Search results for: data analyses
25669 The Impact of Streptococcus pneumoniae Colonization on Viral Bronchiolitis
Abstract:
Introductory Statement: The results of this retrospective chart review suggest the effects of bacterial colonization in critically ill children with viral bronchiolitis, currently unproven, are clinically insignificant. Background: Viral bronchiolitis is one of the most prevalent causes of illness requiring hospitalization among children worldwide and one of the most common reasons for admission to pediatric intensive care. It has been hypothesized that co-infection with bacteria results in more severe clinical outcomes. Conversely, the effects of bacterial colonization in critically ill patients with bronchiolitis are poorly defined. Current clinical management of colonized patients consists primarily of supportive therapies with the role of antibiotics remaining controversial. Methods: A retrospective review of all critically ill children admitted to the BC Children’s Hospital Pediatric Intensive Care Unit (PICU) from 2014-2017 with a diagnosis of bronchiolitis was performed. Routine testing in this time frame consisted of complete pathogen testing, including PCR for Streptococcus pneumoniae. Analyses were performed to determine the impact of bacterial colonization and antibiotic use on a primary outcome of PICU length-of-stay, with secondary outcomes of hospital length-of-stay and duration of ventilation. Results: There were 92 patients with complete pathogen testing performed during the assessed timeframe. A comparison between children with detected Streptococcus pneumoniae (n=22) and those without (n=70) revealed no significant (p=0.20) differences in severity of illness on presentation as per Pediatric Risk of Mortality III scores (mean=3.0). Patients colonized with S. pneumoniae had significantly shorter PICU stays (p=0.002), hospital stays (p=0.0001) and duration of non-invasive ventilation (p=0.002). Multivariate analyses revealed that these effects on length of PICU stay and duration of ventilation do not persist after controlling for antibiotic use, presence of radiographic consolidation, age, and severity of illness (p=0.15, p=0.32). The relationship between colonization and duration of hospital stay persists after controlling for these variables (p=0.008). Conclusions: Children with viral bronchiolitis colonized with S. pneumoniae do not appear to have significantly different PICU length-of-stays or duration of ventilation compared to children who are not colonized. Colonized children appear to have shorter hospital stays. The results of this study suggest bacterial colonization is not associated with increased severity of presenting illness or negative clinical outcomes.Keywords: bronchiolitis, colonization, critical care, pediatrics, pneumococcal, infection
Procedia PDF Downloads 51525668 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 4725667 Methodology of the Turkey’s National Geographic Information System Integration Project
Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa
Abstract:
With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.Keywords: data specification, geoportal, GIS, INSPIRE, Turkish National Geographic Information System, TUCBS, Turkey's national geographic information system
Procedia PDF Downloads 14425666 Infrastructural Barriers to Engaged Learning in the South Pacific: A Mixed-Methods Study of Cook Islands Nurses' Attitudes towards Health Information Technology
Authors: Jonathan Frank, Michelle Salmona
Abstract:
We conducted quantitative and qualitative analyses of nurses’ perceived ease of use of electronic medical records and telemedicine in the Cook Islands. We examined antecedents of perceived ease of use through the lens of social construction of learning, and cultural diffusion. Our findings confirmed expected linkages between PEOU, attitudes and intentions. Interviews with nurses suggested infrastructural barriers to engaged learning. We discussed managerial implications of our findings, and areas of interest for future research.Keywords: health information technology, ICT4D, TAM, developing countries
Procedia PDF Downloads 28925665 Secure Content Centric Network
Authors: Syed Umair Aziz, Muhammad Faheem, Sameer Hussain, Faraz Idris
Abstract:
Content centric network is the network based on the mechanism of sending and receiving the data based on the interest and data request to the specified node (which has cached data). In this network, the security is bind with the content not with the host hence making it host independent and secure. In this network security is applied by taking content’s MAC (message authentication code) and encrypting it with the public key of the receiver. On the receiver end, the message is first verified and after verification message is saved and decrypted using the receiver's private key.Keywords: content centric network, client-server, host security threats, message authentication code, named data network, network caching, peer-to-peer
Procedia PDF Downloads 64425664 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library
Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni
Abstract:
A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.
Procedia PDF Downloads 10325663 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting
Authors: Aswathi Thrivikraman, S. Advaith
Abstract:
The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.Keywords: LSTM, autoencoder, forecasting, seq2seq model
Procedia PDF Downloads 15625662 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles
Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz
Abstract:
Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts
Procedia PDF Downloads 15725661 Influence of Well-Being and Quality of Work-Life on Quality of Care among Health Professionals in Southwest Nigeria
Authors: Adesola C. Odole, Michael O. Ogunlana, Nse A. Odunaiya, Olufemi O. Oyewole, Chidozie E. Mbada, Ogochukwu K. Onyeso, Ayomikun F. Ayodeji, Opeyemi M. Adegoke, Iyanuoluwa Odole, Comfort T. Sanuade, Moyosooreoluwa E. Odole, Oluwagbohunmi A. Awosoga
Abstract:
Purpose: The Nigerian healthcare industry is bedeviled with infrastructural decay, inadequate funding and staffing, and a dysfunctional healthcare system. This study investigated the influence of health professionals’ well-being and quality of work-life (QoWL) on the quality of care (QoC) of patients in Nigeria. Methods: The study was a multicentre cross-sectional survey conducted at four tertiary health institutions in southwest Nigeria. Participants’ demographic information, well-being, quality of work-life, and quality of care were obtained using four standardized questionnaires. Data were summarized using descriptive statistics of frequency (percentage) and mean (standard deviation). Inferential statistics included Chi-square, Pearson’s correlation, and independent samples t-test analyses. Results: Medical practitioners (n=609) and nurses (n=570) constituted 74.6% of all the health professionals, with physiotherapists, pharmacists, and medical laboratory scientists constituting 25.4%. The mean (SD) participants’ well-being = 71.65% (14.65), quality of life = 61.8% (21.31), quality of work-life = 65.73% (10.52) and quality of care = 70.14% (12.77). Participants’ quality of life had a significant negative correlation with the quality of care, while well-being and quality of work-life had a significant positive correlation with the quality of care. Conclusion: We concluded that health professionals’ well-being and quality of work-life are important factors that influence their productivity and, ultimately, the quality of care rendered to patients. The hospital management and policymakers should ensure improved work-related factors to improve the well-being of health professionals. This will enhance the quality of care given to patients and ultimately reduce brain drain and medical tourism.Keywords: health professionals, quality of care, quality of life, quality of work-life, well-being
Procedia PDF Downloads 8325660 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9125659 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 47025658 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure
Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan
Abstract:
This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming
Procedia PDF Downloads 16925657 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panelsKeywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling
Procedia PDF Downloads 31525656 Sunset Tourism for the Rebirth of Shrinking Cities
Authors: Luca Lezzerini
Abstract:
Albania is suffering a continuous shrinking of its population and demographic distribution that faces all the problems connected with age increase. The paper examines the case of Gjirokastër, a city in the south of Albania that, despite having a UNESCO label as a world heritage site, is experimenting with the same shrinking phenomenon. The paper analyses in detail the current situation and propose an interdisciplinary approach based on smart technologies and sunset tourism to restart Gjirokastër’s economy and invert bad demographic trends. The proposed approach needs to review the current urban planning, reshaping and connecting some areas. It also proposes a smart city architecture to support this process.Keywords: smart city, sunset tourism, shrinking city, Gjirokastër
Procedia PDF Downloads 9225655 Block Mining: Block Chain Enabled Process Mining Database
Authors: James Newman
Abstract:
Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.Keywords: blockchain, process mining, memory optimization, protocol
Procedia PDF Downloads 10325654 Subjective Mapping Methodologies: Mapping Local Perceptions with Geographic Information Systems
Authors: A. Llopis Alvarez, D. Muller-Eie
Abstract:
Participatory GIS (geographic information systems) are designed for community mapping exercises in order to produce spatial representations of local knowledge. Ideally, participatory GIS caters to public participation through the use of spatial data in order to increase community-led policy-and decision-making. Having defined a spatial object, such as a neighborhood, subjective mapping involves attaining a description of the spatial, physical, social and psychological characteristics of that spatial object. This paper highlights an emerging appreciation of the subjective component, particularly in spatial analyses. The beliefs, feelings, and behaviors associated with an urban area reflect its sense of place for an individual or a group. It is important therefore to understand what types of beliefs, emotions, and behavioral patterns are relevant to particular resident, groups and urban scales. In this sense, resident’s emotional attachment to their urban areas motivates civic engagement and facilitates awareness of its strengths and its problems. Similarly, subjective perceptions act in complex ways to influence the formation and maintenance of social identity and quality of life. This paper reports on findings from a case study of immigrant population in Norwegian cities, their residential conditions and their relationship to quality of urban life. Cognitive mapping methodologies are used in this study to understand local perceptions of urban qualities. Thus, measures to alleviate disadvantages and improve quality of urban life are more likely to be effective when they are informed by an understanding of a place as constructed by those who live in it, meaning their subjective perceptions about it.Keywords: mapping methodologies, participatory GIS, perceptual maps, public participation, spatial analysis, subjective perceptions
Procedia PDF Downloads 14325653 IP Management Tools, Strategies, Best Practices, and Business Models for Pharmaceutical Products
Authors: Nerella Srinivas
Abstract:
This study investigates the role of intellectual property (IP) management in pharmaceutical development, focusing on tools, strategies, and business models for leveraging IP effectively. Using a mixed-methods approach, we conducted case studies and qualitative analyses of IP management frameworks within the pharmaceutical sector. Our methodology included a review of IP tools tailored for pharmaceutical applications, strategic IP models for maximizing competitive advantages, and best practices for organizational efficiency. Findings emphasize the importance of understanding IP law and adopting adaptive strategies, illustrating how IP management can drive industry growth.Keywords: intellectual property management, pharmaceutical products, IP tools, IP strategies, best practices, business models, innovation
Procedia PDF Downloads 1925652 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)
Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze
Abstract:
Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.Keywords: groundwater, vulnerability, DRASTIC model, pollution
Procedia PDF Downloads 20725651 Analyses of Soil Volatile Contaminants Extraction by Hot Air Injection
Authors: Abraham Dayan
Abstract:
Remediation of soil containing volatile contaminants is often conducted by vapor extraction (SVE) technique. The operation is based on injection of air at ambient temperatures with or without thermal soil warming. Thermal enhancements of soil vapor extraction (TESVE) processes are usually conducted by soil heating, sometimes assisted by added steam injections. The current study addresses a technique which has not received adequate attention and is based on using exclusively hot air as an alternative to the common TESVE practices. To demonstrate the merit of the hot air TESVE technique, a sandy soil containing contaminated water is studied. Numerical and analytical tools were used to evaluate the rate of decontamination processes for various geometries and operating conditions. The governing equations are based on the Darcy law and are applied to an expanding compressible flow within a sandy soil. The equations were solved to determine the minimal time required for complete soil remediation. An approximate closed form solution was developed based on the assumption of local thermodynamic equilibrium and on a linearized representation of temperature dependence of the vapor to air density ratio. The solution is general in nature and offers insight into the governing processes of the soil remediation operation, where self-similar temperature profiles under certain conditions may exist, and the noticeable role of the contaminants evaporation and recondensation processes in affecting the remediation time. Based on analyses of the hot air TESVE technique, it is shown that it is sufficient to heat the air during a certain period of the decontamination process without compromising its full advantage, and thereby, entailing a minimization of the air-heating-energy requirements. This in effect is achieved by regeneration, leaving the energy stored in the soil during the early period of the remediation process to heat the subsequently injected ambient air, which infiltrates through it for the decontamination of the remaining untreated soil zone. The characteristic time required to complete SVE operations are calculated as a function of, both, the injected air temperature and humidity. For a specific set of conditions, it is demonstrated that elevating the injected air temperature by 20oC, the hot air injection technique reduces the soil remediation time by 50%, while requiring 30% of additional energy consumption. Those evaluations clearly unveil the advantage of the hot air SVE process, which for insignificant cost of added air heating energy, the substantial cost expenditures for manpower and equipment utilization are reduced.Keywords: Porous Media, Soil Decontamination, Hot Air, Vapor Extraction
Procedia PDF Downloads 1125650 Shifting Contexts and Shifting Identities: Campus Race-related Experiences, Racial Identity, and Achievement Motivation among Black College Students during the Transition to College
Authors: Tabbye Chavous, Felecia Webb, Bridget Richardson, Gloryvee Fonseca-Bolorin, Seanna Leath, Robert Sellers
Abstract:
There has been recent renewed attention to Black students’ experiences at predominantly White U.S. universities (PWIs), e.g., the #BBUM (“Being Black at the University of Michigan”), “I too am Harvard” social media campaigns, and subsequent student protest activities nationwide. These campaigns illuminate how many minority students encounter challenges to their racial/ethnic identities as they enter PWI contexts. Students routinely report experiences such as being ignored or treated as a token in classes, receiving messages of low academic expectations by faculty and peers, being questioned about their academic qualifications or belonging, being excluded from academic and social activities, and being racially profiled and harassed in the broader campus community due to race. Researchers have linked such racial marginalization and stigma experiences to student motivation and achievement. One potential mechanism is through the impact of college experiences on students’ identities, given the relevance of the college context for students’ personal identity development, including personal beliefs systems around social identities salient in this context. However, little research examines the impact of the college context on Black students’ racial identities. This study examined change in Black college students’ (N=329) racial identity beliefs over the freshman year at three predominantly White U.S. universities. Using cluster analyses, we identified profile groups reflecting different patterns of stability and change in students’ racial centrality (importance of race to overall self-concept), private regard (personal group affect/group pride), and public regard (perceptions of societal views of Blacks) from beginning of year (Time 1) to end of year (Time 2). Multinomial logit regression analyses indicated that the racial identity change clusters were predicted by pre-college background (racial composition of high school and neighborhood), as well as college-based experiences (racial discrimination, interracial friendships, and perceived campus racial climate). In particular, experiencing campus racial discrimination related to high, stable centrality, and decreases in private regard and public regard. Perceiving racial climates norms of institutional support for intergroup interactions on campus related to maintaining low and decreasing in private and public regard. Multivariate Analyses of Variance results showed change cluster effects on achievement motivation outcomes at the end of students’ academic year. Having high, stable centrality and high private regard related to more positive outcomes overall (academic competence, positive academic affect, academic curiosity and persistence). Students decreasing in private regard and public regard were particularly vulnerable to negative motivation outcomes. Findings support scholarship indicating both stability in racial identity beliefs and the importance of critical context transitions in racial identity development and adjustment outcomes among emerging adults. Findings also are consistent with research suggesting promotive effects of a strong, positive racial identity on student motivation, as well as research linking awareness of racial stigma to decreased academic engagement.Keywords: diversity, motivation, learning, ethnic minority achievement, higher education
Procedia PDF Downloads 51725649 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes
Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo
Abstract:
Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size
Procedia PDF Downloads 12725648 Teachers’ Perceptions Related to the Guiding Skills within the Application Courses
Authors: Tanimola Kazeem Abiodun
Abstract:
In Nigeria, both formal education and distance learning opportunities are used in teacher training. Practical courses aim to improve the skills of teacher candidates in a school environment. Teacher candidates attend kindergarten classes under the supervision of a teacher. In this context, the guiding skills of teachers gain importance in terms of shaping candidates’ perceptions about teaching profession. In this study, the teachers’ perceptions related to the guiding skills within the practical courses were determined. Also, the perceptions and applications related to guiding skills were compared. A Likert scale questionnaire and an open-ended question were used to determine perceptions and applications. 120 questionnaires were taken into consideration and analyses of data were performed by using percentage distribution and QSR Nvivo 8 program. In this study, statements related to teachers’ perceptions about the guiding skills were asked and it is determined that almost all the teachers agreed about the importance of these statements. On the other hand, how these guidance skills are applied by teachers is also queried with an open-ended question. Finally, thoughts and applications related to guidance skills were compared to each other. Based on this comparison, it is seen that there are some differences between the thoughts and applications especially related with time management, planning, feedbacks, curriculum, workload, rules and guidance. It can be said that some guidance skills cannot be controlled only by teachers. For example, candidates’ motivation, attention, population and educational environment are also determinative factors for effective guidance. In summary, it is necessary to have prior conditions for teachers to apply these idealized guidance skills for training more successful candidates to pre-school education era. At this point, organization of practical courses by the faculties gains importance and in this context it is crucial for faculties to revise their applications based on more detailed researches.Keywords: teacher training, guiding skills, education, practical courses
Procedia PDF Downloads 44725647 A Review Paper on Data Security in Precision Agriculture Using Internet of Things
Authors: Tonderai Muchenje, Xolani Mkhwanazi
Abstract:
Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.Keywords: precision agriculture, security, IoT, EIDE
Procedia PDF Downloads 9025646 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model
Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou
Abstract:
The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.Keywords: insurance, data science, modeling, monitoring, regulation, processes
Procedia PDF Downloads 7625645 Use of Bamboo Piles in Ground Improvement Design: Case Study
Authors: Thayalan Nall, Andreas Putra
Abstract:
A major offshore reclamation work is currently underway in Southeast Asia for a container terminal. The total extent of the reclamation extent is 2600m x 800m and the seabed level is around -5mRL below mean sea level. Subsoil profile below seabed comprises soft marine clays of thickness varying from 8m to 15m. To contain the dredging spoil within the reclamation area, perimeter bunds have been constructed to +2.5mRL. They include breakwaters of trapezoidal geometry, made of boulder size rock along the northern, eastern and western perimeters, with a sand bund along the southern perimeter. Breakwaters were constructed on a composite bamboo pile and raft foundation system. Bamboo clusters 8m long, with 7 individual Bamboos bundled together as one, have been installed within the footprint of the breakwater below seabed in soft marine clay. To facilitate drainage two prefabricated vertical drains (PVD) have been attached to each cluster. Once the cluster piles were installed, a bamboo raft was placed as a load transfer platform. Rafts were made up of 5 layers of bamboo mattress, and in each layer bamboos were spaced at 200mm centres. The rafts wouldn’t sink under their own weight, and hence, they were sunk by loading quarry run rock onto them. Bamboo is a building material available in abundance in Indonesia and obtained at a relatively low cost. They are commonly used as semi-rigid inclusions to improve compressibility and stability of soft soils. Although bamboo is widely used in soft soil engineering design, no local design guides are available and the designs are carried out based on local experience. In June 2015, when the 1st load of sand was pumped by a dredging vessel next to the breakwater, a 150m long section of the breakwater underwent failure and displaced the breakwater between 1.2m to 4.0m. The cause of the failure was investigated to implement remedial measures to reduce the risk of further failures. Analyses using both limit equilibrium approach and finite element modelling revealed two plausible modes of breakwater failure. This paper outlines: 1) Developed Geology and the ground model, 2) The techniques used for the installation of bamboo piles, 3) Details of the analyses including modes and mechanism of failure and 4) Design changes incorporated to reduce the risk of failure.Keywords: bamboo piles, ground improvement, reclamation, breakwater failure
Procedia PDF Downloads 41725644 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 7425643 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity
Procedia PDF Downloads 42725642 Pathway Linking Early Use of Electronic Device and Psychosocial Wellbeing in Early Childhood
Authors: Rosa S. Wong, Keith T.S. Tung, Winnie W. Y. Tso, King-Wa Fu, Nirmala Rao, Patrick Ip
Abstract:
Electronic devices have become an essential part of our lives. Various reports have highlighted the alarming usage of electronic devices at early ages and its long-term developmental consequences. More sedentary screen time was associated with increased adiposity, worse cognitive and motor development, and psychosocial health. Apart from the problems caused by children’s own screen time, parents today are often paying less attention to their children due to hand-held device. Some anecdotes suggest that distracted parenting has negative impact on parent-child relationship. This study examined whether distracted parenting detrimentally affected parent-child activities which may, in turn, impair children’s psychosocial health. In 2018/19, we recruited a cohort of preschoolers from 32 local kindergartens in Tin Shui Wai and Sham Shui Po for a 5-year programme aiming to build stronger foundations for children from disadvantaged backgrounds through an integrated support model involving medical, education and social service sectors. A comprehensive set of questionnaires were used to survey parents on their frequency of being distracted while parenting and their frequency of learning and recreational activities with children. Furthermore, they were asked to report children’s screen time amount and their psychosocial problems. Mediation analyses were performed to test the direct and indirect effects of electronic device-distracted parenting on children’s psychosocial problems. This study recruited 873 children (448 females and 425 males, average age: 3.42±0.35). Longer screen time was associated with more psychosocial difficulties (Adjusted B=0.37, 95%CI: 0.12 to 0.62, p=0.004). Children’s screen time positively correlated with electronic device-distracted parenting (r=0.369, p < 01). We also found that electronic device-distracted parenting was associated with more hyperactive/inattentive problems (Adjusted B=0.66, p < 0.01), fewer prosocial behavior (Adjusted B=-0.74, p < 0.01), and more emotional symptoms (Adjusted B=0.61, p < 0.001) in children. Further analyses showed that electronic device-distracted parenting exerted influences both directly and indirectly through parent-child interactions but to different extent depending upon the outcome under investigation (38.8% for hyperactivity/inattention, 31.3% for prosocial behavior, and 15.6% for emotional symptoms). We found that parents’ use of devices and children’s own screen time both have negative effects on children’s psychosocial health. It is important for parents to set “device-free times” each day so as to ensure enough relaxed downtime for connecting with children and responding to their needs.Keywords: early childhood, electronic device, psychosocial wellbeing, parenting
Procedia PDF Downloads 16425641 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 12025640 Multi-Scale Spatial Difference Analysis Based on Nighttime Lighting Data
Authors: Qinke Sun, Liang Zhou
Abstract:
The ‘Dragon-Elephant Debate’ between China and India is an important manifestation of global multipolarity in the 21st century. The two rising powers have carried out economic reforms one after another in the interval of more than ten years, becoming the fastest growing developing country and emerging economy in the world. At the same time, the development differences between China and India have gradually attracted wide attention of scholars. Based on the continuous annual night light data (DMSP-OLS) from 1992 to 2012, this paper systematically compares and analyses the regional development differences between China and India by Gini coefficient, coefficient of variation, comprehensive night light index (CNLI) and hot spot analysis. The results show that: (1) China's overall expansion from 1992 to 2012 is 1.84 times that of India, in which China's change is 2.6 times and India's change is 2 times. The percentage of lights in unlighted areas in China dropped from 92% to 82%, while that in India from 71% to 50%. (2) China's new growth-oriented cities appear in Hohhot, Inner Mongolia, Ordos, and Urumqi in the west, and the declining cities are concentrated in Liaoning Province and Jilin Province in the northeast; India's new growth-oriented cities are concentrated in Chhattisgarh in the north, while the declining areas are distributed in Uttar Pradesh. (3) China's differences on different scales are lower than India's, and regional inequality of development is gradually narrowing. Gini coefficients at the regional and provincial levels have decreased from 0.29, 0.44 to 0.24 and 0.38, respectively, while regional inequality in India has slowly improved and regional differences are gradually widening, with Gini coefficients rising from 0.28 to 0.32. The provincial Gini coefficient decreased slightly from 0.64 to 0.63. (4) The spatial pattern of China's regional development is mainly east-west difference, which shows the difference between coastal and inland areas; while the spatial pattern of India's regional development is mainly north-south difference, but because the southern states are sea-dependent, it also reflects the coastal inland difference to a certain extent. (5) Beijing and Shanghai present a multi-core outward expansion model, with an average annual CNLI higher than 0.01, while New Delhi and Mumbai present the main core enhancement expansion model, with an average annual CNLI lower than 0.01, of which the average annual CNLI in Shanghai is about five times that in Mumbai.Keywords: spatial pattern, spatial difference, DMSP-OLS, China, India
Procedia PDF Downloads 155