Search results for: hybridization chain reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4173

Search results for: hybridization chain reaction

2433 Exact Phase Diagram of High-TC Superconductors

Authors: Abid Boudiar

Abstract:

We propose a simple model to obtain an exact expression of Tc/(Tc,max) for the temperature-doping phase diagram of superconducting cuprates. We showed that our model predicted most phase diagram scenario. We found the exact special doping points p(opt), p(qcp) and an accurate E(g,max). Some other properties such as the stripes length 100.1°A and the energy gap in cuprates chain 6meV can also be calculated exactly. Another interesting consequence of this simple picture is the new magic numbers and the ability to express everything using a (Tc,p) diagram via the golden ratio.

Keywords: superconducting cuprates, phase, pseudogap, hole doping, strips, golden ratio, soliton

Procedia PDF Downloads 473
2432 Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization

Authors: Jose Manuel Rodriguez-Dominguez, Rodrigo Barba-Gonzalez, Ernesto Tapia-Campos

Abstract:

Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work.

Keywords: Amaryllidaceae, cytogenetics, ornamental, ploidy level

Procedia PDF Downloads 197
2431 New Subculture in Social Media

Authors: Maryam Mousivand

Abstract:

Subculture is one of the important concepts in social sciences and the field of cultural studies, which falls under the huge concept of culture. In general, subculture is a kind of movement and experience of collective resistance that is manifested by a population as a reaction against the acceptance of official identities approved by custom and society. Subcultures exist in the virtual world in the new era, and they emerged in various forms, such as the emergence of a subculture under common concepts and interests in the form of sites, channels, and groups of virtual space, which will be discussed in this article.

Keywords: subculture, social media, cultural studies, culture

Procedia PDF Downloads 124
2430 Patient-Reported Adverse Drug Reactions, Medication Adherence and Clinical Outcomes among major depression disorder Patients in Ethiopia: A Prospective Hospital Based Study.

Authors: Tadesse Melaku Abegaz

Abstract:

Background: there was paucity of data on the self-reported adverse drug reactions (ADRs), level of adherence and clinical outcomes with antidepressants among major depressive disorder (MDD) patients in Ethiopia. Hence, the present study sought to determine the level of adherence for and clinical outcome with antidepressants and the magnitude of ADRs. Methods: A prospective cross-sectional study was employed on MDD patients from September 2016 to January 2017 at Gondar university hospital psychiatry clinic. All patients who were available during the study period were included under the study population. The Naranjo adverse drug reaction probability scale was employed to assess the adverse drug reaction. The rate of medication adherence was determined using morisky medication adherence measurement scale eight. Clinical Outcome of patients was measured by using patient health questionnaire. Multivariable logistic carried out to determine factors for adherence and patient outcome. Results: two hundred seventy patients were participated in the study. More than half of the respondents were males 122(56.2%). The mean age of the participants was 30.94 ± 8.853. More than one-half of the subjects had low adherence to their medications 124(57.1%). About 186(85.7%) of patients encountered ADR. The most common ADR was weight gain 29(13.2). Around 198(92.2%) ADRs were probable and 19(8.8%) were possible. Patients with long standing MDD had high risk of non-adherence COR: 2.458[4.413-4.227], AOR: 2.424[1.185-4.961]. More than one-half 125(57.6) of respondents showed improved outcome. Optimal level of medication adherence was found to be associated with reduced risk of progression of the diseases COR: 0.37[0.110-5.379] and AOR: 0.432[0.201-0.909]. Conclusion: Patient reported adverse drug reactions were more prevalent in major depressive disorder patients. Adherence to medications was very poor in the setup. However, the clinical outcome was relatively higher. Long standing depression was associated with non-adherence. In addition, clinical outcome of patients were affected by non-adherence. Therefore, adherence enhancing interventions should be provided to improve medication adherence and patient outcome.

Keywords: adverse drug reactions, clinical outcomes, Ethiopia, prospective study, medication adherence

Procedia PDF Downloads 253
2429 Assessment of Knowledge, Attitude, and Practice of Health Care Professionals and Factors Associated with Adverse Drug Reaction Reporting in Public and Private Hospitals of Islamabad

Authors: Zaka Nisa, Farooq Sher

Abstract:

Adverse drug reactions (ADRs) underreporting is a great challenge to Pharmacovigilance. Health care professionals have to consider ADR reporting as their professional obligation, an effective system of ADR reporting is important to improve patient health care and safety. The present study is designed to assess the knowledge, attitude, practice and factors associated with ADR reporting by health care professionals (physicians and pharmacists) in public and private hospitals of Pakistan. A pretested questionnaire was administered to 384 physicians and pharmacists in public and private hospitals. Respondents were evaluated for their knowledge, attitude, and practice related to ADR reporting. The data was analyzed using the SPSS statistical software, the factors which encourage and discourage respondents in reporting ADRs were determined. Most of the respondents have shown a positive attitude towards ADR reporting. The response rate was 95.32%. Of the 367 questionnaires, including 333 (86.5%) physicians and 34 (8.8%) pharmacists with the mean age 28.34 (SD= 6.69), most of the respondents showed poor ADR reporting knowledge (83.1%). The majority of respondents (78.2%) showed positive attitude towards ADR reporting and only (12.3%) hospitals have good ADR reporting practice. Knowledge of respondents in public hospitals (8.6%) was less as compare to those in the private hospitals (29.7%) (P < 0.001). Attitude of respondents in private hospitals was more positive (92.4%) than those in public hospitals (68.8%) (P < 0.001). No significant difference was observed in practicing of ADR reporting in public (11.8%) and private hospitals (13.1%) (P value 0.89). Seriousness of ADR, unusualness of reaction, new drug involvement and confidence in diagnosis of ADR were the factors which encourage respondents to report ADR, however, lack of knowledge regarding where and how to report ADR, lack of access to ADR reporting form, managing patients was more important than reporting ADR, legal liability issues were the factors which discourage respondents to report ADR. The study reveals poor knowledge and practice regarding ADR reporting. However positive attitude was seen regarding ADR reporting. There is a need of educational training for health care professionals as well as genuine and continuous efforts are required by Government and health authorities to ensure the proper implementation of ADR reporting system in all of the hospitals.

Keywords: adverse drugs reactions (ADR), pharmacovigilance, spontaneous ADR reporting, knowledge of ADR, attitude of health care profesionals, practice of ADR reporting

Procedia PDF Downloads 265
2428 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work

Authors: Shreya Poddar

Abstract:

Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.

Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels

Procedia PDF Downloads 72
2427 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 310
2426 Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase

Authors: Anna Zimoch-Korzycka, Dominika Kulig, Andrzej Jarmoluk

Abstract:

The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties.

Keywords: cellulase, xylanase, chitosanase, chitosan, chitooligosaccharides

Procedia PDF Downloads 332
2425 Genomic Resilience and Ecological Vulnerability in Coffea Arabica: Insights from Whole Genome Resequencing at Its Center of Origin

Authors: Zewdneh Zana Zate

Abstract:

The study focuses on the evolutionary and ecological genomics of both wild and cultivated Coffea arabica L. at its center of origin, Ethiopia, aiming to uncover how this vital species may withstand future climate changes. Utilizing bioclimatic models, we project the future distribution of Arabica under varied climate scenarios for 2050 and 2080, identifying potential conservation zones and immediate risk areas. Through whole-genome resequencing of accessions from Ethiopian gene banks, this research assesses genetic diversity and divergence between wild and cultivated populations. It explores relationships, demographic histories, and potential hybridization events among Coffea arabica accessions to better understand the species' origins and its connection to parental species. This genomic analysis also seeks to detect signs of natural or artificial selection across populations. Integrating these genomic discoveries with ecological data, the study evaluates the current and future ecological and genomic vulnerabilities of wild Coffea arabica, emphasizing necessary adaptations for survival. We have identified key genomic regions linked to environmental stress tolerance, which could be crucial for breeding more resilient Arabica varieties. Additionally, our ecological modeling predicted a contraction of suitable habitats, urging immediate conservation actions in identified key areas. This research not only elucidates the evolutionary history and adaptive strategies of Arabica but also informs conservation priorities and breeding strategies to enhance resilience to climate change. By synthesizing genomic and ecological insights, we provide a robust framework for developing effective management strategies aimed at sustaining Coffea arabica, a species of profound global importance, in its native habitat under evolving climatic conditions.

Keywords: coffea arabica, climate change adaptation, conservation strategies, genomic resilience

Procedia PDF Downloads 45
2424 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters

Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale

Abstract:

This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.

Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories

Procedia PDF Downloads 205
2423 Antimicrobial Resistance of Acinetobacter baumannii in Veterinary Settings: A One Health Perspective from Punjab, Pakistan

Authors: Minhas Alam, Muhammad Hidayat Rasool, Mohsin Khurshid, Bilal Aslam

Abstract:

The genus Acinetobacter has emerged as a significant concern in hospital-acquired infections, particularly due to the versatility of Acinetobacter baumannii in causing nosocomial infections. The organism's remarkable metabolic adaptability allows it to thrive in various environments, including the environment, animals, and humans. However, the extent of antimicrobial resistance in Acinetobacter species from veterinary settings, especially in developing countries like Pakistan, remains unclear. This study aimed to isolate and characterize Acinetobacter spp. from veterinary settings in Punjab, Pakistan. A total of 2,230 specimens were collected, including 1,960 samples from veterinary settings (nasal and rectal swabs from dairy and beef cattle), 200 from the environment, and 70 from human clinical settings. Isolates were identified using routine microbiological procedures and confirmed by polymerase chain reaction (PCR). Antimicrobial susceptibility was determined by the disc diffusion method, and minimum inhibitory concentration (MIC) was measured by the micro broth dilution method. Molecular techniques, such as PCR and DNA sequencing, were used to screen for antimicrobial-resistant determinants. Genetic diversity was assessed using standard techniques. The results showed that the overall prevalence of A. baumannii in cattle was 6.63% (65/980). However, among cattle, a higher prevalence of A. baumannii was observed in dairy cattle, 7.38% (54/731), followed by beef cattle, 4.41% (11/249). Out of 65 A. baumannii isolates, the carbapenem resistance was found in 18 strains, i.e. 27.7%. The prevalence of A. baumannii in nasopharyngeal swabs was higher, i.e., 87.7% (57/65), as compared to rectal swabs, 12.3% (8/65). Class D β-lactamases genes blaOXA-23 and blaOXA-51 were present in all the CRAB from cattle. Among carbapenem-resistant isolates, 94.4% (17/18) were positive for class B β-lactamases gene blaIMP, whereas the blaNDM-1 gene was detected in only one isolate of A. baumannii. Among 70 clinical isolates of A. baumannii, 58/70 (82.9%) were positive for the blaOXA-23-like gene, and 87.1% (61/70) were CRAB isolates. Among all clinical isolates of A. baumannii, blaOXA-51-like gene was present. Hence, the co-existence of blaOXA-23 and blaOXA-51 was found in 82.85% of clinical isolates. From the environmental settings, a total of 18 A. baumannii isolates were recovered; among these, 38.88% (7/18) strains showed carbapenem resistance. All environmental isolates of A. baumannii harbored class D β-lactamases genes, i.e., blaOXA-51 and blaOXA-23 were detected in 38.9% (7/18) isolates. Hence, the co-existence of blaOXA-23 and blaOXA-51 was found in 38.88% of isolates. From environmental settings, 18 A. baumannii isolates were recovered, with 38.88% showing carbapenem resistance. All environmental isolates harbored blaOXA-51 and blaOXA-23 genes, with co-existence in 38.88% of isolates. MLST results showed ten different sequence types (ST) in clinical isolates, with ST 589 being the most common in carbapenem-resistant isolates. In veterinary isolates, ST2 was most common in CRAB isolates from cattle. Immediate control measures are needed to prevent the transmission of CRAB isolates among animals, the environment, and humans. Further studies are warranted to understand the mechanisms of antibiotic resistance spread and implement effective disease control programs.

Keywords: Acinetobacter baumannii, carbapenemases, drug resistance, MSLT

Procedia PDF Downloads 74
2422 Role of Molecular Changes and Immunohistochamical in Early Detection of Colon Cancer

Authors: Fatimah Alhomaid

Abstract:

The present study was planned to investigate the role of molecular changes and immunohistochemical in early detection of colon cancer in Saudi patients. Our results were carried out on 48 patients colon cancer. We obtained our data from laboratory in King Khalid university hospital. The specimens were taken (48) patients with colon cancer 34 male and 14 female and 2 control. The average age of varied from 37-85 years. The tumor was diagnosed as I in tow patients (male and female) and grade 2 in 42 patients (29 male and 13 female) while the grade 3 in 4 patients (all males). The specimens were processed for haematoxylin and eosin staining , immunohistochemical technique and flow cytometry analysis. Our study noted that most patients had adenocarcinoma which characterized by presence of signet-ring cells were very clear in advanced patients of adenocarcinoma. Our sections in adenocarcinoma in grade 2 and stage 3 had an increase in signet ring cells,an increase in the acini of glands and an increase in number of lymphocytes which spread to the muscularis layer. With advancing the disease, there were haemorge in blood and increase in lymphocytes and increase number of nuclei in the tubular glands. Our study was carried on 48 patients, immunohistochemical diagnosis (CK20,PCNA,P53) and the analysis of DNA content by flow cytometry technique. Our study indicated that the presence of correlation between the immunohistochemical analysis for P53 and the grades. The reaction of P53 appeared as strong in nucleus in grades &stage 3 and appeared in other sections as dark brown pigment. Our study indicated that the absence of correlation between the immunohistochemical analysis for pcan and the grades. In our sections, there were strong reactions in the more 80% of nuclei in grade 1& stage 2. Our study indicated that the presence of correlation between the immunohistochemical analysis for CK20 and the grades. Our results indicated the presence of positive reaction in cytoplasm varied from weak to moderate in grade 3 & stage 4. Concerning the Flow cytometry technique our results indicated that the presence of correlation between the DNA and different stages of colon cancer.

Keywords: DNA-CK20, PCNA, P53, colon cancer

Procedia PDF Downloads 358
2421 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 299
2420 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 311
2419 Stress Evaluation at Lower Extremity during Walking with Unstable Shoe

Authors: Sangbaek Park, Seungju Lee, Soo-Won Chae

Abstract:

Unstable shoes are known to strengthen lower extremity muscles and improve gait ability and to change the user’s gait pattern. The change in gait pattern affects human body enormously because the walking is repetitive and steady locomotion in daily life. It is possible to estimate the joint motion including joint moment, force and inertia effect using kinematic and kinetic analysis. However, the change of internal stress at the articular cartilage has not been possible to estimate. The purpose of this research is to evaluate the internal stress of human body during gait with unstable shoes. In this study, FE analysis was combined with motion capture experiment to obtain the boundary condition and loading condition during walking. Motion capture experiments were performed with a participant during walking with normal shoes and with unstable shoes. Inverse kinematics and inverse kinetic analysis was performed with OpenSim. The joint angle and muscle forces were estimated as results of inverse kinematics and kinetics analysis. A detailed finite element (FE) lower extremity model was constructed. The joint coordinate system was added to the FE model and the joint coordinate system was coincided with OpenSim model’s coordinate system. Finally, the joint angles at each phase of gait were used to transform the FE model’s posture according to actual posture from motion capture. The FE model was transformed into the postures of three major phases (1st peak of ground reaction force, mid stance and 2nd peak of ground reaction force). The direction and magnitude of muscle force were estimated by OpenSim and were applied to the FE model’s attachment point of each muscle. Then FE analysis was performed to compare the stress at knee cartilage during gait with normal shoes and unstable shoes.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 327
2418 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes

Authors: Imad Khan, Imran Shafi, Sarmad Farooq

Abstract:

Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.

Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes

Procedia PDF Downloads 116
2417 High Level Expression of Fluorinase in Escherichia Coli and Pichia Pastoris

Authors: Lee A. Browne, K. Rumbold

Abstract:

The first fluorinating enzyme, 5'-fluoro-5'-deoxyadenosine synthase (fluorinase) was isolated from the soil bacterium Streptomyces cattleya. Such an enzyme, with the ability to catalyze a C-F bond, presents great potential as a biocatalyst. Naturally fluorinated compounds are extremely rare in nature. As a result, the number of fluorinases identified remains relatively few. The field of fluorination is almost completely synthetic. However, with the increasing demand for fluorinated organic compounds of commercial value in the agrochemical, pharmaceutical and materials industries, it has become necessary to utilize biologically based methods such as biocatalysts. A key step in this crucial process is the large-scale production of the fluorinase enzyme in considerable quantities for industrial applications. Thus, this study aimed to optimize expression of the fluorinase enzyme in both prokaryotic and eukaryotic expression systems in order to obtain high protein yields. The fluorinase gene was cloned into the pET 41b(+) and pPinkα-HC vectors and used to transform the expression hosts, E.coli BL21(DE3) and Pichia pastoris (PichiaPink™ strains) respectively. Expression trials were conducted to select optimal conditions for expression in both expression systems. Fluorinase catalyses a reaction between S-adenosyl-L-Methionine (SAM) and fluoride ion to produce 5'-fluorodeoxyadenosine (5'FDA) and L-Methionine. The activity of the enzyme was determined using HPLC by measuring the product of the reaction 5'FDA. A gradient mobile phase of 95:5 v/v 50mM potassium phosphate buffer to a final mobile phase containing 80:20 v/v 50mM potassium phosphate buffer and acetonitrile were used. This resulted in the complete separation of SAM and 5’-FDA which eluted at 1.3 minutes and 3.4 minutes respectively. This proved that the fluorinase enzyme was active. Optimising expression of the fluorinase enzyme was successful in both E.coli and PichiaPink™ where high expression levels in both expression systems were achieved. Protein production will be scaled up in PichiaPink™ using fermentation to achieve large-scale protein production. High level expression of protein is essential in biocatalysis for the availability of enzymes for industrial applications.

Keywords: biocatalyst, expression, fluorinase, PichiaPink™

Procedia PDF Downloads 554
2416 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions

Authors: Nicholas C. Rose, Christopher D. Spicer

Abstract:

The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.

Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological

Procedia PDF Downloads 103
2415 Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production

Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra

Abstract:

Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge.

Keywords: activated sludge, lipid, hydrothermal decarboxylation, renewable diesel

Procedia PDF Downloads 321
2414 Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites

Authors: Md. Hafezur Rahaman, Mohd. Maniruzzaman, Md. Shadiqul Islam, Md. Masud Rana

Abstract:

With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research.

Keywords: α-cellulose, composite, graft polycondensation, oligo(D-lactic acid), poly(L-lactic acid)

Procedia PDF Downloads 124
2413 Exact Formulas of the End-To-End Green’s Functions in Non-hermitian Systems

Authors: Haoshu Li, Shaolong Wan

Abstract:

The recent focus has been on directional signal amplification of a signal input at one end of a one-dimensional chain and measured at the other end. The amplification rate is given by the end-to-end Green’s functions of the system. In this work, we derive the exact formulas for the end-to-end Green's functions of non-Hermitian single-band systems. While in the bulk region, it is found that the Green's functions are displaced from the prior established integral formula by O(e⁻ᵇᴸ). The results confirm the correspondence between the signal amplification and the non-Hermitian skin effect.

Keywords: non-Hermitian, Green's function, non-Hermitian skin effect, signal amplification

Procedia PDF Downloads 147
2412 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner

Authors: Sewon Kim, Changyeop Lee

Abstract:

A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.

Keywords: burner, low NOx, liquid fuel, partial oxidation

Procedia PDF Downloads 345
2411 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 164
2410 Effect of Graded Level of Nano Selenium Supplementation on the Performance of Broiler Chicken

Authors: Raj Kishore Swain, Kamdev Sethy, Sumanta Kumar Mishra

Abstract:

Selenium is an essential trace element for the chicken with a variety of biological functions like growth, fertility, immune system, hormone metabolism, and antioxidant defense systems. Selenium deficiency in chicken causes exudative diathesis, pancreatic dystrophy and nutritional muscle dystrophy of the gizzard, heart and skeletal muscle. Additionally, insufficient immunity, lowering of production ability, decreased feathering of chickens and increased embryo mortality may occur due to selenium deficiency. Nano elemental selenium, which is bright red, highly stable, soluble and of nano meter size in the redox state of zero, has high bioavailability and low toxicity due to the greater surface area, high surface activity, high catalytic efficiency and strong adsorbing ability. To assess the effect of dietary nano-Se on performance and expression of gene in Vencobb broiler birds in comparison to its inorganic form (sodium selenite), four hundred fifty day-old Vencobb broiler chicks were randomly distributed into 9 dietary treatment groups with two replicates with 25 chicks per replicate. The dietary treatments were: T1 (Control group): Basal diet; T2: Basal diet with 0.3 ppm of inorganic Se; T3: Basal diet with 0.01875 ppm of nano-Se; T4: Basal diet with 0.0375 ppm of nano-Se; T5: Basal diet with 0.075 ppm of nano-Se, T6: Basal diet with 0.15 ppm of nano-Se, T7: Basal diet with 0.3 ppm of nano-Se, T8: Basal diet with 0.60 ppm of nano-Se, T9: Basal diet with 1.20 ppm of nano-Se. Nano selenium was synthesized by mixing sodium selenite with reduced glutathione and bovine serum albumin. The experiment was carried out in two phases: starter phase (0-3 wks), finisher phase (4-5 wk) in deep litter system. The body weight at the 5th week was best observed in T4. The best feed conversion ratio at the end of 5th week was observed in T4. Erythrocytic catalase, glutathione peroxidase and superoxide dismutase activity were significantly (P < 0.05) higher in all the nano selenium treated groups at 5th week. The antibody titers (log2) against Ranikhet diseases vaccine immunization of 5th-week broiler birds were significantly higher (P < 0.05) in the treatments T4 to T7. The selenium levels in liver, breast, kidney, brain, and gizzard were significantly (P < 0.05) increased with increasing dietary nano-Se indicating higher bioavailability of nano-Se compared to inorganic Se. The real time polymer chain reaction analysis showed an increase in the expression of antioxidative gene in T4 and T7 group. Therefore, it is concluded that supplementation of nano-selenium at 0.0375 ppm over and above the basal level can improve the body weight, antioxidant enzyme activity, Se bioavailability and expression of the antioxidative gene in broiler birds.

Keywords: chicken, growth, immunity, nano selenium

Procedia PDF Downloads 183
2409 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 302
2408 Explicit Chain Homotopic Function to Compute Hochschild Homology of the Polynomial Algebra

Authors: Zuhier Altawallbeh

Abstract:

In this paper, an explicit homotopic function is constructed to compute the Hochschild homology of a finite dimensional free k-module V. Because the polynomial algebra is of course fundamental in the computation of the Hochschild homology HH and the cyclic homology CH of commutative algebras, we concentrate our work to compute HH of the polynomial algebra.by providing certain homotopic function.

Keywords: hochschild homology, homotopic function, free and projective modules, free resolution, exterior algebra, symmetric algebra

Procedia PDF Downloads 410
2407 Well-Being and Helping Technology for Retired Population in Finland

Authors: R. Pääkkönen, L. Korpinen

Abstract:

This study aimed to evaluate parameters influencing well-being and how to maintain well-being as long as possible after retirement. There is contradictory information on the health changes after retirement in Finland. This work is based on interviews, statistics, and literature evaluation of Finland. Most often, balance, multitasking reaction time, and adaptation of vision in dim and darks areas are worsened. Slowing is one characteristic that is difficult to measure properly. The most important is try to determine ways to manage daily activities and symptoms of disease after retirement. Medicine is advancing, problems are often also on the economic side. Information of technical aids is important. It is worth planning a retirement age.

Keywords: retirement, working, aging, wellness

Procedia PDF Downloads 241
2406 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 235
2405 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer

Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso

Abstract:

Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).

Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells

Procedia PDF Downloads 222
2404 Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder

Authors: C. Nakib, N. Ammouchi, A. Otmani, A. Djekoun, J. M. Grenèche

Abstract:

B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles.

Keywords: mechanical alloying, ternary composition, dislocation density, structural properties

Procedia PDF Downloads 279