Search results for: gas metal arc weld (GMAW)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2560

Search results for: gas metal arc weld (GMAW)

820 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads

Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh

Abstract:

Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.

Keywords: aluminum foam, loading complexity, characterization, biaxial loading

Procedia PDF Downloads 144
819 Long Term Changes of Water Quality in Latvia

Authors: Maris Klavins, Valery Rodinov

Abstract:

The aim of this study was to analyze long term changes of surface water quality in Latvia, spatial variability of water chemical composition, possible impacts of different pollution sources as well as to analyze the measures to protect national water resources - river basin management. Within this study, the concentrations of major water ingredients and microelements in major rivers and lakes of Latvia have been determined. Metal concentrations in river and lake waters were compared with water chemical composition. The mean concentrations of trace metals in inland waters of Latvia are appreciably lower than the estimated world averages for river waters and close to or lower than background values, unless regional impacts determined by local geochemistry. This may be explained by a comparatively lower level of anthropogenic load. In the same time in several places, direct anthropogenic impacts are evident, regarding influences of point sources both transboundary transport impacts. Also, different processes related to pollution of surface waters in Latvia have been analyzed. At first the analysis of changes and composition of pollutant emissions in Latvia has been realized, and the obtained results were compared with actual composition of atmospheric precipitation and their changes in time.

Keywords: water quality, trend analysis, pollution, human impact

Procedia PDF Downloads 268
818 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali

Authors: C. Benhamideche

Abstract:

Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.

Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic

Procedia PDF Downloads 242
817 Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine

Authors: A. M. Ashraful, H .H. Masjuki, M. A. Kalam

Abstract:

Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation.

Keywords: particulate matter, elemental carbon, organic carbon, biodiesel

Procedia PDF Downloads 391
816 Interplay of Power Management at Core and Server Level

Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller

Abstract:

While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.

Keywords: power efficiency, static power consumption, dynamic power consumption, CMOS

Procedia PDF Downloads 221
815 Liquid-Liquid Extraction of Uranium(vi) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time= 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.

Keywords: liquid-liquid extraction, uranium(vi), 1-hydroxyalkylidene-1, 1-diphosphonic acids, hhdpa, hddpa, aqueous solution

Procedia PDF Downloads 269
814 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite

Authors: Mohamed M. Emara, Heba Ashraf

Abstract:

This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.

Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability

Procedia PDF Downloads 526
813 Atomic Absorption Spectroscopic Analysis of Heavy Metals in Cancerous Breast Tissues among Women in Jos, Nigeria

Authors: Opeyemi Peter Idowu

Abstract:

Breast cancer is prevalent in northern Nigerian women, most especially in Jos, Plateau State, owing to anthropogenic activities such as solid earth mineral mining as far back as 1904. In this study, atomic absorption spectrometry was used to determine the concentration of eight heavy metals (Cd, As, Cr, Cu, Fe, Pb, Ni, and Zn) in cancerous and non-cancerous breast tissues of Jos Nigerian Women. The levels of heavy metals ranged from 1.08 to 29.34 mg/kg, 0.29 to 10.76 mg/kg, 0.35 to 51.93 mg/kg, 5.15 to 62.93 mg/kg, 11.64 to 51.10 mg/kg, 0.42 to 83.16 mg/kg, 2.08 to 43.07 mg/kg and 1.67 to 71.53 mg/kg for Cd, As, Cr, Cu, Fe, Pb, Ni and Zn respectively. Using MATLAB R2016a, significant differences (tᵥ = 0.0041 - 0.0317) existed between the levels of all the heavy metals in cancerous and non-cancerous breast tissues except Fe. At 0.01 level of significance, a positive significant correlation existed between Pb and Fe, Pb and Cu, Pb and Fe, Ni and Fe, Cr and Pb, as well as Ni and Cr (r = 0.583 – 0.998) in cancerous breast tissues. Using ANOVA, significant differences also occurred in the levels of these heavy metals in cancerous breast tissues (p = 1.910510×10⁻²⁶). The relatively high levels of the cancer-induced heavy metals (Cd, As, Cr, and Pb) compared with control indicated contamination or exposure to heavy metals, which could be the major cause of cancer in these female subjects. This was evidence of contamination as a result of exposure by ingestion, inhalation, or other means to one anthropogenic activity of the other. Therapeutic measures such as gastric lavage, ascorbic acid consumption, and divalent cation treatment are all effective ways to manage heavy metal toxicity in the subjects to lower the risk of breast cancer.

Keywords: breast cancer, heavy metals, spectroscopy, bio-accumulation

Procedia PDF Downloads 30
812 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 220
811 Growth of Nitella in Response to Cesium Exposure: Implication for Phytoremediation

Authors: Harun Rashid, Keerthi S. S. Atapaththu, Takashi Asaeda

Abstract:

Cesium (Cs) induced growth and stress response of Nitella were studied after exposure to four concentration of the metal; i.e. 0 (control), 0.001, 0.01, and 0.1 ppm Cs in growth media. Each treatment with three replicates were randomly allocated to 12 glass beakers in a complete randomize design and the experiment was continued for 30 days. At the end of the experiment, shoot length, cesium content, total chlorophyll, and plant stress response were compared. Anti-oxidant enzyme activities (peroxidase, catalase, and ascorbic peroxidase) and the concentration of H2O2 were measured to check plant stress. The longest shoot was found in control treatment (0 ppm Cs) and the shoot length of plants exposed to 0.001 ppm was statistically similar to that of control. Concentration of cesium in plants grown at 0.001, 0.01, and 0.1 ppm were significantly higher than those in control treatments. The antioxidant enzymes activities of plants exposed to cesium were significantly higher than those grown without any Cs (control). An elevated level of H2O2 concentration was also observed in former groups of plants. Further, the reduction in chlorophyll concentration and chlorophyll fluorescence in response to cesium exposure indicated the chronically damaged photosynthetic efficiency in cesium stressed Nitella.

Keywords: antioxidant enzymes, cesium, growth, Nitella, oxidative stress

Procedia PDF Downloads 428
810 Chiral Ruthenium Aminophosphine and Phosphine Iminopyridine Complexes: Synthesis and Application to Asymmetric Hydrogenation and Transfer Hydrogenation

Authors: Littlelet N. Scarlet, Kamaluddin Abdur-Rashid, Paul T. Maragh, Tara Dasgupta

Abstract:

Aminophosphines are a privileged class of ancillary ligands with emerging importance in homogeneous catalysis. The unique combination of soft phosphorus (P) and hard nitrogen (N) centres affords a variety of transition metal complexes as potential pre-catalysts for synthetically useful reactions. Herein three ligand systems will be reported; two bidentate ligands - (S)-8-(diphenyl-phosphino)-1,2,3,4-tetrahydronaphthalen-1-amine, (S)THNANH2, and (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylethylamine, (RcSp)PPFNH2 - and a tridentate (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylimino-pyridine, (RcSp)PPFNNH2 ligand; the latter prepared from the condensation of selected ferrocene aminophosphines with pyridine-2-carboxaldehyde. Suitable combinations of these aminophosphine ligands with ruthenium precursors have afforded highly efficient systems for the asymmetric hydrogenation and transfer hydrogenation of selected ketones in 2-propanol. The Ru-(S)THNANH2 precatalyst was the most efficient in the asymmetric hydrogenation of selected ketones with 100% conversions within 4 hours at a catalyst loading of 0.1 mol%. The Ru-(RcSp)PPFNNH2 precatalyst was the most efficient in the asymmetric transfer hydrogenation of the ketones with conversions as high as 98% with 0.1 mol% catalyst. However, the enantioselectivities were generally low.

Keywords: aminophosphine, asymmetric hydrogenation, homogeneous catalysis, ruthenium (II), transfer hydrogenation

Procedia PDF Downloads 262
809 Process for Separating and Recovering Materials from Kerf Slurry Waste

Authors: Tarik Ouslimane, Abdenour Lami, Salaheddine Aoudj, Mouna Hecini, Ouahiba Bouchelaghem, Nadjib Drouiche

Abstract:

Slurry waste is a byproduct generated from the slicing process of multi-crystalline silicon ingots. This waste can be used as a secondary resource to recover high purity silicon which has a great economic value. From the management perspective, the ever increasing generation of kerf slurry waste loss leads to significant challenges for the photovoltaic industry due to the current low use of slurry waste for silicon recovery. Slurry waste, in most cases, contains silicon, silicon carbide, metal fragments and mineral-oil-based or glycol-based slurry vehicle. As a result, of the global scarcity of high purity silicon supply, the high purity silicon content in slurry has increasingly attracted interest for research. This paper presents a critical overview of the current techniques employed for high purity silicon recovery from kerf slurry waste. Hydrometallurgy is continuously a matter of study and research. However, in this review paper, several new techniques about the process of high purity silicon recovery from slurry waste are introduced. The purpose of the information presented is to improve the development of a clean and effective recovery process of high purity silicon from slurry waste.

Keywords: Kerf-loss, slurry waste, silicon carbide, silicon recovery, photovoltaic, high purity silicon, polyethylen glycol

Procedia PDF Downloads 312
808 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique

Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang

Abstract:

AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.

Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage

Procedia PDF Downloads 263
807 Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration

Authors: Juan Francisco Morales Arteaga, Simon Gluhar, Anela Kaurin, Domen Lestan

Abstract:

Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases.

Keywords: soil remediation, soil science, soil washing, toxic metals removal

Procedia PDF Downloads 175
806 Preparation and Characterization of Modified ZnO Incorporated into Mesoporous MCM-22 Catalysts and Their Catalytic Performances of Crude Jatropha Oil to Biodiesel

Authors: Bashir Abubakar Abdulkadir, Anita Ramli, Lim Jun Wei, Yoshimitsu Uemura

Abstract:

In this study, the ZnO/MCM-22 catalyst with different ZnO loading were prepared using conventional wet impregnation process and the catalyst activity was tested for biodiesel production from Jatropha oil. The effects of reaction parameters with regards to catalyst activity were investigated. The synthesized catalysts samples were then characterized by X-ray diffraction (XRD) for crystal phase, Brunauer–Emmett–Teller (BET) for surface area, pore volume and pore size, Field Emission Scanning electron microscope attached to energy dispersive x-ray (FESEM/EDX) for morphology and elemental composition and TPD (NH3 and CO2) for basic and acidic properties of the catalyst. The XRD spectra couple with the EDX result shows the presence of ZnO in the catalyst confirming the positive intercalation of the metal oxide into the mesoporous MCM-22. The synthesized catalyst was confirmed to be mesoporous according to BET findings. Also, the catalysts can be considered as a bifunctional catalyst based on TPD outcomes. Transesterification results showed that the synthesized catalyst was highly efficient and effective to be used for biodiesel production from low grade oil such as Jatropha oil and other industrial application where the high fatty acid methyl ester (FAMEs) yield was achieved at moderate reaction conditions. It was also discovered that the catalyst can be used more than five (5) runs with little deactivation confirming the catalyst to be highly active and stable to the heat of reaction.

Keywords: MCM-22, synthesis, transesterification, ZnO

Procedia PDF Downloads 211
805 Removal of Heavy Metals from Aqueous Solutions by Low-Cost Materials: A Review

Authors: I. Nazari, B. Shaabani, P. Abaasifar

Abstract:

In small quantities certain heavy metals are nutritionally essential for a healthy life. The heavy metals linked most often to human poisoning are lead, mercury, arsenic, and cadmium. Other heavy metals including copper, zinc and chromium are actually required by the body in small quantity but can also be toxic in large doses. Nowadays, we have contamination to this heavy metals in some untreated industrial waste waters and even in several populated cities drinking waters around the world. The contamination of ground and underground water sources to heavy metals can be concentrated and travel up to food chain by drinking water and agricultural products. In recent years, the need for safe and economical methods for removal of heavy metals from contaminated water has necessitated research interest towards the finding low-cost alternatives. Bio-adsorbents have emerged as low-cost and efficient materials for the removal of heavy metals from waste and ground waters. The bio-adsorbents have an affinity for heavy metals ions to form metal complexes or chelates due to having functional groups including carboxyl, hydroxyl, imidazole, and etc. The objective of this study is to review researches in less expensive adsorbents and their utilization possibilities for various low-cost bio-adsorbents such as coffee beans, rice husk, and saw dust for the removal of heavy metals from contaminated waters.

Keywords: heavy metals, water pollution, bio-adsorbents, low cost adsorbents

Procedia PDF Downloads 357
804 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature

Authors: J. O. Bodunrin, S. J. Moloi

Abstract:

This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.

Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD

Procedia PDF Downloads 133
803 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments

Authors: Netsanet Kebede Hundessa

Abstract:

Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.

Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation

Procedia PDF Downloads 70
802 Effect of Planting Techniques on Mangrove Seedling Establishment in Kuwait Bay

Authors: L. Al-Mulla, B. M. Thomas, N. R. Bhat, M. K. Suleiman, P. George

Abstract:

Mangroves are halophytic shrubs habituated in the intertidal zones in the tropics and subtropics, forming a complex and highly dynamic coastal ecosystem. Historical evidence indicating the existence followed by the extinction of mangrove in Kuwait; hence, continuous projects have been established to reintroduce this plant to the marine ecosystem. One of the major challenges in establishing large-scale mangrove plantations in Kuwait is the very high rate of seedling mortality, which should ideally be less than 20%. This study was conducted at three selected locations in the Kuwait bay during 2016-2017, to evaluate the effect of four planting techniques on mangrove seedling establishment. Coir-pillow planting technique, comp-mat planting technique, and anchored container planting technique were compared with the conventional planting method. The study revealed that the planting techniques significantly affected the establishment of mangrove seedlings in the initial stages of growth. Location-specific difference in seedling establishment was also observed during the course of the study. However, irrespective of the planting techniques employed, high seedling mortality was observed in all the planting locations towards the end of the study; which may be attributed to the physicochemical characteristics of the mudflats selected.

Keywords: Avicennia marina (Forsk.) Vierh, coastal pollution, heavy metal accumulation, marine ecosystem, sedimentation, tidal inundation

Procedia PDF Downloads 152
801 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation

Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf

Abstract:

This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.

Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment

Procedia PDF Downloads 48
800 Simulation of Single-Track Laser Melting on IN718 using Material Point Method

Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz

Abstract:

This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.

Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics

Procedia PDF Downloads 59
799 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract

Authors: Farideh Namvar, Rosfarizan Mohamed

Abstract:

In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.

Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed

Procedia PDF Downloads 316
798 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: toolpath, part program, optimization, pocket

Procedia PDF Downloads 288
797 Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs

Authors: Ashish Soni, Suman Kalyan Pal

Abstract:

Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices.

Keywords: transient absorption, optoelectronics, 2D materials, TMDCs, exciton

Procedia PDF Downloads 68
796 Life Prediction of Cutting Tool by the Workpiece Cutting Condition

Authors: Noemia Gomes de Mattos de Mesquita, José Eduardo Ferreira de Oliveira, Arimatea Quaresma Ferraz

Abstract:

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have a direct influence on production. The premature removal of the cutting tool results in high cost of machining since the parcel relating to the cost of the cutting tool increases. On the other hand, the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.

Keywords: machining, productions, cutting condition, design, manufacturing, measurement

Procedia PDF Downloads 635
795 Deconvolution of Anomalous Fast Fourier Transform Patterns for Tin Sulfide

Authors: I. Shuro

Abstract:

The crystal structure of Tin Sulfide prepared by certain chemical methods is investigated using High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) methods. An anomalous HRTEM Fast Fourier Transform (FFT) exhibited a central scatter of diffraction spots, which is surrounded by secondary clusters of spots arranged in a hexagonal pattern around the central cluster was observed. FFT analysis has revealed a long lattice parameter and mostly viewed along a hexagonal axis where there many columns of atoms slightly displaced from one another. This FFT analysis has revealed that the metal sulfide has a long-range order interwoven chain of atoms in its crystal structure. The observed crystalline structure is inconsistent with commonly observed FFT patterns of chemically synthesized Tin Sulfide nanocrystals and thin films. SEM analysis showed the morphology of a myriad of multi-shaped crystals ranging from hexagonal, cubic, and spherical micro to nanostructured crystals. This study also investigates the presence of quasi-crystals as reflected by the presence of mixed local symmetries.

Keywords: fast fourier transform, high resolution transmission electron microscopy, tin sulfide, crystalline structure

Procedia PDF Downloads 146
794 Integration of Load Introduction Elements into Fabrics

Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer

Abstract:

Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.

Keywords: CFRP, fabrics, insert, load introduction element, integration

Procedia PDF Downloads 244
793 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 284
792 Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media

Authors: M. Merabet-Khelassi, Z. Houiene, L. Aribi-Zouioueche, O. Riant

Abstract:

Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500).

Keywords: alkaline-hydrolysis, enzymatic kinetic resolution, lipases, arylalkylcarbinol, non-aqueous media

Procedia PDF Downloads 162
791 Different Tools and Complex Approach for Improving Phytoremediation Technology

Authors: T. Varazi, M. Pruidze, M. Kurashvili, N. Gagelidze, M. Sutton

Abstract:

The complex phytoremediation approach given in the presented work implies joint application of natural sorbents, microorganisms, natural biosurfactants and plants. The approach is based on using the natural mineral composites, microorganism strains with high detoxification abilities, plants-phytoremediators and natural biosurfactants for enhancing the uptake of intermediates of pollutants by plant roots. In this complex strategy of phytoremediation technology, the sorbent serves to uptake and trap the pollutants and thus restrain their emission in the environment. The role of microorganisms is to accomplish the first stage biodegradation of organic contaminants. This is followed by application of a phytoremediation technology through purposeful planting of selected plants. Thus, using of different tools will provide restoration of polluted environment and prevention of toxic compounds’ dissemination from hotbeds of pollution for a considerable length of time. The main idea and novelty of the carried out work is the development of a new approach for the ecological safety. The wide spectrum of contaminants: Organochlorine pesticide – DDT, heavy metal –Cu, oil hydrocarbon (hexadecane) and wax have been used in this work. The presented complex biotechnology is important from the viewpoint of prevention, providing total rehabilitation of soil. It is unique to chemical pollutants, ecologically friendly and provides the control of erosion of soils.

Keywords: bioremediation, phytoremediation, pollutants, soil contamination

Procedia PDF Downloads 297