustainability. The researcher concluded that MSME managers/owners have a high potential for economic, social and environmental sustainability and that all the constructs of the external business environment (economic environment, social environment, technological environment and political environment) have a positive significant relationship with the sustainability of MSMEs. Finally, the researcher recommended that 1) MSME managers/owners need to develop marketing strategies and intelligence systems to accumulate information about the competitors and customers' demands, 2) managers/owners should utilize the customers’ cultural and religious beliefs as an opportunity that should be utilized while formulating business strategies.Keywords: business environment, sustainability, small and medium enterprises, external business environment
Procedia PDF Downloads 522063 An Investigation for Information Asymmetry Nexus IPO Under-Pricing: A Case of Pakistan
Authors: Saqib Mehmood, Naveed Iqbal Chaudhry, Asif Mehmood
Abstract:
This study intends to investigate the information asymmetry theories of IPO and under-pricing in Pakistan. The purpose of the study is to validate the information asymmetry about firm value which leads to under-pricing. A total of 55 IPOs listed from 2000-2011 were included in this study. OLS multiple regression was applied to achieve the objectives of this study. The findings of the study confirm the significance of information asymmetry on under-pricing in Pakistan. The findings have implications for issuing firms and prospective investors.Keywords: information asymmetry, initial public offerings, under-pricing, firm value
Procedia PDF Downloads 4792062 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area
Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi
Abstract:
Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol
Procedia PDF Downloads 7512061 The Impact of Small-Scale Irrigation on the Income of Rural Households and Determinants of Its Adoption: Evidence from Dehana Woreda, Ethiopia
Authors: Wondmnew Derebe Yohannis
Abstract:
Farming irrigation plays a crucial role in rural development strategies, impacting both annual household income and livelihood. This research aims to evaluate the factors influencing irrigation participation and assess the impact of small-scale irrigation on rural households' annual income. The study collected data from 287 farmers in the Dahana district of northern Ethiopia. The research investigates the driving forces behind farmers' decisions to adopt small-scale irrigation and its effect on annual income gain. The findings reveal that several factors positively influence the probability of adoption, including access to credit, cultivated land size, livestock holding, extension contact, and the education level of the household head. Conversely, the distance to local markets and water schemes negatively affects the likelihood of adoption. To understand the differences in annual income between farm households that adopted irrigation and those that did not, a simultaneous equations model with endogenous switching regression is estimated. This accounts for the heterogeneity in the adoption decision and unobservable characteristics of farmers and their farms. The analysis compares the expected income gain under actual and counterfactual scenarios, considering whether the farm household adopted irrigation or not. The study reveals that the group of farm households that adopted irrigation has distinct characteristics compared to those that did not adopt it. Furthermore, the research demonstrates that the adoption of irrigation practices leads to an increase in annual income. Interestingly, the impact of small-scale irrigation on annual income is greater for the farm households that actually adopted irrigation compared to those in the counterfactual scenario where they did not adopt. Based on the findings, the researcher concludes that small-scale irrigation is a practical solution for meeting household financial needs in the study area. It is recommended that investments in small-scale irrigation continue to further improve the livelihoods of rural farming communities by enhancing annual income gains.Keywords: small-scale irrigation, income, rural farm households, endogenous switching regression, user, non-user
Procedia PDF Downloads 612060 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest
Procedia PDF Downloads 1192059 A Joinpoint Regression Analysis of Trends in Tuberculosis Notifications in Two Urban Regions in Namibia
Authors: Anna M. N. Shifotoka, Richard Walker, Katie Haighton, Richard McNally
Abstract:
An analysis of trends in Case Notification Rates (CNR) can be used to monitor the impact of Tuberculosis (TB) control interventions over time in order to inform the implementation of current and future TB interventions. A retrospective analysis of trends in TB CNR for two urban regions in Namibia, namely Khomas and Erongo regions, was conducted. TB case notification data were obtained from annual TB reports of the national TB programme, Ministry of Health and Social Services, covering the period from 1997 to 2015. Joinpoint regression was used to analyse trends in CNR for different types of TB groups. A trend was considered to be statistically significant when a p-value was less than 0.05. During the period under review, the crude CNR for all forms of TB declined from 808 to 400 per 100 000 population in Khomas, and from 1051 to 611 per 100 000 population in Erongo. In both regions, significant change points in trends were observed for all types of TB groups examined. In Khomas region, the trend for new smear positive pulmonary TB increased significantly by an annual rate of 4.1% (95% Confidence Interval (CI): 0.3% to 8.2%) during the period 1997 to 2004, and thereafter declined significantly by -6.2% (95%CI: -7.7% to -4.3%) per year until 2015. Similarly, the trend for smear negative pulmonary TB increased significantly by 23.7% (95%CI: 9.7 to 39.5) per year from 1997 to 2004 and thereafter declined significantly by an annual change of -26.4% (95%CI: -33.1% to -19.8%). The trend for all forms of TB CNR in Khomas region increased significantly by 8.1% (95%CI: 3.7 to 12.7) per year from 1997 to 2004 and thereafter declined significantly a rate of -8.7% (95%CI: -10.6 to -6.8). In Erongo region, the trend for smear positive pulmonary TB increased at a rate of 1.2% (95%CI: -1.2% to 3.6%) annually during the earlier years (1997 to 2008), and thereafter declined significantly by -9.3% (95%CI: -13.3% to -5.0%) per year from 2008 to 2015. Also in Erongo, the trend for all forms of TB CNR increased significantly by an annual rate of 4.0% (95%CI: 1.4% to 6.6%) during the years between 1997 to 2006 and thereafter declined significantly by -10.4% (95%CI: -12.7% to -8.0%) per year during 2006 to 2015. The trend for extra-pulmonary TB CNR declined but did not reach statistical significance in both regions. In conclusion, CNRs declined for all types of TB examined in both regions. Further research is needed to study trends for other TB dimensions such as treatment outcomes and notification of drug resistant TB cases.Keywords: epidemiology, Namibia, temporal trends, tuberculosis
Procedia PDF Downloads 1472058 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok
Authors: Teerada Apibunyopas, Nithinant Thammakoranonta
Abstract:
Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees skill efficiently. This study focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increased. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.Keywords: e-Learning, job satisfaction, learning and growth, Bangkok
Procedia PDF Downloads 4892057 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis
Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez
Abstract:
It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)
Procedia PDF Downloads 4462056 Post-harvest Handling Practices and Technologies Harnessed by Smallholder Fruit Crop Farmers in Vhembe District, Limpopo Province, South Africa
Authors: Vhahangwele Belemu, Isaac Busayo Oluwatayo
Abstract:
Post-harvest losses pose a serious challenge to smallholder fruit crop farmers, especially in the rural communities of South Africa, affecting their economic livelihoods and food security. This study investigated the post-harvest handling practices and technologies harnessed by smallholder fruit crop farmers in the Vhembe district of Limpopo province, South Africa. Data were collected on a random sample of 224 smallholder fruit crop farmers selected from the four municipalities of the district using a multistage sampling technique. Analytical tools employed include descriptive statistics and the tobit regression model. A descriptive analysis of farmers’ socioeconomic characteristics showed that a sizeable number of these farmers are still in their active working age (mean = 52 years) with more males (63.8%) than their female (36.2%) counterparts. Respondents’ distribution by educational status revealed that only a few of these had no formal education (2.2%), with the majority having secondary education (48.7%). Results of data analysis further revealed that the prominent post-harvest technologies and handling practices harnessed by these farmers include using appropriate harvesting techniques (20.5%), selling at a reduced price (19.6%), transportation consideration (18.3%), cleaning and disinfecting (17.9%), sorting and grading (16.5%), manual cleaning (15.6%) and packaging technique (11.6%) among others. The result of the Tobit regression analysis conducted to examine the determinants of post-harvest technologies and handling practices harnessed showed that age, educational status of respondents, awareness of technology/handling practices, farm size, access to credit, extension contact, and membership of association were the significant factors. The study suggests enhanced awareness creation, access to credit facility and improved access to market as important factors to consider by relevant stakeholders to assist smallholder fruit crop farmers in the study area.Keywords: fruit crop farmers, handling practices, post harvest losses, smallholder, Vhembe District, South Africa
Procedia PDF Downloads 552055 A Multilevel Approach of Reproductive Preferences and Subsequent Behavior in India
Authors: Anjali Bansal
Abstract:
Reproductive preferences mainly deal with two questions: when a couple wants children and how many they want. Questions related to these desires are often included in the fertility surveys as they can provide relevant information on the subsequent behavior. The aim of the study is to observe whether respondent’s response to these questions changed over time or not. We also tried to identify socio- economic and demographic factors associated with the stability (or instability) of fertility preferences. For this purpose, we used IHDS1 (2004-05) and follow up survey IHDS2 (2011-12) data and applied bivariate, multivariate and multilevel repeated measure analysis to it to find the consistency between responses. From the analysis, we found that preferences of women changes over the course of time as from the bivariate analysis we have found that 52% of women are not consistent in their desired family size and huge inconsistency are found in desire to continue childbearing. To get a better overlook of these inconsistencies, we have computed Intra Class Correlation (ICC) which tries to explain the consistency between individuals on their fertility responses at two time periods. We also explored that husband’s desire for additional child specifically male offspring contribute to these variations. Our findings lead us to a cessation that in India, individuals fertility preferences changed over a seven-year time period as the Intra Class correlation comes out to be very small which explains the variations among individuals. Concerted efforts should be made, therefore, to educate people, and conduct motivational programs to promote family planning for family welfare.Keywords: change, consistency, preferences, over time
Procedia PDF Downloads 1652054 Molecular Detection of Leishmania from the Phlebotomus Genus: Tendency towards Leishmaniasis Regression in Constantine, North-East of Algeria
Authors: K. Frahtia, I. Mihoubi, S. Picot
Abstract:
Leishmaniasis is a group of parasitic disease with a varied clinical expression caused by flagellate protozoa of the Leishmania genus. These diseases are transmitted to humans and animals by the sting of a vector insect, the female sandfly. Among the groups of dipteral disease vectors, Phlebotominae occupy a prime position and play a significant role in human pathology, such as leishmaniasis that affects nearly 350 million people worldwide. The vector control operation launched by health services throughout the country proves to be effective since despite the prevalence of the disease remains high especially in rural areas, leishmaniasis appears to be declining in Algeria. In this context, this study mainly concerns molecular detection of Leishmania from the vector. Furthermore, a molecular diagnosis has also been made on skin samples taken from patients in the region of Constantine, located in the North-East of Algeria. Concerning the vector, 5858 sandflies were captured, including 4360 males and 1498 females. Male specimens were identified based on their morphological. The morphological identification highlighted the presence of the Phlebotomus genus with a prevalence of 93% against 7% represented by the Sergentomyia genus. About the identified species, P. perniciosus is the most abundant with 59.4% of the male identified population followed by P. longicuspis with 24.7% of the workforce. P. perfiliewi is poorly represented by 6.7% of specimens followed by P. papatasi with 2.2% and 1.5% S. dreyfussi. Concerning skin samples, 45/79 (56.96%) collected samples were found positive by real-time PCR. This rate appears to be in sharp decline compared to previous years (alert peak of 30,227 cases in 2005). Concerning the detection of Leishmania from sandflies by RT-PCR, the results show that 3/60 PCR performed genus are positive with melting temperatures corresponding to that of the reference strain (84.1 +/- 0.4 ° C for L. infantum). This proves that the vectors were parasitized. On the other side, identification by RT-PCR species did not give any results. This could be explained by the presence of an insufficient amount of leishmanian DNA in the vector, and therefore support the hypothesis of the regression of leishmaniasis in Constantine.Keywords: Algeria, molecular diagnostic, phlebotomus, real time PCR
Procedia PDF Downloads 2702053 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study
Authors: Chokri Slim
Abstract:
The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.Keywords: stationarity, cointegration, dynamic models, causality, VECM models
Procedia PDF Downloads 3622052 Impact of the Action Antropic in the Desertification of Steppe in Algeria
Authors: Kadi-Hanifi Halima
Abstract:
Stipa tenacissima is a plant with a big ecological value (against desertification) and economical stake (paper industry). It is important by its pastoral value due to the inflorescence. It occupied large areas between the Tellian atlas and the Saharian atlas, at the present, these areas of alfa have regressed a lot. This regression is estimated at 1% per year. The principal cause is a human responsibility. The drought is just an aggravating circumstance. The eradication of such a kind of species will have serious consequences upon the equilibrium of all the steppic ecosystem. Thus, we have thought necessary and urgent to know the alfa ecosystem, under all its aspects (climatic, floristic, and edaphic), this diagnostic could direct the fight actions against desertificationKeywords: desertification, anthropic action, soils, Stipa tenacissima
Procedia PDF Downloads 3092051 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1042050 Meiobenthic Diversity off Pudimadaka, Bay of Bengal, East Coast of India with Special Reference to Free-Living Marine Nematodes
Authors: C. Annapurna, Rao M. Srinivasa, Bhanu C. H. Vijaya, M. Sivalakshmi, Rao P. V. Surya
Abstract:
A study on the community structure of meiobenthic fauna was undertaken during three cruises (June 2008, October 2008 and March 2009). Ten stations at depth between 10 and 40 m off Pudimadaka in Visakhapatnam (Lat.17º29′12″N and Long. 83º00′09″), East coast of India were investigated. Ninety species representing 3 major (meiofaunal) taxa namely foraminifera (2), copepoda (9), nematoda (58) and polychaeta (21) were encountered. Overall, meiofaunal (mean) abundance ranged from 2 individuals to 63 ind. 10cm-² with an average of 24.3 ind.10cm-2. The meiobenthic biomass varied between 0.135 to 0.48 mg.10cm-2 with an average 0.27 ± 0.12. On the whole, nematodes constituted 73.62% of the meiofauna in terms of numerical abundance. Shannon –Wiener index values were 2.053 ± 0.64 (June, 2008), 2.477 ± 0.177 (October 2008) and 2.2815±0.24 (March 2009). Multivariate analyses were used to define the most important taxon in nematode assemblages. Three nematode associations could be recognized off Pudimadaka coast, namely Laimella longicaudata, Euchromodora vulgaris and Sabatieria elongata assemblage (June, 2008); Catanema sp. and Leptosomatum sp. assemblage (October 2008) assemblage; Sabatieria sp. and Setosabatieria sp. assemblage (March 2009). Canonical correspondence analysis showed that temperature, organic matter, silt and mean particle diameter were important in controlling nematode community structure.Keywords: meiofauna, marine nematode, biodiversity, community structure, India
Procedia PDF Downloads 3032049 Morphological Investigation of Sprawling Along Emerging Peri-Urban Transit Corridor of Mowe-Ibafo Axis of the Lagos Megacity Region
Authors: Folayele Oluyemi Akindeju, Tobi Joseph Ajoro
Abstract:
The city as a complex system exhibiting chaotic behaviour is in a state of constant change, in response to prevailing social, economic, environmental and technological factors. Without adequate investigation and control mechanisms to tame the sporadic nature of growth in most urban areas of cities in developing regions, organic sprawling visibly manifests with its attendant problems, most especially at peri-urban areas. The Lagos Megacity region in southwest Nigeria, as one of the largest megacities in the world contends with the challenges of sprawling at the peri-urban areas especially along emerging transit corridors. Due to the seemingly unpredictable nature of this growth, this paper attempts a morphological investigation into the growth of peri-urban settlements along the Mowe-Ibafo transit corridor of the Megacity region over a temporal space of three decades (1984-2014). This study adopts the application of the Fractal Analysis and Regression Analysis methods through the correlation of population density and fractal dimension values to establish the pattern and nature of growth, due to the inadequacies of conventional methods of urban analysis which cannot deal with the unpredictability of such complex urban forms as the peri-urban areas. It was deduced that the dynamic urban expansion in the last three decades resulted in about 74.2% urban change rate between 1984 and 2000 and 63.4% urban change rate between 2000 and 2014. With the R2 value between the fractal dimension and population density been 1, the regression model indicates a positive correlation between Fractal Dimension (D) and Population Density (pop/km2), where the increase in the population density from 5740 pop/km2 to 8060 pop/km2 and later decrease to 7580 pop/km2 leads to an increase in the fractal dimension of urban growth from 1.451 in 1984 to 1.853 in 2014. This, therefore, justifies the ability to predict and determine the nature and direction of growth of complex entities and is sufficient to substantially suggest the need for adequate policy framework towards sustainable urban planning and infrastructural provision in the Peri-urban areas.Keywords: fractal analysis, Lagos Megacity, peri-urban, sprawling, urban morphology
Procedia PDF Downloads 1742048 Multivariate Analysis of Causes of Death among Hepatocellular Carcinoma Patients: A Seer-Based Study
Authors: Peri Harish Kumar, Sai Sharan Dwarka, Tajbinder Singh Bains, Suneet John Joseph, Chaitanya Kiran, Sambhu Dutta, Sarah Makram, Mohamed Sayed Zaazouee, Alaa Ahmed Elshanbary
Abstract:
Objective: To identify cancer and non-cancer causes of death in hepatocellular carcinoma (HCC) patients over different time periods after diagnosis and to compare the mortality risk of each cause in HCC patients with the general population. Methods: In this retrospective cohort study, data of 67,637 HCC patients from 1975 to 2016 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. We investigated the association between different causes of death and the following variables: age, race, tumor stage at diagnosis, and treatment (surgery, chemotherapy, and radiotherapy); each according to the periods of <1 year, 1-5 years, 5-10 years, and >10 years following the diagnosis. Standardized mortality ratios (SMRs) and their 95% confidence intervals (CIs) were calculated for cancer and non-cancer deaths in each of the mentioned periods following diagnosis. Results: Data of 67,637 patients, of whom 50,571 patients died during the follow-up period, were analyzed. Most deaths were due to HCC itself (35,535, 70.3%), followed by other cancers (3,983, 7.9%). Common causes of non-cancer mortality included infectious and parasitic diseases including HIV (2,823 patients, SMR=105.68, 95% CI: 101.82-109.65), chronic liver disease (2,719 patients, SMR=76.56, 95% CI: 73.71,79.5), and heart diseases (1,265 patients, SMR=2.26, 95% CI: 2.14-2.39), with higher mortality risk in HCC patients than in the general population. Conclusion: Cancers stand for most deaths in patients with HCC. Besides, infectious, and parasitic diseases including HIV represent the commonest non-cancer cause of mortality.Keywords: hepatocellular carcinoma, seer, causes of death, mortality
Procedia PDF Downloads 872047 Evaluation of Medication Administration Process in a Paediatric Ward
Authors: Zayed Alsulami, Asma Aldosseri, Ahmed Ezziden, Abdulrahman Alonazi
Abstract:
Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding the medication administration process should be improved.Keywords: medication sasfety, paediatric, medication errors, paediatric ward
Procedia PDF Downloads 3902046 Stability Analysis of Tumor-Immune Fractional Order Model
Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu
Abstract:
A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.Keywords: cancer model, fractional calculus, numerical simulations, stability analysis
Procedia PDF Downloads 3132045 Economic Analysis of Post-Harvest Losses in Plantain (and Banana): A Case Study of South Western Nigeria
Authors: O. R. Adeniyi, A. Ayandiji
Abstract:
Losses are common in most vegetables because the fruit ripens rapidly and most plantain products can only be stored for a few days thereby limiting their utilization. Plantain (and banana) is highly perishable at the ambient temperature prevalent in the tropics. The specific objective of this study is to identify the socioeconomic characteristics of banana/plantain dealers and determine the perceived effect of the losses incurred in the process of marketing banana/plantain. The study was carried out in Ondo and Lagos states of south-western Nigeria. Purposive sampling technique was used to collect information from “Kolawole plantain depot”, the point of purchase in Ondo State and “Alamutu plantain market” in Mushin the point of sales in Lagos state. Preliminary study was conducted with the use of primary data collected through well-structured questionnaires administered on 60 respondents and 55 fully completed ones analysed. Budgeting, gross margin and multiple linear regression were used for analyses. Most merchants were found to be in the middle age class (30-50 years), majority of whom were female and completed their secondary school education, with eighty percent having more than 5 years’ experience of in banana/plantain marketing. The highest losses were incurred during transportation and these losses constitute about 5.62 percent of the potential total revenue. On the average, loss in gross margin is about ₦6,000.00 per merchant. The impacts of these losses are reflected in the continuously reducing level of their income. Age of the respondents played a major role in determining the level of care in the handling of the fruits. The middle age class tends to be more favoured. In conclusion, the merchants need adequate and sustainable transportation and storage facilities as a matter of utmost urgency. There is the need for government to encourage producers of the product (farmers) by giving them motivating incentives and ensuring that the environment is made conducive also for dealers by providing adequate storage facilities and ready markets locally and possibly for export.Keywords: post-harvest, losses, plantain, banana, simple regression
Procedia PDF Downloads 3152044 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4152043 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression
Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner
Abstract:
In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry
Procedia PDF Downloads 1962042 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer
Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu
Abstract:
In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).Keywords: biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer
Procedia PDF Downloads 1292041 Anxiety and Self-Perceived L2 Proficiency: A Comparison of Which Can Better Predict L2 Pronunciation Performance
Authors: Jiexuan Lin, Huiyi Chen
Abstract:
The development of L2 pronunciation competence remains understudied in the literature and it is not clear what may influence learners’ development of L2 pronunciation. The present study was an attempt to find out which of the two common factors in L2 acquisition, i.e., foreign language anxiety or self-perceived L2 proficiency, can better predict Chinese EFL learners’ pronunciation performance. 78 first-year English majors, who had received a three-month pronunciation training course, were asked to 1) fill out a questionnaire on foreign language classroom anxiety, 2) self-report their L2 proficiency in general, in speaking and in pronunciation, and 3) complete an oral and a written test on their L2 pronunciation (the score of the oral part indicates participants’ pronunciation proficiency in oral production, and the score of the written part indexes participants’ ability in applying pronunciation knowledge in comprehension.) Results showed that the pronunciation scores were negatively correlated with the anxiety scores, and were positively correlated with the self-perceived pronunciation proficiency. But only the written scores in the L2 pronunciation test, not the oral scores, were positively correlated with the L2 self-perceived general proficiency. Neither the oral nor the written scores in the L2 pronunciation test had a significant correlation with the self-perceived speaking proficiency. Given the fairly strong correlations, the anxiety scores and the self-perceived pronunciation proficiency were put in regression models to predict L2 pronunciation performance. The anxiety factor alone accounted for 13.9% of the variance and the self-perceived pronunciation proficiency alone explained 12.1% of the variance. But when both anxiety scores and self-perceived pronunciation proficiency were put in a stepwise regression model, only the anxiety scores had a significant and unique contribution to the L2 pronunciation performance (4.8%). Taken together, the results suggested that the learners’ anxiety level could better predict their L2 pronunciation performance, compared with the self-perceived proficiency levels. The obtained data have the following pedagogical implications. 1) Given the fairly strong correlation between anxiety and L2 pronunciation performance, the instructors who are interested in predicting learners’ L2 pronunciation proficiency may measure their anxiety level, instead of their proficiency, as the predicting variable. 2) The correlation of oral scores (in the pronunciation test) with pronunciation proficiency, rather than with speaking proficiency, indicates that a) learners after receiving some amounts of training are to some extent able to evaluate their own pronunciation ability, implying the feasibility of incorporating self-evaluation and peer comments in course instruction; b) the ‘proficiency’ measure used to predict pronunciation performance should be used with caution. The proficiency of specific skills seemingly highly related to pronunciation (i.e., speaking in this case) may not be taken for granted as an effective predictor for pronunciation performance. 3) The correlation between the written scores with general L2 proficiency is interesting.Keywords: anxiety, Chinese EFL learners, L2 pronunciation, self-perceived L2 proficiency
Procedia PDF Downloads 359