Search results for: S1PR1 receptor protein
1011 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury
Authors: Jianming Cai
Abstract:
Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation
Procedia PDF Downloads 4801010 Optimization of Stevia Concentration in Rasgulla (Sweet Syrup Cheese Ball) Based on Quality
Authors: Gurveer Kaur, T. K. Goswami
Abstract:
Rasgulla (a sweet syrup cheese ball), a sweet, spongy dessert represents traditional sweet dish of an Indian subcontinent prepared by chhana. 100 g of Rasgulla contains 186 calories, and so it is a driving force behind obesity and diabetes. To reduce Rasgulla’s energy value sucrose mainly should be minimized, so instead of sucrose, stevia (zero calories natural sweetener) is used to prepare Rasgulla. In this study three samples were prepared with sucrose to stevia ratio taking 100:0 (as control sample), (i) 50:50 (T1); (ii) 25:75 (T2), and (iii) 0:100 (T3) from 4% fat milk. It was found that as the sucrose concentration decreases the percentage of fat increase in the Rasgulla slightly. Sample T2 showed < 0.1% (±0.06) sucrose content. But there was no significant difference on protein and ash content of the samples. Whitening index was highest (78.0 ± 0.13) for T2 and lowest (65.7 ± 0.21) for the control sample since less sucrose in syrup reduces the browning of the sample (T2). Energy value per 100 g was calculated to be 50, 72, 98, and 184 calories for T3, T2, T1 and control samples, respectively. According to optimization study, the preferred (high quality) order of samples was as follows: T1 > T1 > control > T3. Low sugar content Rasgulla with acceptable quality can be prepared with 25:75 ratio of sucrose to stevia.Keywords: composition, rasgulla, sensory, stevia
Procedia PDF Downloads 2061009 Calpains; Insights Into the Pathogenesis of Heart Failure
Authors: Mohammadjavad Sotoudeheian
Abstract:
Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte
Procedia PDF Downloads 681008 Waste Egg Albumin Derived Small Peptides Stimulate Photosynthetic Electron Transport
Authors: Seungwon Han, Sung young Yoo, Tae Wan Kim
Abstract:
The objective of this study was to measure the changes in the photochemical response in the leaves of red pepper (Capsium annuum L.) after foliar fertilization of amino acid and small peptides derived from the waste egg. As a nitrogen fertilizer, waste eggs were incubated over one 1week and then degraded as amino acids and small peptides. The smaller peptides less than 20 kDa were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). MALDI-TOF-MS as a rapid analysis method was to show the molecular mass of degraded egg protein. The sequences of peptides were identified as follows; γ-Glu- Cys-γ-Glu-Cys-γ-Glu-Cys)-Ser and γ-Glu-Cys-γ-Glu-Cys-γ-Glu- Cys)-Gly. It was clearly illuminated that the parameters related to quantum yields for PSI electron transport (ΦRE1O, ΨRE1O, δRE1O) and RC/ABS have increased tendency by small peptide application. On the other hand, phenomenological energy fluxes (ABSO/CSM, TRO/CSM, ET2O/CSM, RE1O/CSM, DIO/CSM) have considerably fluctuated with foliar fertilization of small peptides. In conclusion, the small peptides can enhance the photochemical activities from photosystem II to photosystem I. This study was financially supported by RDA Agenda Project PJ 016196012022.Keywords: electron transport, foliar fertilization, small peptide, waste egg
Procedia PDF Downloads 1671007 Plant Regeneration via Somatic Embryogenesis and Agrobacterium-Mediated Transformation in Alfalfa (Medicago sativa L.)
Authors: Sarwan Dhir, Suma Basak, Dipika Parajulee
Abstract:
Alfalfa is renowned for its nutritional and biopharmaceutical value as a perennial forage legume. However, establishing a rapid plant regeneration protocol using somatic embryogenesis and efficient transformation frequency are the crucial prerequisites for gene editing in alfalfa. This study was undertaken to establish and improve the protocol for somatic embryogenesis and subsequent plant regeneration. The experiments were conducted in response to natural sensitivity using various antibiotics such as cefotaxime, carbenicillin, gentamycin, hygromycin, and kanamycin. Using 3-week-old leaf tissue, somatic embryogenesis was initiated on Gamborg’s B5 basal (B5H) medium supplemented with 3% maltose, 0.9µM Kinetin, and 4.5µM 2,4-D. Embryogenic callus (EC) obtained from the B5H medium exhibited a high rate of somatic embryo formation (97.9%) after 3 weeks when the cultures were placed in the dark. Different developmental stages of somatic embryos and cotyledonary stages were then transferred to Murashige and Skoog’s (MS) basal medium under light, resulting in a 94% regeneration rate of plantlets. Our results indicate that leaf segments can grow (tolerate) up to 450 mg/L of cefotaxime and 400 mg/L of carbenicillin in the culture medium. However, the survival threshold for hygromycin at 12.5 mg/L, kanamycin at 250 mg/L, gentamycin at 50 mg/L, and timentin (300 mg/L). The experiment to improve the protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector was also conducted. The vector contains two reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene (HPT), all driven under the CaMV 35s promoter. Various transformation parameters were optimized using 3-week-old in vitro-grown plantlets. The different parameters such as types of explant, leaf ages, preculture days, segment sizes, wounding types, bacterial concentrations, infection periods, co-cultivation periods, different concentrations of acetosyringone, silver nitrate, and calcium chloride were optimized for transient gene expression. The transient gene expression was confirmed via histochemical GUS and GFP visualization under fluorescent microscopy. The data were analyzed based on the semi-quantitative observation of the percentage and number of blue GUS spots on different days of agro-infection. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old leaf segments wounded using a scalpel blade of 11 size- after 3 days of post-incubation at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of bacterial-leaf segment co-cultivation, with the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. Our results suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The stable gene expression in the putative transgenic tissue was confirmed using PCR amplification of both marker genes, indicating that gene expression in explants was not solely due to Agrobacterium, but also from transformed cells. The improved protocol could be used for generating transgenic alfalfa plants using genome editing techniques such as CRISPR/Cas9.Keywords: Medicago sativa l. (Alfalfa), agrobacterium tumefaciens, β-glucuronidase, green fluorescent protein, transient gene
Procedia PDF Downloads 111006 Differential Expression Analysis of Busseola fusca Larval Transcriptome in Response to Cry1Ab Toxin Challenge
Authors: Bianca Peterson, Tomasz J. Sańko, Carlos C. Bezuidenhout, Johnnie Van Den Berg
Abstract:
Busseola fusca (Fuller) (Lepidoptera: Noctuidae), the maize stem borer, is a major pest in sub-Saharan Africa. It causes economic damage to maize and sorghum crops and has evolved non-recessive resistance to genetically modified (GM) maize expressing the Cry1Ab insecticidal toxin. Since B. fusca is a non-model organism, very little genomic information is publicly available, and is limited to some cytochrome c oxidase I, cytochrome b, and microsatellite data. The biology of B. fusca is well-described, but still poorly understood. This, in combination with its larval-specific behavior, may pose problems for limiting the spread of current resistant B. fusca populations or preventing resistance evolution in other susceptible populations. As part of on-going research into resistance evolution, B. fusca larvae were collected from Bt and non-Bt maize in South Africa, followed by RNA isolation (15 specimens) and sequencing on the Illumina HiSeq 2500 platform. Quality of reads was assessed with FastQC, after which Trimmomatic was used to trim adapters and remove low quality, short reads. Trinity was used for the de novo assembly, whereas TransRate was used for assembly quality assessment. Transcript identification employed BLAST (BLASTn, BLASTp, and tBLASTx comparisons), for which two libraries (nucleotide and protein) were created from 3.27 million lepidopteran sequences. Several transcripts that have previously been implicated in Cry toxin resistance was identified for B. fusca. These included aminopeptidase N, cadherin, alkaline phosphatase, ATP-binding cassette transporter proteins, and mitogen-activated protein kinase. MEGA7 was used to align these transcripts to reference sequences from Lepidoptera to detect mutations that might potentially be contributing to Cry toxin resistance in this pest. RSEM and Bioconductor were used to perform differential gene expression analysis on groups of B. fusca larvae challenged and unchallenged with the Cry1Ab toxin. Pairwise expression comparisons of transcripts that were at least 16-fold expressed at a false-discovery corrected statistical significance (p) ≤ 0.001 were extracted and visualized in a hierarchically clustered heatmap using R. A total of 329,194 transcripts with an N50 of 1,019 bp were generated from the over 167.5 million high-quality paired-end reads. Furthermore, 110 transcripts were over 10 kbp long, of which the largest one was 29,395 bp. BLAST comparisons resulted in identification of 157,099 (47.72%) transcripts, among which only 3,718 (2.37%) were identified as Cry toxin receptors from lepidopteran insects. According to transcript expression profiles, transcripts were grouped into three subclusters according to the similarity of their expression patterns. Several immune-related transcripts (pathogen recognition receptors, antimicrobial peptides, and inhibitors) were up-regulated in the larvae feeding on Bt maize, indicating an enhanced immune status in response to toxin exposure. Above all, extremely up-regulated arylphorin genes suggest that enhanced epithelial healing is one of the resistance mechanisms employed by B. fusca larvae against the Cry1Ab toxin. This study is the first to provide a resource base and some insights into a potential mechanism of Cry1Ab toxin resistance in B. fusca. Transcriptomic data generated in this study allows identification of genes that can be targeted by biotechnological improvements of GM crops.Keywords: epithelial healing, Lepidoptera, resistance, transcriptome
Procedia PDF Downloads 2021005 Effect of Time and Rate of Nitrogen Application on the Malting Quality of Barley Yield in Sandy Soil
Authors: A. S. Talaab, Safaa, A. Mahmoud, Hanan S. Siam
Abstract:
A field experiment was conducted during the winter season of 2013/2014 in the barley production area of Dakhala – New Valley Governorate, Egypt to assess the effect of nitrogen rate and time of N fertilizer application on barley grain yield, yield components and N use efficiency of barley and their association with grain yield. The treatments consisted of three levels of nitrogen (0, 70 and 100 kg N/acre) and five application times. The experiment was laid out as a randomized complete block design with three replication. Results revealed that barley grain yield and yield components increased significantly in response to N rate. Splitting N fertilizer amount at several times result in significant effect on grain yield, yield components, protein content and N uptake efficiency when compared with the entire N was applied at once. Application of N at rate of 100 kg N/acre resulted in accumulation of nitrate in the subsurface soil > 30cm. When N application timing considered, less NO3 was found in the soil profile with splitting N application compared with all preplans application.Keywords: nitrogen use efficiency, splitting N fertilizer, barley, NO3
Procedia PDF Downloads 3131004 Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice
Authors: Eun Gyeong Lee, Ji Young Park, Hyun Ae Woo
Abstract:
Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI.Keywords: peroxiredoxin, ischemia/reperfusion, kidney, oxidative stress
Procedia PDF Downloads 3861003 Adsorption of Bovine Serum Albumine on CeO2
Authors: Roman Marsalek
Abstract:
Preparation of nano-particles of cerium oxide and adsorption of bovine serum albumine on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nano-particles was 9 nm. The simultaneous measurements of the bovine serum albumine adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nano-particles. The maximum adsorption capacity was found for strongly acid suspension (am=118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumine on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nano-particles plays the key role in adsorption of proteins on such type of materials.Keywords: adsorption, BSA, cerium oxide nanoparticles, zeta potential, albumin
Procedia PDF Downloads 3691002 Evaluation of Humoral Immune Response Against Somatic and Excretory- Secretory Antigens of Dicrocoelium Dendriticum in Infected Sheep by Western Blot
Authors: Arash Jafari, Somaye Bahrami, Mohammad Hossein Razi Jalali
Abstract:
The aim of this study was the isolation and identification of excretory-secretory and somatic antigens from D. dendriticum by SDS-PAGE and evaluation of humeral immune response against these antigens. The sera of infected sheep with different infection degrees were collected. Somatic and ES proteins were isolated with SDS PAGE. Immunogenicity properties of the resulting proteins were determined using western blot analysis. The total extract of somatic antigens analysed by SDS-PAGE revealed 21 proteins. In mild infection, bands of 130 KDa were immune dominant. In moderate infections 48, 80 and 130 KDa and in heavy infections 48, 60, 80, 130 KDa were detected as immune dominant bands. In ES antigens, mild infection 130 KDa, in moderate infection 100, 120 and 130 KDa and in heavy infection 45, 80, 85, 100, 120 and 130 KDa were immune dominant bands. The most immunogenic protein band during different degrees of infection was 130KDa.Keywords: Dicrocoelium dendriticum excretory-secretory antigens, somatic antigens, western blot
Procedia PDF Downloads 6021001 Dialysis Rehabilitation and Muscle Hypertrophy
Authors: Itsuo Yokoyama, Rika Kikuti, Naoko Watabe
Abstract:
Introduction: It has been known that chronic kidney disease (CKD) patients can benefit from physical exercise during dialysis therapy improving aerobic capacity, muscle function, cardiovascular function, and overall health-related quality of life. This study aimed to evaluate the effectiveness of dialysis rehabilitation. Materials and Methods: A total of 55 patients underwent two-hour resistance exercise training during each hemodialysis session for three consecutive months. Various routine clinical data were collected, including the calculation of the planar dimension of the muscle area in both upper legs at the level of the ischial bone. This area calculation was possible in 26 patients who had yearly plain abdominal computed tomography (CT) scans. DICOM files from the CT scans were used with 3D Slicer software for area calculation. An age and sex-matched group of 26 patients without dialysis rehabilitation also had yearly CT scans during the study period for comparison. Clinical data were compared between the two groups: Group A (rehabilitation) and Group B (non-rehabilitation). Results: There were no differences in basic laboratory data between the two groups. The average muscle area before and after rehabilitation in Group A was 212 cm² and 216 cm², respectively. In Group B, the average areas were 230.0 cm² and 225.8 cm². While there was no significant difference in absolute values, the average percentage increase in muscle area was +1.2% (ranging from -7.6% to 6.54%) for Group A and -2.0% (ranging from -12.1% to 4.9%) for Group B, which was statistically significant. In Group A, 9 of 26 were diabetic (DM), and 13 of 26 in Group B were non-DM. The increase in muscle area for DM patients was 4.9% compared to -0.7% for non-DM patients, which was significantly different. There were no significant differences between the two groups in terms of nutritional assessment, Kt/V, or incidence of clinical complications such as cardiovascular events. Considerations: Dialysis rehabilitation has been reported to prevent muscle atrophy by increasing muscle fibers and capillaries. This study demonstrated that muscle volume increased after dialysis exercise, as evidenced by the increased muscle area in the thighs. Notably, diabetic patients seemed to benefit more from dialysis exercise than non-diabetics. Although this study is preliminary due to its relatively small sample size, it suggests that intradialytic physical training may improve insulin utilization in muscle fiber cells, particularly in type II diabetic patients where insulin receptor function and signaling are altered. Further studies are needed to investigate the detailed mechanisms underlying the muscle hypertrophic effects of dialysis exercise.Keywords: dialysis, excercise, muscle, hypertrophy, diabetes, insulin
Procedia PDF Downloads 191000 Phosphoproteomic Analysis of the Response of Rice Leaves to Chitosan under Drought Stress
Authors: Narumon Phaonakrop, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Wasinee Pongprayoon
Abstract:
Chitosan has been proposed as a natural polymer, and it is derived from chitin. The objective of this research was to determine the growth promoting responses induced by chitosan at the molecular physiology level in Khao Dawk Mali 105 (KDML 105) rice (Oryza sativa L.) seedlings under drought stress by adding of 2% polyethylene glycol 4000 (PEG4000) to the nutrient solution and after removal of the drought stress (re-water). Oligomeric chitosan at 40 ppm could enhance shoot fresh weight and shoot dry weight during drought stress and re-water. After 7 days of drought stress and re-water, significant increases in chlorophyll a and chlorophyll b contents in KDML 105 cultivar were observed. The 749 phosphoproteins in rice leaf treated with chitosan could be resolved by phosphoprotein enrichment, tryptic digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. They can be classified into 10 groups. Proteins involved in the metabolic process and biological regulation were upregulated in response to chitosan during drought stress. This work will help us to understand protein phosphorylation relating to chitosan response during drought stress in aromatic rice seedlings.Keywords: Chitosan, drought, phosphoproteome, rice
Procedia PDF Downloads 164999 Anti-Oxidant and Anti-Bacterial Properties of Camellia sinensis, Tea Plant
Authors: Rini Jarial, Puranjan Mishra, Lakhveer Singh, Sveta Thakur, A. W. Zularisam, Mimi Sakinah
Abstract:
The aim of the present study was to assess the biological properties of Camellia sinensis and to identify its functional compounds. The methanolic leaves-extract (MLE) of commercial green tea (Camellia sinensis) was assessed for anti-bacterial activities by measuring inhibition zones against a panel of pathogenic bacterial strains using agar diffusion method. The flavonoid (5.0 to 8.0 mg/ml) and protein content (10 to 15 mg/ml) of the MLE were recorded. MLE at a concentration of 25 μg/ml showed marked anti-bacterial activity against all bacterial strains (11-30 mm zone of inhibition) and was maximum against Staphylococcus aureus (30 mm). The MLE of Camellia sinensis had the best MIC values of 2.25 and 0.56 mg/ml against S. aureus and Enterobacter sp., respectively. The MLE also possessed good anti-lipolytic activity (65%) against a Porcine pancreatic lipase (PPL) and cholesterol oxidase inhibition (79%). The present study provided strong experimental evidences that the MLE of Camellia sinensis is not only a potent source of natural anti-oxidants and anti-bacterial activity but also possesses efficient cholesterol degradation and anti-lipolytic activities that might be beneficial in the body weight management.Keywords: anti-oxidant, anti-bacterial activity, anti-lipolytic activity, Camellia sinensis, phyto-chemicals
Procedia PDF Downloads 291998 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs
Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis
Abstract:
Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification
Procedia PDF Downloads 96997 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education
Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim
Abstract:
The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.Keywords: corona discharge, Tesla coil, high voltage application, high voltage education
Procedia PDF Downloads 328996 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications
Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita
Abstract:
Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.Keywords: microbioreactor, cell-culture, fermentation, microfluidics
Procedia PDF Downloads 416995 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis
Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad
Abstract:
Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling
Procedia PDF Downloads 179994 Cationic Solid Lipid Nanoparticles Conjugated with Anti-Melantransferrin and Apolipoprotein E for Delivering Doxorubicin to U87MG Cells
Authors: Yung-Chih Kuo, Yung-I Lou
Abstract:
Cationic solid lipid nanoparticles (CSLNs) with anti-melanotransferrin (AMT) and apolipoprotein E (ApoE) were used to carry antimitotic doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) treatment. Dox-loaded CSLNs were prepared in microemulsion, grafted covalently with AMT and ApoE, and applied to human brain microvascular endothelial cells (HBMECs), human astrocytes, and U87MG cells. Experimental results revealed that an increase in the weight percentage of stearyl amine (SA) from 0% to 20% increased the size of AMT-ApoE-Dox-CSLNs. In addition, an increase in the stirring rate from 150 rpm to 450 rpm decreased the size of AMT-ApoE-Dox-CSLNs. An increase in the weight percentage of SA from 0% to 20% enhanced the zeta potential of AMT-ApoE-Dox-CSLNs. Moreover, an increase in the stirring rate from 150 rpm to 450 rpm reduced the zeta potential of AMT-ApoE-Dox-CSLNs. AMT-ApoE-Dox-CSLNs exhibited a spheroid-like geometry, a minor irregular boundary deviating from spheroid, and a somewhat distorted surface with a few zigzags and sharp angles. The encapsulation efficiency of Dox in CSLNs decreased with increasing weight percentage of Dox and the order in the encapsulation efficiency of Dox was 10% SA > 20% SA > 0% SA. However, the reverse order was true for the release rate of Dox, suggesting that AMT-ApoE-Dox-CSLNs containing 10% SA had better-sustained release characteristics. An increase in the concentration of AMT from 2.5 to 7.5 μg/mL slightly decreased the grafting efficiency of AMT and an increase in that from 7.5 to 10 μg/mL significantly decreased the grafting efficiency. Furthermore, an increase in the concentration of ApoE from 2.5 to 5 μg/mL slightly reduced the grafting efficiency of ApoE and an increase in that from 5 to 10 μg/mL significantly reduced the grafting efficiency. Also, AMT-ApoE-Dox-CSLNs at 10 μg/mL of ApoE could slightly reduce the transendothelial electrical resistance (TEER) and increase the permeability of propidium iodide (PI). An incorporation of 10 μg/mL of ApoE could reduce the TEER and increase the permeability of PI. AMT-ApoE-Dox-CSLNs at 10 μg/mL of AMT and 5-10 μg/mL of ApoE could significantly enhance the permeability of Dox across the BBB. AMT-ApoE-Dox-CSLNs did not induce serious cytotoxicity to HBMECs. The viability of HBMECs was in the following order: AMT-ApoE-Dox-CSLNs = AMT-Dox-CSLNs = Dox-CSLNs > Dox. The order in the efficacy of inhibiting U87MG cells was AMT-ApoE-Dox-CSLNs > AMT-Dox-CSLNs > Dox-CSLNs > Dox. A surface modification of AMT and ApoE could promote the delivery of AMT-ApoE-Dox-CSLNs to cross the BBB via melanotransferrin and low density lipoprotein receptor. Thus, AMT-ApoE-Dox-CSLNs have appropriate physicochemical properties and can be a potential colloidal delivery system for brain tumor chemotherapy.Keywords: anti-melanotransferrin, apolipoprotein E, cationic catanionic solid lipid nanoparticle, doxorubicin, U87MG cells
Procedia PDF Downloads 284993 Adalimumab Therapy for Inflammatory Discitis Associated with Spondyloarthropathy
Authors: Liu Yuhong, Hussen Mansai, Mei Chunli
Abstract:
Inflammatory discitis is a sterile inflammatary disease that typically presents with abnormalities in two adjacent vertebral bodies and the intervening disk. Diagnosis this disorder is usually difficult and ideal management remains controversial. In this report,we examine a case of inflammatory discitis in a 56 year old female in which treatment with adalimumab ameliorated symptoms. The 56-year-old female patient developed repeatedly inflammatory discitis in the past three years, presenting with severe back pain, an elevated C-reactive protein and erythrocyte sedimentation rate, radiological erosive changes in vertebral and intervertebral disk of the spine. Surgical treatment, antibiotics and non steroidal anti-inflammatory drugs(NSAIDs) were used, but the patient still suffered from recurrent onset of unbearable backache. Three years later from the patient’s first admission,adalimumab was prescribed due to the third occurrence of Anderson lesions, which she had been suffering from for years. Soon after the same day of adalimumab therapy, her symptoms had a dramatic improvement. On the following day she could stand and walk slowly, her CRP and ESR were decreased to nearly normal levels in 4 weeks. Human leukocyte antigen (HLA)-typing analysis revealed a positive result for HLA-B27, the patient’s inflammatory discitis was considered to be associated with spondyloarthropathy.Keywords: adalimumab, inflammatory discitis, spondyloarthropathy, patient
Procedia PDF Downloads 255992 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216B-5p Expression Level
Authors: Ramin Mehdiabadi
Abstract:
Background: Breast cancer remains the most prevalent cancer diagnosis and the leading cause of cancer death among women globally, representing 11.7% of new cases and 6.9% of deaths. While the incidence and mortality of major cancers are declining in developed regions like the United States and Western Europe, underdeveloped and developing countries exhibit an increasing trend, attributed to lifestyle factors such as smoking, physical inactivity, and high-calorie diets. Objective: This study explores the intricate relationship between the mammalian transcription factor forkhead box (FoxM1) and the microRNA miR-216b-5p in various subtypes of breast cancer, aiming to deepen the understanding of their roles in tumorigenesis, metastasis, and drug resistance. Methods: Breast cancer subtypes were categorized based on key biomarkers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. These include luminal A, luminal B, HER2 enriched, triple-negative, and normal-like subtypes. We focused on analyzing the expression levels of FoxM1 and miR-216b-5p, given the known role of FoxM1 in cell proliferation and its implications in cancer pathologies such as lung, gastric, and breast cancers. Concurrently, miR-216b-5p's function as a tumor suppressor was evaluated to ascertain its regulatory effects on FoxM1. Results: Preliminary data indicate a nuanced interplay between FoxM1 and miR-216b-5p, suggesting a potential inverse relationship that varies across breast cancer subtypes. This relationship underscores the dual role of these biomarkers in modulating cancer progression and response to treatments. Conclusion: The findings advocate for the potential of miR-216b-5p to serve as a prognostic biomarker and a therapeutic target, particularly in subtypes where FoxM1 is prominently expressed. Understanding these molecular interactions provides crucial insights into the personalized treatment strategies and could lead to more effective therapeutic interventions in breast cancer management. Implications: The study highlights the importance of molecular profiling in breast cancer treatment and emphasizes the need for targeted therapeutic approaches in managing diverse cancer subtypes, particularly in varying global contexts where lifestyle factors significantly impact cancer dynamics.Keywords: breast cancer, gene expression, FoxM1, microRNA
Procedia PDF Downloads 53991 Influence of Salbutamol (Beta Adrenergic Agonist) on Carcass Characteristics and Same Blood Parameters in Male Broiler Chicken
Authors: Seyyed Naeim Saber, Javad Usefi
Abstract:
This study was conducted to determine the effect of salbutamol (beta-adrenergic agonist) on carcass characteristics and some blood parameters in male broiler chicks. Four hundred and twenty day-old (Coob-500) male broiler were used in this experiment for six weeks. All birds were randomly divided into 7 treatment groups with 4 replicates of 15 birds per pen. Treatment groups included: control, 5, 10, and 15 mg salbutamol per liter water and 10, 20 and 30 mg salbutamol per kg diet. The data obtained from this study indicated that supplementation of salbutamol in water and diets have significant effect on live body weight, abdominal fat, and gizzard weight (p<0.05). Also adding salbutamol in broiler water and feed did not have significant effect on thigh and breast dry matter, thigh and breast crude protein, and thigh and breast crude fat (p>0.05). The results from this study demonstrated that salbutamol has significant (p<0.05) effect on hemoglobin content and RV/TV but it does not have significant effect (p>0.05) on hematocrit amount.Keywords: salbutamol, beta-adrenergic agonist, broiler chicks, carcass characteristic
Procedia PDF Downloads 240990 Genetically Encoded Tool with Time-Resolved Fluorescence Readout for the Calcium Concentration Measurement
Authors: Tatiana R. Simonyan, Elena A. Protasova, Anastasia V. Mamontova, Eugene G. Maksimov, Konstantin A. Lukyanov, Alexey M. Bogdanov
Abstract:
Here, we describe two variants of the calcium indicators based on the GCaMP sensitive core and BrUSLEE fluorescent protein (GCaMP-BrUSLEE and GCaMP-BrUSLEE-145). In contrast to the conventional GCaMP6-family indicators, these fluorophores are characterized by the well-marked responsiveness of their fluorescence decay kinetics to external calcium concentration both in vitro and in cellulo. Specifically, we show that the purified GCaMP-BrUSLEE and GCaMP-BrUSLEE-145 exhibit three-component fluorescence decay kinetics, with the amplitude-normalized lifetime component (t3*A3) of GCaMP-BrUSLEE-145 changing four-fold (500-2000 a.u.) in response to a Ca²⁺ concentration shift in the range of 0—350 nM. Time-resolved fluorescence microscopy of live cells displays the two-fold change of the GCaMP-BrUSLEE-145 mean lifetime upon histamine-stimulated calcium release. The aforementioned Ca²⁺-dependence calls considering the GCaMP-BrUSLEE-145 as a prospective Ca²⁺-indicator with the signal read-out in the time domain.Keywords: calcium imaging, fluorescence lifetime imaging microscopy, fluorescent proteins, genetically encoded indicators
Procedia PDF Downloads 158989 Comparisons Growth Indices of Huso huso Prebroodstock Rearing Environments (Pond and Concrete Tank) for Production of Meat
Authors: Mohamad Ali Yazdani Sadati, Mir Hamed Sayed Hassani, Mahmoud Shakorian, Rezvanollah Kazemi, Bahareh Younes Haghighi
Abstract:
The efficiency of two rearing environments in culture and effect on growth performance of beluga (Huso huso) were investigated. In accordance two group of three years Huso huso ((Average weight of 9.93±0.305 and 10±0.5Kg) density (0.5 and 25 kg/m2)) with 3 replicate were stocked in two culture environment and reared with formulated diet including protein 43% and energy 22 MJ/ kg for 12 month from 2014.6.19 to 2015.9.10 A.D. In the end of rearing period, indices of Final weight, final biomass, daily growth and body percent weight fish reared in cement tank (20.1±0.6, 2016.66±5.77,0.112±0.00239 and 102.35±1.1kg) were significantly higher than fish reared in pond (17.4±0.4, 1746.66±7.2, 0.082±0.118 and 74.15±4.71 kg), respectively P < 0.05). Food efficiency ratio between two group was not significantly different (P > 0.05). The result of this study indicated that except of primary cost of building concrete tank, Huso huso prebroodstocking in cement tank is better than pond for result of increasing growth rate in culture rearing and more effective management.Keywords: cement tank, earthen pond, Huso huso, prebroodstocking
Procedia PDF Downloads 327988 Antiviral Activity of Interleukin-11 in Response to Porcine Epidemic Diarrhea Virus Infection
Authors: Li Yuchen, Wu Qingxin, Jin Yuxing, Yang Qian
Abstract:
Interleukin-11 (IL-11), a well-known anti-inflammatory factor, helps to protect against intestinal epithelium damage caused by physical or chemical factors. However, little is known about the role of IL-11 during viral infection. Herein, high mRNA and protein levels of IL-11 were found in epithelial cells and jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, and IL-11 expression was positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) suppressed PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 inhibited viral infection by preventing PEDV-mediated apoptosis of cells through activating the IL-11/STAT3 signal pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggested that that IL-11 is a novel PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential uses of IL-11 as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.Keywords: Interleukin-11, Porcine epidemic diarrhea virus, STAT3, anti-apoptosis
Procedia PDF Downloads 137987 Beneficial Effect of Lupeol in Diabetes Induced Oxidative Damage
Authors: Rajnish Gupta, R. S. Gupta
Abstract:
Present research was aimed to investigate antidiabetic and antioxidant status of Lupeol in streptozotocin induced diabetes. Rats were divided into following groups mainly: control, diabetic, normal group as well as diabetic treated with Lupeol at 25 and 35 mg/kg b.wt./day for 21 days, diabetic group treated with glibenclamide. Tissue (pancreas, kidney and liver) as well as serum biochemical parameters were analysed for any abnormal behavior. Lupeol administration reduced diabetes onset with significant improvement in serum insulin level also strengthened by increase in β-Cell counts. A significant decrease was observed in serum glucose level. Furthermore, Lupeol treatment increased the antioxidant enzymes, glycolytic enzymes and also protein levels with a decrease in the level of thiobarbituric acid-reactive oxygen species and gluconeogenic enzymes. Present study proves that Lupeol administration significantly reinstated serum and tissue biochemical parameters and thus strengthening its antidiabetic potential.Keywords: oxidative stress, pterostilbene, thiobarbituric acid, reactive oxygen species
Procedia PDF Downloads 471986 Differential Expression Profile Analysis of DNA Repair Genes in Mycobacterium Leprae by qPCR
Authors: Mukul Sharma, Madhusmita Das, Sundeep Chaitanya Vedithi
Abstract:
Leprosy is a chronic human disease caused by Mycobacterium leprae, that cannot be cultured in vitro. Though treatable with multidrug therapy (MDT), recently, bacteria reported resistance to multiple antibiotics. Targeting DNA replication and repair pathways can serve as the foundation of developing new anti-leprosy drugs. Due to the absence of an axenic culture medium for the propagation of M. leprae, studying cellular processes, especially those belonging to DNA repair pathways, is challenging. Genomic understanding of M. Leprae harbors several protein-coding genes with no previously assigned function known as 'hypothetical proteins'. Here, we report identification and expression of known and hypothetical DNA repair genes from a human skin biopsy and mouse footpads that are involved in base excision repair, direct reversal repair, and SOS response. Initially, a bioinformatics approach was employed based on sequence similarity, identification of known protein domains to screen the hypothetical proteins in the genome of M. leprae, that are potentially related to DNA repair mechanisms. Before testing on clinical samples, pure stocks of bacterial reference DNA of M. leprae (NHDP63 strain) was used to construct standard graphs to validate and identify lower detection limit in the qPCR experiments. Primers were designed to amplify the respective transcripts, and PCR products of the predicted size were obtained. Later, excisional skin biopsies of newly diagnosed untreated, treated, and drug resistance leprosy cases from SIHR & LC hospital, Vellore, India were taken for the extraction of RNA. To determine the presence of the predicted transcripts, cDNA was generated from M. leprae mRNA isolated from clinically confirmed leprosy skin biopsy specimen across all the study groups. Melting curve analysis was performed to determine the integrity of the amplification and to rule out primer‑dimer formation. The Ct values obtained from qPCR were fitted to standard curve to determine transcript copy number. Same procedure was applied for M. leprae extracted after processing a footpad of nude mice of drug sensitive and drug resistant strains. 16S rRNA was used as positive control. Of all the 16 genes involved in BER, DR, and SOS, differential expression pattern of the genes was observed in terms of Ct values when compared to human samples; this was because of the different host and its immune response. However, no drastic variation in gene expression levels was observed in human samples except the nth gene. The higher expression of nth gene could be because of the mutations that may be associated with sequence diversity and drug resistance which suggests an important role in the repair mechanism and remains to be explored. In both human and mouse samples, SOS system – lexA and RecA, and BER genes AlkB and Ogt were expressing efficiently to deal with possible DNA damage. Together, the results of the present study suggest that DNA repair genes are constitutively expressed and may provide a reference for molecular diagnosis, therapeutic target selection, determination of treatment and prognostic judgment in M. leprae pathogenesis.Keywords: DNA repair, human biopsy, hypothetical proteins, mouse footpads, Mycobacterium leprae, qPCR
Procedia PDF Downloads 103985 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey
Authors: Lee Suan Chua
Abstract:
This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90 °C for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was reported due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90 °C.Keywords: honey colour, hydroxylmethylfurfural, thermal treatment, tualang honey
Procedia PDF Downloads 376984 Potential Enhancement of Arsenic Removal Filter Commonly Used in South Asia: A Review
Authors: Sarthak Karki, Haribansha Timalsina
Abstract:
Kanchan Arsenic Filter is an economical low cost and termed the most efficient arsenic removal filter system in South Asian countries such as Nepal. But when the effluent quality was evaluated, it was seen to possess a lower removal rate of arsenite species. In addition to that, greater pathogenic growth and loss in overall efficacy with time due to precipitation of iron sulphates were the further complications. This brings the health issue on the front line as millions of people rely on groundwater sources for general water necessities. With this paper, we analyzed the mechanisms and changes in the efficiency of the extant filter system when integrated with activated laterite and hair column beds, plus an additional charcoal layer for inhibiting pathogen colonies. Hair column have rich keratin protein that binds with arsenic species, and similarly, raw laterite has huge deposits of iron and aluminum, all of these factors helping to remove heavy metal contaminants from water sources. Further study on the commercialized mass production of the new proposed filter and versatility analysis is required.Keywords: laterite, charcoal, arsenic removal, hair column
Procedia PDF Downloads 88983 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility
Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin
Abstract:
Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility
Procedia PDF Downloads 381982 Oncological and Antiresorptive Treatment of Breast Cancer: Dental Assessment and Risk of MRONJ Development
Authors: Magdalena Korytowska, Gunnar Lengstrand, Cecilia Larsson Wexell
Abstract:
Background: Breast cancer (BC) is the most common cancer among women worldwide, and cases are continuing to increase in Sweden. Bone is the most common metastatic site in breast cancer patients, where > 65-75% of women with advanced breast cancer develop bone metastases during their disease. To prevent the skeletal-related events of metastases (e.g., pathological fractures, bone loss, cancer-induced bone pain, and hypercalcemia bone), two different classes of antiresorptive medications (AR), bisphosphonate and denosumab are typically administered every 3 to 4 weeks. Since 2015, adjuvant bisphosphonate treatment has been used every six months for three to five years in postmenopausal women for the prevention of skeletal metastases and improved survival. Methods: A case-control study was conducted to test the hypotheses that patients treated with high-dose AR are at higher risk of developing MRONJ than breast cancer patients with adjuvant bisphosphonate treatment at a lower dose. Medical and odontological data was collected between 2015-2020. Assessment of oral health and dental care before and during oncological treatment took place at the specialist clinic for Orofacial medicine linked to the specific hospital. Results: In total, 220 patients were included, 101 patients in the high-dose group and 119 patients in the adjuvant BP-treatment group. MRONJ was diagnosed in 13 patients (14%) in the high-dose group. The mandible was affected in most of the cases (84.6%), with a mean duration of high-dose treatment of 19.7 months. In 46.2% of cases, no dental cause of MRONJ could be identified. Overall, estrogen receptor-positive (ER+) BC was the most representative type in 172 patients (78.2%). However, this was 83.9% in the high-dose cases group. The most used drug was denosumab. Twenty-five patients (26.9%) switched their medication from ZOL to denosumab during their oncological treatment. Patients with ER+ breast cancer were reported in 88 patients (87.8%) in the adjuvant group that was treated with ZOL. Conclusions: MRONJ was diagnosed only in the high-dose AR group. Dental assessment and care of patients in the adjuvant group should be considered, with a recommendation to potentially prolong ZOL treatment from 3 to 5 years, with concomitant use of hormonal therapy in patients diagnosed with ER+ breast cancer to prevent bone loss induced by oncological treatment. A new referral for dental assessment is very important in the case of bone metastases when treatment with high dose AR will be required since it is associated with a higher risk of MRONJ.Keywords: antiresorptive therapy, breast cancer, dental care, MRONJ
Procedia PDF Downloads 87