Search results for: emergency shutdown valves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1102

Search results for: emergency shutdown valves

1102 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 65
1101 Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves

Authors: Abdullah M. Alzahrani

Abstract:

Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 (r = 0.3) but t-PA and PAI-1 were strongly correlated with each other (r = 0.6). Over expression of PAI-1 was proportional to the calcium content of theAS valves. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The over expression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.

Keywords: aortic valve, PAI-1, tPA gene, uPA gene

Procedia PDF Downloads 447
1100 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: water hammer, hydraulic transient, pipe systems, characteristics method

Procedia PDF Downloads 103
1099 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant

Procedia PDF Downloads 305
1098 The Study on Life of Valves Evaluation Based on Tests Data

Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu

Abstract:

Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.

Keywords: censored data, temperature tests, valves, vibration tests

Procedia PDF Downloads 294
1097 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility

Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir

Abstract:

The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.

Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources

Procedia PDF Downloads 367
1096 Aspects Regarding the Structural Behaviour of Autonomous Underwater Vehicle for Emergency Response

Authors: Lucian Stefanita Grigore, Damian Gorgoteanu, Cristian Molder, Amado Stefan, Daniel Constantin

Abstract:

The purpose of this article is to present an analytical-numerical study on the structural behavior of a sunken autonomous underwater vehicle (AUV) for emergency intervention. The need for such a study was generated by the key objective of the ERL-Emergency project. The project aims to develop a system of collaborative robots for emergency response. The system consists of two robots: unmanned ground vehicles (UGV) on tracks and the second is an AUV. The system of collaborative robots, AUV and UGV, will be used to perform missions of monitoring, intervention, and rescue. The main mission of the AUV is to dive into the maritime space of an industrial port to detect possible leaks in a pipeline transporting petroleum products. Another mission is to close and open the valves with which the pipes are provided. Finally, you will need to be able to lift a manikin to the surface, which you can take to land. Numerical analysis was performed by the finite element method (FEM). The conditions for immersing the AUV at 100 m depth were simulated, and the calculations for different fluid flow rates were repeated. From a structural point of view, the stiffening areas and the enclosures in which the command-and-control elements and the accumulators are located have been especially analyzed. The conclusion of this research is that the AUV meets very well the established requirements.

Keywords: analytical-numerical, emergency, FEM, robotics, underwater

Procedia PDF Downloads 122
1095 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 197
1094 In Vitro Evaluation of an Artificial Venous Valve

Authors: Joon Hock Yeo, Munirah Ismail

Abstract:

Chronic venous insufficiency is a condition where the venous wall or venous valves fail to operate properly. As such, it is difficult for the blood to return from the lower extremities back to the heart. Chronic venous insufficiency affects many people worldwide. In last decade, there have been many new and innovative designs of prosthetic venous valves to replace the malfunction native venous valves. However, thus far, to the authors’ knowledge, there is no successful prosthetic venous valve. In this project, we have developed a venous valve which could operate under low pressure. While further testing is warranted, this unique valve could potentially alleviate problems associated with chronic venous insufficiency.

Keywords: prosthetic venous valve, bi-leaflet valve, chronic venous insufficiency, valve hemodynamics

Procedia PDF Downloads 158
1093 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve

Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza

Abstract:

Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.

Keywords: butterfly valves, fluid-structure interaction, one-way approach, two-way approach

Procedia PDF Downloads 139
1092 Numerical Investigation of Blood Flow around a Leaflet Valve through a Perforating Vein

Authors: Zohreh Sheidaei, Farhad Sadegh Moghanlou, Rahim Vesal

Abstract:

Diseases related to leg venous system are common worldwide. An incompetent vein with deformed wall and insufficient valves affects flow field of blood and disrupts the process of blood circulating system. Having enough knowledge about the flow field through veins will help find new ways to cure the related diseases. In the present study, blood flow around a leaflet valve of a perforating vein is investigated numerically by Finite Element Method. Flow behavior and vortexes, generated around the leaflet valves, are studied considering valve opening percentage. Obtained velocity and pressure fields show mechanical stresses on vein wall and these valves and consequently introduce the regions susceptible to deformation.

Keywords: fluid flow, leaflet valve, numerical investigation, perforating vein

Procedia PDF Downloads 379
1091 Design Patterns for Emergency Management Processes

Authors: Tomáš Ludík, Jiří Barta, Josef Navrátil

Abstract:

Natural or human made disasters have a significant negative impact on the environment. At the same time there is an extensive effort to support management and decision making in emergency situations by information technologies. Therefore the purpose of the paper is to propose a design patterns applicable in emergency management, enabling better analysis and design of emergency management processes and therefore easier development and deployment of information systems in the field of emergency management. It will be achieved by detailed analysis of existing emergency management legislation, contingency plans, and information systems. The result is a set of design patterns focused at emergency management processes that enable easier design of emergency plans or development of new information system. These results will have a major impact on the development of new information systems as well as to more effective and faster solving of emergencies.

Keywords: analysis and design, Business Process Modelling Notation, contingency plans, design patterns, emergency management

Procedia PDF Downloads 454
1090 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 42
1089 “Friction Surfaces” of Airport Emergency Plan

Authors: Jakub Kraus, Vladimír Plos, Peter Vittek

Abstract:

This article focuses on the issue of airport emergency plans, which are documents describing reactions to events with impact on aviation safety or aviation security. The article specifically focuses on the use and creation of emergency plans, where could be found a number of disagreements between different stakeholders, for which the airport emergency plan applies. Those are the friction surfaces of interfaces, which is necessary to identify and ensure them smooth process to avoid dangerous situations or delay.

Keywords: airport emergency plan, aviation safety, aviation security, comprehensive management system, friction surfaces of airport emergency plan, interfaces of processes

Procedia PDF Downloads 488
1088 Design and Development of a Bi-Leaflet Pulmonary Valve

Authors: Munirah Ismail, Joon Hock Yeo

Abstract:

Paediatric patients who require ventricular outflow tract reconstruction usually need valve construction to prevent valvular regurgitation. They would face problems like lack of suitable, affordable conduits and the need to undergo several operations in their lifetime due to the short lifespan of existing valves. Their natural growth and development are also of concern, even if they manage to receive suitable conduits. Current prosthesis including homografts, bioprosthetic valves, mechanical valves, and bovine jugular veins either do not have the long-term durability or the ability to adapt to the growth of such patients. We have developed a new design of bi-leaflet valve. This new technique accommodates patients’ annular size growth while maintaining valvular patency. A mock circulatory system was set up to assess the hemodynamic performance of the bi-leaflet pulmonary valve. It was found that the percentage regurgitation was acceptable and thus, validates this novel concept.

Keywords: bi-leaflet pulmonary valve, pulmonary heart valve, tetralogy of fallot, mock circulatory system

Procedia PDF Downloads 135
1087 Investigation and Analysis of Vortex-Induced Vibrations in Sliding Gate Valves Using Computational Fluid Dynamics

Authors: Kianoosh Ahadi, Mustafa Ergil

Abstract:

In this study, the event of vibrations caused by vortexes and the distribution of induced hydrodynamic forces due to vortexes on the sliding gate valves has been investigated. For this reason, a sliding valve with the help of computational fluid dynamics (CFD) software was simulated in two-dimensional )2D(, where the flow and turbulence equations were solved for three different valve openings (full, half, and 16.7 %) models. The variety of vortexes formed within the vicinity of the valve structure was investigated based on time where the trend of fluctuations and their occurrence regions have been detected. From the gathered solution dataset of the numerical simulations, the pressure coefficient (CP), the lift force coefficient (CL), the drag force coefficient (CD), and the momentum coefficient due to hydrodynamic forces (CM) were examined, and relevant figures were generated were from these results, the vortex-induced vibrations were analyzed.

Keywords: induced vibrations, computational fluid dynamics, sliding gate valves, vortexes

Procedia PDF Downloads 76
1086 Improving the Emergency Medicine Teaching from the Perspective of Faculty Training

Authors: Qin-Min Ge, Shu-Ming Pan

Abstract:

Emergency clinicians usually get teaching qualification after graduating from medical universities without special faculty training in China mainland. Emergency departments are overcrowded places, with large numbers of patients suffering undifferentiated illness. In the field of emergency medicine (EM), improving the faculty competencies and developing the teaching skills are important for medical education, they could enhance learners outcomes and hence affect the patients prognosis indirectly. This article highlights the necessities of faculty training in EM, illustrates the qualities a good clinical educator should qualify, advances the skills as educators in an academic setting and discusses the ways to be good clinical teachers.

Keywords: emergency education, competence, faculty training, teaching, emergency medicine

Procedia PDF Downloads 564
1085 Evaluation of Patients' Satisfaction Aspects in Governmental Egyptian Emergency Departments

Authors: N. Rashed, Z. Aysha, M. Fakher

Abstract:

Patient satisfaction is one of the core objectives of health care facilities. It is difficult to evaluate patients response in the emergency setting. The current study aimed to evaluate patients and family aspects of satisfaction in both adult and pediatric emergency departments and their recommendations for improvement. Cross-section survey(Brief Emergency department Patient Satisfaction Scale (BEPSS), was translated and validated, then performed to evaluate patients satisfaction in two governmental hospitals Emergency departments. Three hundred patients and their families were enrolled in the study. The waiting time in the adult Emergency department ranged from (5 minutes to 120 minutes), and most admissions were at the morning shift while at the pediatric hospital the waiting time ranged from 5 minutes to 100 minutes) and most admissions were at the afternoon shift. The results showed that the main domain of satisfaction in BEPSS in the adult emergency department was respecting the patients family while in the pediatric emergency department, the main domain was the nursing care about treatment. The main recommendation of improvement in pediatric Emergency Department was modifying the procedures while in adult Emergency Department was improving the training of physicians.

Keywords: emergency, department-patient, satisfaction-adult-pediatric

Procedia PDF Downloads 117
1084 The Ludic Exception and the Permanent Emergency: Understanding the Emergency Regimes with the Concept of Play

Authors: Mete Ulaş Aksoy

Abstract:

In contemporary politics, the state of emergency has become a permanent and salient feature of politics. This study aims to clarify the anthropological and ontological dimensions of the permanent state of emergency. It pays special attention to the structural relation between the exception and play. Focusing on the play in the context of emergency and exception enables the recognition of the difference and sometimes the discrepancy between the exception and emergency, which has passed into oblivion because of the frequency and normalization of emergency situations. This study coins the term “ludic exception” in order to highlight the difference between the exceptions in which exuberance and paroxysm rule over the socio-political life and the permanent emergency that protects the authority with a sort of extra-legality. The main thesis of the study is that the ludic elements such as risk, conspicuous consumption, sacrificial gestures, agonism, etc. circumscribe the exceptional moments temporarily, preventing them from being routine and normal. The study also emphasizes the decline of ludic elements in modernity as the main factor in the transformation of the exceptions into permanent emergency situations. In the introduction, the relationship between play and exception is taken into consideration. In the second part, the study elucidates the concept of ludic exceptions and dwells on the anthropological examples of the ludic exceptions. In the last part, the decline of ludic elements in modernity is addressed as the main factor for the permanent emergency.

Keywords: emergency, exception, ludic exception, play, sovereignty

Procedia PDF Downloads 59
1083 Requirement Analysis for Emergency Management Software

Authors: Tomáš Ludík, Jiří Barta, Sabina Chytilová, Josef Navrátil

Abstract:

Emergency management is a discipline of dealing with and avoiding risks. Appropriate emergency management software allows better management of these risks and has a direct influence on reducing potential negative impacts. Although there are several emergency management software products in the Czech Republic, they cover user requirements from the emergency management field only partially. Therefore, the paper focuses on the issues of requirement analysis within development of emergency management software. Analysis of the current state describes the basic features and properties of user requirements for software development as well as basic methods and approaches for gathering these requirements. Then, the paper presents more specific mechanisms for requirement analysis based on chosen software development approach: structured, object-oriented or agile. Based on these experiences it is designed new methodology for requirement analysis. Methodology describes how to map user requirements comprehensively in the field of emergency management and thus reduce misunderstanding between software analyst and emergency manager. Proposed methodology was consulted with department of fire brigade and also has been applied in the requirements analysis for their current emergency management software. The proposed methodology has general character and can be used also in other specific areas during requirement analysis.

Keywords: emergency software, methodology, requirement analysis, stakeholders, use case diagram, user stories

Procedia PDF Downloads 509
1082 The New Approach to Airport Emergency Plans

Authors: Jakub Kraus, Vladimír Plos, Peter Vittek

Abstract:

This article deals with a new approach to the airport emergency plans, which are the basic documents and manuals for dealing with events with impact on safety or security. The article describes the identified parts in which the current airport emergency plans do not fulfill their role and which should therefore be considered in the creation of corrective measures. All these issues have been identified at airports in the Czech Republic and confirmed at airports in neighboring countries.

Keywords: airport emergency plan, aviation safety, aviation security, comprehensive management system

Procedia PDF Downloads 472
1081 Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique

Authors: Ravi Soni, Irfan Pathan, Manish Pande

Abstract:

The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results.

Keywords: Coupled Eulerian-Lagrangian Technique, fluid structure interaction, spillage prediction, stagnation pressure

Procedia PDF Downloads 333
1080 Improving the Flow Capacity (CV) of the Valves

Authors: Pradeep A. G, Gorantla Giridhar, Vijay Turaga, Vinod Srinivasa

Abstract:

The major problem in the flow control valve is of lower Cv, which will reduce the overall efficiency of the flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. The traditional method of prototyping and testing takes a lot of time. That is where CFD comes into the picture with very quick and accurate validation along with visualization, which is not possible with the traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish the correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves, like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. The combination of optimized wetted surface and introduction of parabolic plug improved the Flow capacity (Cv) of the valve significantly.

Keywords: flow control valves, flow capacity (Cv), CFD simulations, design validation

Procedia PDF Downloads 123
1079 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances

Authors: Mankour Mohamed, Miloudi Mohamed

Abstract:

A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.

Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults

Procedia PDF Downloads 61
1078 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation

Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou

Abstract:

Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.

Keywords: cooling water system, earthquake, integrity, pipe and valve

Procedia PDF Downloads 82
1077 Investigating the Role of Emergency Nurses and Disaster Preparedness during Mass Gathering in Saudi Arabia

Authors: Fuad Alzahrani, Yiannis Kyratsis

Abstract:

Although emergency nurses, being the frontline workers in mass-gatherings, are essential for providing an effective public health response, little is known about the skills that emergency nurses have, or require, in order to respond effectively to a disaster event. This paper is designed to address this gap in the literature by conducting an empirical study on emergency nurses’ preparedness at the mass-gathering event of Hajj in Mecca city. To achieve this aim, this study conducted a cross-sectional survey among 106 emergency department nurses in all the public hospitals in Mecca in 2014. The results revealed that although emergency nurses’ role understanding is high; they have limited knowledge and awareness of how to respond appropriately to mass-gathering disaster events. To address this knowledge gap, the top three most beneficial types of education and training courses suggested are: hospital education sessions, the Emergency Management Saudi Course and workshop; and short courses in disaster management. Finally, recommendations and constructive strategies are developed to provide the best practice in enhancing disaster preparedness. This paper adds to the body of knowledge regarding emergency nurses and mass gathering disasters. This paper measures the level of disaster knowledge, previous disaster response experience and disaster education and training amongst emergency nurses in Mecca, Saudi Arabia. It is anticipated that this study will provide a foundation for future studies aimed at better preparing emergency nurses for disaster response. This paper employs new strategies to improve the emergency nurses’ response during mass gatherings for the Hajj. Increasing the emergency nurses’ knowledge will develop their effective responses in mass-gathering disasters.

Keywords: emergency nurses, mass-gatherings, hajj, disaster preparedness, disaster knowledge, perceived role, disaster training, previous disaster response experience

Procedia PDF Downloads 401
1076 Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System

Authors: Saeed Poormoaied, Zumbul Atan

Abstract:

Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution.

Keywords: emergency shipment, inventory, periodic review policy, approximation algorithm.

Procedia PDF Downloads 111
1075 A Study of Emergency Nurses' Knowledge and Attitudes regarding Pain

Authors: Liqun Zou, Ling Wang, Xiaoli Chen

Abstract:

Objective: Through the questionnaire about emergency nurses’ knowledge and attitudes regarding pain management to understand whether they are well mastered and practiced the related knowledge about pain management, providing a reference for continuous improvement of the quality of nursing care in acute pain and for improving the effect of management on emergency pain patients. Method: The Chinese version questionnaire about KASRP (knowledge and attitudes survey regarding pain) was handed out to 132 emergency nurses to do a study about the knowledge and attitude of pain management. Meanwhile, SPSS17.0 was used to do a descriptive analysis and variance analysis on collected data. Results: The emergency nurses’ correct answer rate about KASRP questionnaire is from 25% to 65% and the average correct rate is (44.65 + 7.85)%. In addition, there are 10 to 26 items being given the right answer. Therefore, the average correct items are (17.86 ± 3.14). Moreover, there is no statistical significant on the differences about the correct rate for different age, gender and work experience to answer; however, the difference of the correct rate in different education background and the professional title is significant. Conclusion: There is a remarkable lack of knowledge and attitude towards pain management in emergency nurses, whose basic knowledge of pain is sufficient. Besides, there is a deviation between the knowledge of pain management and clinical practice, which needs to be improved.

Keywords: emergency nurse, pain, KASRP questionnaire, pain management

Procedia PDF Downloads 225
1074 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves

Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel

Abstract:

Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.

Keywords: anodic bonding, evaporated glass, flow control valve, drug delivery

Procedia PDF Downloads 168
1073 A Survey of Chronic Pain Patients’ Experiences in the Emergency Department

Authors: G. Fitzpatrick, S. O. Chonghaile, D. Harmon

Abstract:

Objective: Chronic pain patients represent a unique challenge in the Emergency Department. Very little literature has been published regarding this group of patients. Our aim was to determine the attitude of patients with chronic pain to the Emergency Department in order to improve and streamline their future visits. Methods: A two-year survey was carried out on Chronic Pain Patients regarding their Emergency Department Attendances. Patients attending the Pain Clinic in Croom Hospital, Co. Limerick were asked to complete a 20-part questionnaire regarding their experiences of visiting the Emergency Department in the preceding year. 46 questionnaires were completed. Results: Unbearable breakthrough pain was the main reason for visiting the Emergency Department. More than half (54%) of those surveyed were not satisfied with the treatment received. Problems indicated included under-treatment of pain (59%), a sense of being under undue suspicion of drug-seeking behaviour (33%) and a perception that the patient themselves understood their condition better than the treating doctor (76%). Paracetamol, NSAIDs, or time off work comprised 72% of the treatments offered – all of which could have been provided by their General Practitioner. Only 4% were offered a nerve block. 67% felt that the creation of personalised Patient Plans, consisting of an agreed plan between the patient, their pain specialist, and the Emergency Department, would expedite their trip through the Emergency Department. Conclusions: Chronic pain patients generally have a negative experience in the ED. Possible future solutions include increasing our empathy and levels of knowledge, provision of nerve blocks in the ED, and use of personalised “Patient Plans” to streamline the treatment pathway for this group of patients.

Keywords: chronic pain, survey, patients, emergency department

Procedia PDF Downloads 339