Search results for: optimize profit
273 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil
Authors: Hakima Althalb
Abstract:
Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation
Procedia PDF Downloads 183272 Walking Cadence to Attain a Minimum of Moderate Aerobic Intensity in People at Risk of Cardiovascular Diseases
Authors: Fagner O. Serrano, Danielle R. Bouchard, Todd A. Duhame
Abstract:
Walking cadence (steps/min) is an effective way to prescribe exercise so an individual can reach a moderate intensity, which is recommended to optimize health benefits. To our knowledge, there is no study on the required walking cadence to reach a moderate intensity for people that present chronic conditions or risk factors for chronic conditions such as Cardiovascular Diseases (CVD). The objectives of this study were: 1- to identify the walking cadence needed for people at risk of CVD to a reach moderate intensity, and 2- to develop and test an equation using clinical variables to help professionals working with individuals at risk of CVD to estimate the walking cadence needed to reach moderate intensity. Ninety-one people presenting a minimum of two risk factors for CVD completed a medically supervised graded exercise test to assess maximum oxygen consumption at the first visit. The last visit consisted of recording walking cadence using a foot pod Garmin FR-60 and a Polar heart rate monitor, aiming to get participants to reach 40% of their maximal oxygen consumption using a portable metabolic cart on an indoor flat surface. The equation to predict the walking cadence needed to reach moderate intensity in this sample was developed as follows: The sample was randomly split in half and the equation was developed with one half of the participants, and validated using the other half. Body mass index, height, stride length, leg height, body weight, fitness level (VO2max), and self-selected cadence (over 200 meters) were measured using objective measured. Mean walking cadence to reach moderate intensity for people age 64.3 ± 10.3 years old at risk of CVD was 115.8 10.3 steps per minute. Body mass index, height, body weight, fitness level, and self-selected cadence were associated with walking cadence at moderate intensity when evaluated in bivariate analyses (r ranging from 0.22 to 0.52; all P values ≤0.05). Using linear regression analysis including all clinical variables associated in the bivariate analyses, body weight was the significant predictor of walking cadence for reaching a moderate intensity (ß=0.24; P=.018) explaining 13% of walking cadence to reach moderate intensity. The regression model created was Y = 134.4-0.24 X body weight (kg).Our findings suggest that people presenting two or more risk factors for CVD are reaching moderate intensity while walking at a cadence above the one officially recommended (116 steps per minute vs. 100 steps per minute) for healthy adults.Keywords: cardiovascular disease, moderate intensity, older adults, walking cadence
Procedia PDF Downloads 443271 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy
Authors: Sibawu Witness Siyepu
Abstract:
This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures
Procedia PDF Downloads 310270 Dogs Chest Homogeneous Phantom for Image Optimization
Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano
Abstract:
In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.Keywords: radiation protection, phantom, veterinary radiology, computed radiography
Procedia PDF Downloads 417269 Scenario-Based Scales and Situational Judgment Tasks to Measure the Social and Emotional Skills
Authors: Alena Kulikova, Leonid Parmaksiz, Ekaterina Orel
Abstract:
Social and emotional skills are considered by modern researchers as predictors of a person's success both in specific areas of activity and in the life of a person as a whole. The popularity of this scientific direction ensures the emergence of a large number of practices aimed at developing and evaluating socio-emotional skills. Assessment of social and emotional development is carried out at the national level, as well as at the level of individual regions and institutions. Despite the fact that many of the already existing social and emotional skills assessment tools are quite convenient and reliable, there are now more and more new technologies and task formats which improve the basic characteristics of the tools. Thus, the goal of the current study is to develop a tool for assessing social and emotional skills such as emotion recognition, emotion regulation, empathy and a culture of self-care. To develop a tool assessing social and emotional skills, Rasch-Gutman scenario-based approach was used. This approach has shown its reliability and merit for measuring various complex constructs: parental involvement; teacher practices that support cultural diversity and equity; willingness to participate in the life of the community after psychiatric rehabilitation; educational motivation and others. To assess emotion recognition, we used a situational judgment task based on OCC (Ortony, Clore, and Collins) emotions theory. The main advantage of these two approaches compare to classical Likert scales is that it reduces social desirability in answers. A field test to check the psychometric properties of the developed instrument was conducted. The instrument was developed for the presidential autonomous non-profit organization “Russia - Land of Opportunity” for nationwide soft skills assessment among higher education students. The sample for the field test consisted of 500 people, students aged from 18 to 25 (mean = 20; standard deviation 1.8), 71% female. 67% of students are only studying and are not currently working and 500 employed adults aged from 26 to 65 (mean = 42.5; SD 9), 57% female. Analysis of the psychometric characteristics of the scales was carried out using the methods of IRT (Item Response Theory). A one-parameter rating scale model RSM (Rating scale model) and Graded Response model (GRM) of the modern testing theory were applied. GRM is a polyatomic extension of the dichotomous two-parameter model of modern testing theory (2PL) based on the cumulative logit function for modeling the probability of a correct answer. The validity of the developed scales was assessed using correlation analysis and MTMM (multitrait-multimethod matrix). The developed instrument showed good psychometric quality and can be used by HR specialists or educational management. The detailed results of a psychometric study of the quality of the instrument, including the functioning of the tasks of each scale, will be presented. Also, the results of the validity study by MTMM analysis will be discussed.Keywords: social and emotional skills, psychometrics, MTMM, IRT
Procedia PDF Downloads 74268 The Effective Use of the Network in the Distributed Storage
Authors: Mamouni Mohammed Dhiya Eddine
Abstract:
This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface
Procedia PDF Downloads 219267 Northern Istanbul Urban Infrastructure Projects: A Critical Account on the Environmental, Spatial, Social and Economical Impacts
Authors: Evren Aysev Denec
Abstract:
As an urban settlement dating as early as 8000 years and the capital for Byzantine and Ottoman empires; İstanbul has been a significant global city throughout history. The most drastic changes in the macro form of Istanbul have taken place in the last seven decades; starting from 1950’s with rapid industrialization and population growth; pacing up after the 1980’s with the efforts of integration to the global capitalist system; reaching to a climax in the 2000’s with the adaptation of a neoliberal urban regime. Today, the rate of urbanization together with land speculation and real estate investment has been growing enormously. Every inch of urban land is conceptualized as a commodity to be capitalized. This neoliberal mindset has many controversial implementations, from the privatization of public land to the urban transformation of historic neighbourhoods and consumption of natural resources. The planning decisions concerning the city have been mainly top down initiations; conceptualising historical, cultural and natural heritage as commodities to be capitalised and consumed in favour of creating rent value. One of the most crucial implementations of this neoliberal urban regime is the project of establishing a ‘new city’ around northern Istanbul; together with a number of large-scale infrastructural projects such as the Third Bosporus Bridge; a new highway system, a Third Airport Project and a secondary Bosporus project called the ‘Canal Istanbul’. Urbanizing northern Istanbul is highly controversial as this area consists of major natural resources of the city; being the northern forests, water supplies and wildlife; which are bound to be destroyed to a great extent following the implementations. The construction of the third bridge and the third airport has begun in 2013, despite environmental objections and protests. Over five hundred thousand trees are planned be cut for solely the construction of the bridge and the Northern Marmara Motorway. Yet the real damage will be the urbanization of the forest area; irreversibly corrupting the natural resources and attracting millions of additional population towards Istanbul. Furthermore, these projects lack an integrated planning scope as the plans prepared for Istanbul are constantly subjected to alterations forced by the central government. Urban interventions mentioned above are executed despite the rulings of Istanbul Environmental plan, due to top down planning decisions. Instead of an integrated action plan that prepares for the future of the city, Istanbul is governed by partial plans and projects that are issued by a profit based agenda; supported by legal alterations and laws issued by the central government. This paper aims to discuss the ongoing implementations with regards to northern Istanbul; claiming that they are not merely infrastructural interventions but parts of a greater neoliberal urbanization strategy. In the course of the study, firstly a brief account on the northern forests of Istanbul will be presented. Then, the projects will be discussed in detail, addressing how the current planning schemes deal with the natural heritage of the city. Lastly, concluding remarks on how the implementations could affect the future of Istanbul will be presented.Keywords: Istanbul, urban design, urban planning, natural resources
Procedia PDF Downloads 198266 The SHIFT of Consumer Behavior from Fast Fashion to Slow Fashion: A Review and Research Agenda
Authors: Priya Nangia, Sanchita Bansal
Abstract:
As fashion cycles become more rapid, some segments of the fashion industry have adopted increasingly unsustainable production processes to keep up with demand and enhance profit margins. The growing threat to environmental and social wellbeing posed by unethical fast fashion practices and the need to integrate the targets of SDGs into this industry necessitates a shift in the fashion industry's unsustainable nature, which can only be accomplished in the long run if consumers support sustainable fashion by purchasing it. Fast fashion is defined as low-cost, trendy apparel that takes inspiration from the catwalk or celebrity culture and rapidly transforms it into garments at high-street stores to meet consumer demand. Given the importance of identity formation to many consumers, the desire to be “fashionable” often outweighs the desire to be ethical or sustainable. This paradox exemplifies the tension between the human drive to consume and the will to do so in moderation. Previous research suggests that there is an attitude-behavior gap when it comes to determining consumer purchasing behavior, but to the best of our knowledge, no study has analysed how to encourage customers to shift from fast to slow fashion. Against this backdrop, the aim of this study is twofold: first, to identify and examine the factors that impact consumers' decisions to engage in sustainable fashion, and second, the authors develop a comprehensive framework for conceptualizing and encouraging researchers and practitioners to foster sustainable consumer behavior. This study used a systematic approach to collect data and analyse literature. The approach included three key steps: review planning, review execution, and findings reporting. Authors identified the keywords “sustainable consumption” and “sustainable fashion” and retrieved studies from the Web of Science (WoS) (126 records) and Scopus database (449 records). To make the study more specific, the authors refined the subject area to management, business, and economics in the second step, retrieving 265 records. In the third step, the authors removed the duplicate records and manually reviewed the articles to examine their relevance to the research issue. The final 96 research articles were used to develop this study's systematic scheme. The findings indicate that societal norms, demographics, positive emotions, self-efficacy, and awareness all have an effect on customers' decisions to purchase sustainable apparel. The authors propose a framework, denoted by the acronym SHIFT, in which consumers are more likely to engage in sustainable behaviors when the message or context leverages the following factors: (s)social influence, (h)habit formation, (i)individual self, (f)feelings, emotions, and cognition, and (t)tangibility. Furthermore, the authors identify five broad challenges that encourage sustainable consumer behavior and use them to develop novel propositions. Finally, the authors discuss how the SHIFT framework can be used in practice to drive sustainable consumer behaviors. This research sought to define the boundaries of existing research while also providing new perspectives on future research, with the goal of being useful for the development and discovery of new fields of study, thereby expanding knowledge.Keywords: consumer behavior, fast fashion, sustainable consumption, sustainable fashion, systematic literature review
Procedia PDF Downloads 90265 A Study on Aquatic Bycatch Mortality Estimation Due to Prawn Seed Collection and Alteration of Collection Method through Sustainable Practices in Selected Areas of Sundarban Biosphere Reserve (SBR), India
Authors: Samrat Paul, Satyajit Pahari, Krishnendu Basak, Amitava Roy
Abstract:
Fishing is one of the pivotal livelihood activities, especially in developing countries. Today it is considered an important occupation for human society from the era of human settlement began. In simple terms, non-target catches of any species during fishing can be considered as ‘bycatch,’ and fishing bycatch is neither a new fishery management issue nor a new problem. Sundarban is one of the world’s largest mangrove land expanding up to 10,200 sq. km in India and Bangladesh. This largest mangrove biome resource is used by the local inhabitants commercially to run their livelihood, especially by forest fringe villagers (FFVs). In Sundarban, over-fishing, especially post larvae collection of wild Penaeus monodon, is one of the major concerns, as during the collection of P. monodon, different aquatic species are destroyed as a result of bycatch mortality which changes in productivity and may negatively impact entire biodiversity, of the ecosystem. Wild prawn seed collection gear like a small mesh sized net poses a serious threat to aquatic stocks, where the collection isn’t only limited to prawn seed larvae. As prawn seed collection processes are inexpensive, require less monetary investment, and are lucrative; people are easily engaged here as their source of income. Wildlife Trust of India’s (WTI) intervention in selected forest fringe villages of Sundarban Tiger Reserve (STR) was to estimate and reduce the mortality of aquatic bycatches by involving local communities in newly developed release method and their time engagement in prawn seed collection (PSC) by involving them in Alternate Income Generation (AIG). The study was conducted for their taxonomic identification during the period of March to October 2019. Collected samples were preserved in 70% ethyl alcohol for identification, and all the preserved bycatch samples were identified morphologically by the expertise of the Zoological Survey of India (ZSI), Kolkata. Around 74 different aquatic species, where 11 different species are molluscs, 41 fish species, out of which 31 species were identified, and 22 species of crustacean collected, out of which 18 species were identified. Around 13 different species belong to a different order, and families were unable to identify them morphologically as they were collected in the juvenile stage. The study reveals that for collecting one single prawn seed, eight individual life of associated faunas are being lost. Zero bycatch mortality is not practical; rather, collectors should focus on bycatch reduction by avoiding capturing, allowing escaping, and mortality reduction, and must make changes in their fishing method by increasing net mesh size, which will avoid non-target captures. But as the prawns are small in size (generally 1-1.5 inches in length), thus increase net size making economically less or no profit for collectors if they do so. In this case, returning bycatches is considered one of the best ways to a reduction in bycatch mortality which is a more sustainable practice.Keywords: bycatch mortality, biodiversity, mangrove biome resource, sustainable practice, Alternate Income Generation (AIG)
Procedia PDF Downloads 151264 Understanding the Impact of Background Experience from Staff in Diversion Programs: The Voices of a Community-Based Diversion Program
Authors: Ana Magana
Abstract:
Youth are entering the juvenile justice system at alarming rates. For the youth of color entering the system, the outcomes are far worse than for their white counterparts. In fact, the youth of color are more likely to be arrested and sentenced for longer periods of time than white youth. Race disproportionality in the juvenile justice system is evident, but what happens to the youth that exit the juvenile justice system? Who supports them after they are incarcerated and who can prevent them from re-offending? There are several diversion programs that have been implemented in the US to aid the reduction of juvenile incarceration and help reduce recidivism. The program interviewed for this study is a community-based diversion program (CBDP). The CBDP is a pre-filing diversion non-profit organization based in South Seattle. The objective of this exploratory research study is to provide a space and platform for the CBDP team to speak about their background experiences and the influence their background has on their current approach and practice with juveniles. A qualitative, exploratory study was conducted. Interviews were conducted with staff and provided oral consent. The interview included six open-ended, semi-structured questions. Interviews were digitally recoded and transcribed. The aim of this study was to understand how the influence of the participant’s backgrounds and previous experiences impact their current practice approaches with the CBDP youth and young adults. Ecological systems theory was the guiding framework for analysis. After careful analysis, three major themes emerged: 1) strong influence of participant’s background, 2) participants belonging to community and 3) strong self-identity with the CBDP. Within these three themes, subthemes were developed based on participant’s responses. It was concluded that the participant’s approach is influenced by their background experiences. This corresponds to the ecological systems theory and the community-based lens which underscores theoretical analysis. The participant’s approach is grounded in interpersonal relationships within the client’s systems, meaning that the participants understand and view their clients within an ecological systems perspective. When choosing participants that reflect the population being served, the clients receive a balanced, inclusive and caring approach. Youth and young adults are searching for supportive adults to be there for them, it is essential for diversion programs to provide a space for shared background experiences and have people that hold similar identities. Grassroots organizations such as CBDP have the tools and experience to work with marginalized populations that are constantly being passed on. While articles and studies focus on the reduction of recidivism and re-offending it is important to question the reasons behind this data. For instance, there can be a reduction in statistics, but at whose expense. Are the youth and young adults truly being supported? Or is it just a requirement that they are completing in order to remove their charge? This research study can serve as the beginning of a series of studies conducted at CBDP to further understand and validate the need to employ individuals with similar backgrounds as the participants CBDP serves.Keywords: background experience, diversion, ecological systems theory, relationships
Procedia PDF Downloads 145263 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass
Authors: Ricardo Torcato, Helder Morais
Abstract:
The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.Keywords: CNC machining, crystal glass, cutting forces, hardness
Procedia PDF Downloads 154262 Triazenes: Unearthing Their Hidden Arsenal Against Malaria and Microbial Menace
Authors: Frans J. Smit, Wisdom A. Munzeiwa, Hermanus C. M. Vosloo, Lyn-Marie Birkholtz, Richard K. Haynes
Abstract:
Malaria and antimicrobial infections remain significant global health concerns, necessitating the continuous search for novel therapeutic approaches. This abstract presents an overview of the potential use of triazenes as effective agents against malaria and various antimicrobial pathogens. Triazenes are a class of compounds characterized by a linear arrangement of three nitrogen atoms, rendering them structurally distinct from their cyclic counterparts. This study investigates the efficacy of triazenes against malaria and explores their antimicrobial activity. Preliminary results revealed significant antimalarial activity of the triazenes, as evidenced by in vitro screening against P. falciparum, the causative agent of malaria. Furthermore, the compounds exhibited broad-spectrum antimicrobial activity, indicating their potential as effective antimicrobial agents. These compounds have shown inhibitory effects on various essential enzymes and processes involved in parasite survival, replication, and transmission. The mechanism of action of triazenes against malaria involves interactions with critical molecular targets, such as enzymes involved in the parasite's metabolic pathways and proteins responsible for host cell invasion. The antimicrobial activity of the triazenes against bacteria and fungi was investigated through disc diffusion screening. The antimicrobial efficacy of triazenes has been observed against both Gram-positive and Gram-negative bacteria, as well as multidrug-resistant strains, making them potential candidates for combating drug-resistant infections. Furthermore, triazenes possess favourable physicochemical properties, such as good stability, solubility, and low toxicity, which are essential for drug development. The structural versatility of triazenes allows for the modification of their chemical composition to enhance their potency, selectivity, and pharmacokinetic properties. These modifications can be tailored to target specific pathogens, increasing the potential for personalized treatment strategies. In conclusion, this study highlights the potential of triazenes as promising candidates for the development of novel antimalarial and antimicrobial therapeutics. Further investigations are necessary to determine the structure-activity relationships and optimize the pharmacological properties of these compounds. The results warrant additional research, including MIC studies, to further explore the antimicrobial activity of the triazenes. Ultimately, these findings contribute to the development of more effective strategies for combating malaria and microbial infections.Keywords: malaria, anti-microbials, triazene, resistance
Procedia PDF Downloads 103261 Optimal Framework of Policy Systems with Innovation: Use of Strategic Design for Evolution of Decisions
Authors: Yuna Lee
Abstract:
In the current policy process, there has been a growing interest in more open approaches that incorporate creativity and innovation based on the forecasting groups composed by the public and experts together into scientific data-driven foresight methods to implement more effective policymaking. Especially, citizen participation as collective intelligence in policymaking with design and deep scale of innovation at the global level has been developed and human-centred design thinking is considered as one of the most promising methods for strategic foresight. Yet, there is a lack of a common theoretical foundation for a comprehensive approach for the current situation of and post-COVID-19 era, and substantial changes in policymaking practice are insignificant and ongoing with trial and error. This project hypothesized that rigorously developed policy systems and tools that support strategic foresight by considering the public understanding could maximize ways to create new possibilities for a preferable future, however, it must involve a better understating of Behavioural Insights, including individual and cultural values, profit motives and needs, and psychological motivations, for implementing holistic and multilateral foresight and creating more positive possibilities. To what extent is the policymaking system theoretically possible that incorporates the holistic and comprehensive foresight and policy process implementation, assuming that theory and practice, in reality, are different and not connected? What components and environmental conditions should be included in the strategic foresight system to enhance the capacity of decision from policymakers to predict alternative futures, or detect uncertainties of the future more accurately? And, compared to the required environmental condition, what are the environmental vulnerabilities of the current policymaking system? In this light, this research contemplates the question of how effectively policymaking practices have been implemented through the synthesis of scientific, technology-oriented innovation with the strategic design for tackling complex societal challenges and devising more significant insights to make society greener and more liveable. Here, this study conceptualizes the notions of a new collaborative way of strategic foresight that aims to maximize mutual benefits between policy actors and citizens through the cooperation stemming from evolutionary game theory. This study applies mixed methodology, including interviews of policy experts, with the case in which digital transformation and strategic design provided future-oriented solutions or directions to cities’ sustainable development goals and society-wide urgent challenges such as COVID-19. As a result, artistic and sensual interpreting capabilities through strategic design promote a concrete form of ideas toward a stable connection from the present to the future and enhance the understanding and active cooperation among decision-makers, stakeholders, and citizens. Ultimately, an improved theoretical foundation proposed in this study is expected to help strategically respond to the highly interconnected future changes of the post-COVID-19 world.Keywords: policymaking, strategic design, sustainable innovation, evolution of cooperation
Procedia PDF Downloads 194260 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization
Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade
Abstract:
The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy
Procedia PDF Downloads 118259 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 32258 Optimization Based Design of Decelerating Duct for Pumpjets
Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan
Abstract:
Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization
Procedia PDF Downloads 209257 New Suspension Mechanism for a Formula Car using Camber Thrust
Authors: Shinji Kajiwara
Abstract:
The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.Keywords: automobile, camber thrust, cornering force, suspension
Procedia PDF Downloads 323256 Virtual Team Performance: A Transactive Memory System Perspective
Authors: Belbaly Nassim
Abstract:
Virtual teams (VT) initiatives, in which teams are geographically dispersed and communicate via modern computer-driven technologies, have attracted increasing attention from researchers and professionals. The growing need to examine how to balance and optimize VT is particularly important given the exposure experienced by companies when their employees encounter globalization and decentralization pressures to monitor VT performance. Hence, organization is regularly limited due to misalignment between the behavioral capabilities of the team’s dispersed competences and knowledge capabilities and how trust issues interplay and influence these VT dimensions and the effects of such exchanges. In fact, the future success of business depends on the extent to which VTs are managing efficiently their dispersed expertise, skills and knowledge to stimulate VT creativity. Transactive memory system (TMS) may enhance VT creativity using its three dimensons: knowledge specialization, credibility and knowledge coordination. TMS can be understood as a composition of both a structural component residing of individual knowledge and a set of communication processes among individuals. The individual knowledge is shared while being retrieved, applied and the learning is coordinated. TMS is driven by the central concept that the system is built on the distinction between internal and external memory encoding. A VT learns something new and catalogs it in memory for future retrieval and use. TMS uses the role of information technology to explain VT behaviors by offering VT members the possibility to encode, store, and retrieve information. TMS considers the members of a team as a processing system in which the location of expertise both enhances knowledge coordination and builds trust among members over time. We build on TMS dimensions to hypothesize the effects of specialization, coordination, and credibility on VT creativity. In fact, VTs consist of dispersed expertise, skills and knowledge that can positively enhance coordination and collaboration. Ultimately, this team composition may lead to recognition of both who has expertise and where that expertise is located; over time, the team composition may also build trust among VT members over time developing the ability to coordinate their knowledge which can stimulate creativity. We also assess the reciprocal relationship between TMS dimensions and VT creativity. We wish to use TMS to provide researchers with a theoretically driven model that is empirically validated through survey evidence. We propose that TMS provides a new way to enhance and balance VT creativity. This study also provides researchers insight into the use of TMS to influence positively VT creativity. In addition to our research contributions, we provide several managerial insights into how TMS components can be used to increase performance within dispersed VTs.Keywords: virtual team creativity, transactive memory systems, specialization, credibility, coordination
Procedia PDF Downloads 174255 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 33254 Evaluation of Cardiac Rhythm Patterns after Open Surgical Maze-Procedures from Three Years' Experiences in a Single Heart Center
Authors: J. Yan, B. Pieper, B. Bucsky, H. H. Sievers, B. Nasseri, S. A. Mohamed
Abstract:
In order to optimize the efficacy of medications, the regular follow-up with long-term continuous monitoring of heart rhythmic patterns has been facilitated since clinical introduction of cardiac implantable electronic monitoring devices (CIMD). Extensive analysis of rhythmic circadian properties is capable to disclose the distributions of arrhythmic events, which may support appropriate medication according rate-/rhythm-control strategy and minimize consequent afflictions. 348 patients (69 ± 0.5ys, male 61.8%) with predisposed atrial fibrillation (AF), undergoing primary ablating therapies combined to coronary or valve operations and secondary implantation of CIMDs, were involved and divided into 3 groups such as PAAF (paroxysmal AF) (n=99, male 68.7%), PEAF (persistent AF) (n=94, male 62.8%), and LSPEAF (long-standing persistent AF) (n=155, male 56.8%). All patients participated in three-year ambulant follow-up (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation recurrence were assessed using cardiac monitor devices, whereby attacks frequencies and their circadian patterns were systemically analyzed. Anticoagulants and regular anti-arrhythmic medications were evaluated and the last were listed in terms of anti-rate and anti-rhythm regimens. Patients in the PEAF-group showed the least AF-burden after surgical ablating procedures compared to both of the other subtypes (p < 0.05). The AF-recurrences predominantly performed such attacks’ property as shorter than one hour, namely within 10 minutes (p < 0.05), regardless of AF-subtypes. Concerning circadian distribution of the recurrence attacks, frequent AF-attacks were mostly recorded in the morning in the PAAF-group (p < 0.05), while the patients with predisposed PEAF complained less attack-induced discomforts in the latter half of the night and the ones with LSPEAF only if they were not physically active after primary surgical ablations. Different AF-subtypes presented distinct therapeutic efficacies after appropriate surgical ablating procedures and recurrence properties in sense of circadian distribution. An optimization of medical regimen and drug dosages to maintain the therapeutic success needs more attention to detailed assessment of the long-term follow-up. Rate-control strategy plays a much more important role than rhythm-control in the ongoing follow-up examinations.Keywords: atrial fibrillation, CIMD, MAZE, rate-control, rhythm-control, rhythm patterns
Procedia PDF Downloads 156253 Problem-Based Learning for Hospitality Students. The Case of Madrid Luxury Hotels and the Recovery after the Covid Pandemic
Authors: Caridad Maylin-Aguilar, Beatriz Duarte-Monedero
Abstract:
Problem-based learning (PBL) is a useful tool for adult and practice oriented audiences, as University students. As a consequence of the huge disruption caused by the COVID pandemic in the hospitality industry, hotels of all categories closed down in Spain from March 2020. Since that moment, the luxury segment was blooming with optimistic prospects for new openings. Hence, Hospitality students were expecting a positive situation in terms of employment and career development. By the beginning of the 2020-21 academic year, these expectations were seriously harmed. By October 2020, only 9 of the 32 hotels in the luxury segment were opened with an occupation rate of 9%. Shortly after, the evidence of a second wave affecting especially Spain and the homelands of incoming visitors bitterly smashed all forecasts. In accordance with the situation, a team of four professors and practitioners, from four different subject areas, developed a real case, inspired in one of these hotels, the 5-stars Emperatriz by Barceló. Students in their 2nd course were provided with real information as marketing plans, profit and losses and operational accounts, employees profiles and employment costs. The challenge for them was to act as consultants, identifying potential courses of action, related to best, base and worst case. In order to do that, they were organized in teams and supported by 4th course students. Each professor deployed the problem in their subject; thus, research on the customers behavior and feelings were necessary to review, as part of the marketing plan, if the current offering of the hotel was clear enough to guarantee and to communicate a safe environment, as well as the ranking of other basic, supporting and facilitating services. Also, continuous monitoring of competitors’ activity was necessary to understand what was the behavior of the open outlets. The actions designed after the diagnose were ranked in accordance with their impact and feasibility in terms of time and resources. Also they must be actionable by the current staff of the hotel and their managers and a vision of internal marketing was appreciated. After a process of refinement, seven teams presented their conclusions to Emperatriz general manager and the rest of professors. Four main ideas were chosen, and all the teams, irrespectively of authorship, were asked to develop them to the state of a minimum viable product, with estimations of impacts and costs. As the process continues, students are nowadays accompanying the hotel and their staff in the prudent reopening of facilities, almost one year after the closure. From a professor’s point of view, key learnings were 1.- When facing a real problem, a holistic view is needed. Therefore, the vision of subjects as silos collapses, 2- When educating new professionals, providing them with the resilience and resistance necessaries to deal with a problem is always mandatory, but now seems more relevant and 3.- collaborative work and contact with real practitioners in such an uncertain and changing environment is a challenge, but it is worth when considering the learning result and its potential.Keywords: problem-based learning, hospitality recovery, collaborative learning, resilience
Procedia PDF Downloads 183252 Scalable UI Test Automation for Large-scale Web Applications
Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani
Abstract:
This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.Keywords: aws, elastic container service, scalability, serverless, ui automation test
Procedia PDF Downloads 107251 Cricket Injury Surveillence by Mobile Application Technology on Smartphones
Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders
Abstract:
The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.Keywords: injury, cricket, surveillance, smartphones, mobile
Procedia PDF Downloads 459250 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations
Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu
Abstract:
Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior
Procedia PDF Downloads 104249 Religious Government Interaction in Urban Settings
Authors: Rebecca Sager, Gary Adler, Damon Mayrl, Jonathan Cooley
Abstract:
The United States’ unique constitutional structure and religious roots have fostered the flourishing of local communities through the close interaction of church and state. Today, these local relationships play out in these circumstances, including increased religious diversity and changing jurisprudence to more accommodating church-state interaction. This project seeks to understand the meanings of church-state interaction among diverse religious leaders in a variety of local settings. Using data from interviews with over 200 religious leaders in six states in the US, we examine how religious groups interact with various non-elected and elected government officials. We have interviewed local religious actors in eight communities characterized by the difference in location and religious homogeneity. These include a small city within a major metropolitan area, several religiously diverse cities in various areas across the country, a small college town with religious diversity set in a religiously-homogenous rural area, and a small farming community with minimal religious diversity. We identified three types of religious actors in each of our geographic areas: congregations, religious non-profit organizations, and clergy coalitions. Given the well-known difficulties in identifying religious organizations, we used the following to construct a local population list from which to sample: the Association of Religion Data Archives ProPublica’s Nonprofit Explorer, Guidestar, and the Internal Revenue Service Exempt Business Master File. Our sample for selecting interviewees were stratified by three criteria: religious tradition (Christian v. non-Christian), sectarian orientation (Mainline/Catholic v. Evangelical Protestant), and organizational form (congregation vs. other). Each interview included the elicitation of local church-state interactions experienced by the organization and organizational members, the enumeration of information sources for navigating church-state interactions, and the personal and community background of interviewees. We coded interviews to identify the cognitive schema of “church” and “state,” the models of legitimate relations between the two, and discretion rules for managing interaction and avoiding conflict. We also enumerate arenas in which and issues for which local state officials are engaged. In this paper, we focus on Korean religious groups and examine how their interactions differ from other congregations, including other immigrant congregations. These churches were particularly common in one large metropolitan area. We find that Korean churches are much more likely to be concerned about any governmental interactions and have fewer connections than non-Korean churches leading to more disconnection from their communities. We argue that due to their status as new immigrant churches without a lot of community ties for many members and being in a large city, Korean churches were particularly concerned about too much interaction with any type of government officials, even ones that could be potentially helpful. While other immigrant churches were somewhat willing to work with government groups, such as Latino-based Catholic groups, Korean churches were the least likely to want to create these connections. Understanding these churches and how immigrant church identity varies and creates different types of interaction is crucial to understanding how church/state interaction can be more meaningful over space and place.Keywords: religion, congregations, government, politics
Procedia PDF Downloads 88248 Optimal Applications of Solar Energy Systems: Comparative Analysis of Ground-Mounted and Rooftop Solar PV Installations in Drought-Prone and Residential Areas of the Indian Subcontinent
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhyay
Abstract:
The increasing demand for environmentally friendly energy solutions highlights the need to optimize solar energy systems. This study compares two types of solar energy systems: ground-mounted solar panels for drought-prone locations and rooftop solar PV installations measuring 300 sq. ft. (approx. 28 sq. m.). The electricity output of 4730 kWh/year saves ₹ 14191/year. As a clean and sustainable energy source, solar power is pivotal in reducing greenhouse gas CO2 emissions reduction by 85 tonnes in 25 years and combating climate change. This effort, "PM Suryadaya Ghar-Muft Bijli Yojana," seeks to empower Indian homes by giving free access to solar energy. The initiative is part of the Indian government's larger attempt to encourage clean and renewable energy sources while reducing reliance on traditional fossil fuels. This report reviews various installations and government reports to analyse the performance and impact of both ground-mounted and rooftop solar systems. Besides, effectiveness of government subsidy programs for residential on-grid solar systems, including the ₹78,000 incentive for systems above 3 kW. The study also looks into the subsidy schemes available for domestic agricultural grid use. Systems up to 3 kW receive ₹43,764, while systems over 10 kW receive a fixed subsidy of ₹94,822. Households can save a substantial amount of energy and minimize their reliance on grid electricity by installing the proper solar plant capacity. In terms of monthly consumption at home, the acceptable Rooftop Solar Plant capacity for households is 0-150 units (1-2 kW), 150-300 units (2-3 kW), and >300 units (above 3 kW). Ground-mounted panels, particularly in arid regions, offer benefits such as scalability and optimal orientation but face challenges like land use conflicts and environmental impact, particularly in drought-prone regions. By evaluating the distinct advantages and challenges of each system, this study aims to provide insights into their optimal applications, guiding stakeholders in making informed decisions to enhance solar energy efficiency and sustainability within regulatory constraints. This research also explores the implications of regulations, such as Italy's ban on ground-mounted solar panels on productive agricultural land, on solar energy strategies.Keywords: sustainability, solar energy, subsidy, rooftop solar energy, renewable energy
Procedia PDF Downloads 48247 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation
Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin
Abstract:
CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model
Procedia PDF Downloads 309246 Taraxacum Officinale (Dandelion) and Its Phytochemical Approach to Malignant Diseases
Authors: Angel Champion
Abstract:
Chemotherapy and radiation use an acidified approach to induce apoptosis, which only kills mature cancer cells while resulting in gene and cell damage with significant levels of toxicity in tumor-affected tissues and organs. The acid approach, where the cells exterminated are not differentiated, induces the disappearance of white blood cells from the blood. This increases susceptibility to infection in severe forms of cancer spread. However, chemotherapy and radiation cannot kill cancer stem cells that metastasize, being the leading cause of 98% of cancer fatalities. With over 12 million new cancer cases symptomatic each year, including common malignancies such as Hepatocellular Carcinoma (HCC), this study aims to assess the bioactive constituents and phytochemical composition of Taraxacum Officinale (Dandelion). This analysis enables pharmaceutical quality and potency to be applied to studies on cancer cell proliferation and apoptosis. A phytochemical screening is carried out to identify the antioxidant components of Dandelion root, stem, and flower extract. The constituents tested for are phlorotannins, carbohydrates, glycosides, saponins, flavonoids, alkaloids, sterols, triterpenes, and anthraquinone glycosides. To conserve the existing phenolic compounds, a portion of the constituent tests will be examined with an acid, alcohol, or aqueous solvent. As a result, the qualitative and quantitative variations within the Dandelion extract that measure uniform effective potency are vital to the conformity for producing medicinal products. These medicines will be constructed with a consistent, uniform composition that physicians can use to control and effectively eradicate malignant diseases safely. Taraxacum Officinale's phytochemical composition comprises a highly-graded potency due to present bioactive contents that will essentially drive out malignant disease within the human body. Its high potency rate is powerful enough to eliminate both mature cancer cells and cancer stem cells without the cell and gene damage induced by chemotherapy and radiation. Correspondingly, the high margins of cancer mortality on a global scale are mitigated. This remarkable contribution to modern therapeutics will essentially optimize the margins of natural products and their derivatives, which account for 50% of pharmaceuticals in modern therapeutics, while preventing the adverse effects of radiation and chemotherapy drugs.Keywords: antioxidant, apoptosis, metastasize, phytochemical, proliferation, potency
Procedia PDF Downloads 74245 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students
Authors: Durvi Yogesh Vagani
Abstract:
This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching
Procedia PDF Downloads 30244 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants
Authors: Zarina Chokparova, Ighor Uzhinsky
Abstract:
Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture
Procedia PDF Downloads 141