Search results for: radio networks
1585 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 1221584 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4041583 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)
Authors: Vassilios Moussas, Dimos N. Pantazis, Panagioths Stratakis
Abstract:
The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.Keywords: coastal transport, modeling, optimization
Procedia PDF Downloads 4991582 An Application of Graph Theory to The Electrical Circuit Using Matrix Method
Authors: Samai'la Abdullahi
Abstract:
A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table
Procedia PDF Downloads 5611581 Graphene-Based Reconfigurable Lens Antenna for 5G/6G and Satellite Networks
Authors: André Lages, Victor Dmitriev, Juliano Bazzo, Gianni Portela
Abstract:
This work evaluates the feasibility of the graphene application to perform as a wideband reconfigurable material for lens antennas in 5G/6G and satellite applications. Based on transformation optics principles, the electromagnetic waves can be efficiently guided by modifying the effective refractive index. Graphene behavior can range between a lossy dielectric and a good conductor due to the variation of its chemical potential bias, thus arising as a promising solution for electromagnetic devices. The graphene properties and a lens antenna comprising multiples layers and periodic arrangements of graphene patches were analyzed using full-wave simulations. A dipole directivity was improved from 7 to 18.5 dBi at 29 GHz. In addition, the realized gain was enhanced 7 dB across a 14 GHz bandwidth within the Ka/5G band.Keywords: 5G/6G, graphene, lens, reconfigurable, satellite
Procedia PDF Downloads 1461580 Threshold (K, P) Quantum Distillation
Authors: Shashank Gupta, Carlos Cid, William John Munro
Abstract:
Quantum distillation is the task of concentrating quantum correlations present in N imperfect copies to M perfect copies (M < N) using free operations by involving all P the parties sharing the quantum correlation. We present a threshold quantum distillation task where the same objective is achieved but using lesser number of parties (K < P). In particular, we give an exact local filtering operations by the participating parties sharing high dimension multipartite entangled state to distill the perfect quantum correlation. Later, we bridge a connection between threshold quantum entanglement distillation and quantum steering distillation and show that threshold distillation might work in the scenario where general distillation protocol like DEJMPS does not work.Keywords: quantum networks, quantum distillation, quantum key distribution, entanglement distillation
Procedia PDF Downloads 451579 The Modification of Convolutional Neural Network in Fin Whale Identification
Authors: Jiahao Cui
Abstract:
In the past centuries, due to climate change and intense whaling, the global whale population has dramatically declined. Among the various whale species, the fin whale experienced the most drastic drop in number due to its popularity in whaling. Under this background, identifying fin whale calls could be immensely beneficial to the preservation of the species. This paper uses feature extraction to process the input audio signal, then a network based on AlexNet and three networks based on the ResNet model was constructed to classify fin whale calls. A mixture of the DOSITS database and the Watkins database was used during training. The results demonstrate that a modified ResNet network has the best performance considering precision and network complexity.Keywords: convolutional neural network, ResNet, AlexNet, fin whale preservation, feature extraction
Procedia PDF Downloads 1231578 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 981577 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps
Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe
Abstract:
Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion
Procedia PDF Downloads 1661576 The Effectiveness of Exercise Therapy on Decreasing Pain in Women with Temporomandibular Disorders and How Their Brains Respond: A Pilot Randomized Controlled Trial
Authors: Zenah Gheblawi, Susan Armijo-Olivo, Elisa B. Pelai, Vaishali Sharma, Musa Tashfeen, Angela Fung, Francisca Claveria
Abstract:
Due to physiological differences between men and women, pain is experienced differently between the two sexes. Chronic pain disorders, notably temporomandibular disorders (TMDs), disproportionately affect women in diagnosis, and pain severity in opposition of their male counterparts. TMDs are a type of musculoskeletal disorder that target the masticatory muscles, temporalis muscle, and temporomandibular joints, causing considerable orofacial pain which can usually be referred to the neck and back. Therapeutic methods are scarce, and are not TMD-centered, with the latest research suggesting that subjects with chronic musculoskeletal pain disorders have abnormal alterations in the grey matter of their brains which can be remedied with exercise, and thus, decreasing the pain experienced. The aim of the study is to investigate the effects of exercise therapy in TMD female patients experiencing chronic jaw pain and to assess the consequential effects on brain activity. In a randomized controlled trial, the effectiveness of an exercise program to improve brain alterations and clinical outcomes in women with TMD pain will be tested. Women with chronic TMD pain will be randomized to either an intervention arm or a placebo control group. Women in the intervention arm will receive 8 weeks of progressive exercise of motor control training using visual feedback (MCTF) of the cervical muscles, twice per week. Women in the placebo arm will receive innocuous transcutaneous electrical nerve stimulation during 8 weeks as well. The primary outcomes will be changes in 1) pain, measured with the Visual Analogue Scale, 2) brain structure and networks, measured by fractional anisotropy (brain structure) and the blood-oxygen level dependent signal (brain networks). Outcomes will be measured at baseline, after 8 weeks of treatment, and 4 months after treatment ends and will determine effectiveness of MCTF in managing TMD, through improved clinical outcomes. Results will directly inform and guide clinicians in prescribing more effective interventions for women with TMD. This study is underway, and no results are available at this point. The results of this study will have substantial implications on the advancement in understanding the scope of plasticity the brain has in regards with pain, and how it can be used to improve the treatment and pain of women with TMD, and more generally, other musculoskeletal disorders.Keywords: exercise therapy, musculoskeletal disorders, physical therapy, rehabilitation, tempomandibular disorders
Procedia PDF Downloads 2921575 Development of an Atmospheric Radioxenon Detection System for Nuclear Explosion Monitoring
Authors: V. Thomas, O. Delaune, W. Hennig, S. Hoover
Abstract:
Measurement of radioactive isotopes of atmospheric xenon is used to detect, locate and identify any confined nuclear tests as part of the Comprehensive Nuclear Test-Ban Treaty (CTBT). In this context, the Alternative Energies and French Atomic Energy Commission (CEA) has developed a fixed device to continuously measure the concentration of these fission products, the SPALAX process. During its atmospheric transport, the radioactive xenon will undergo a significant dilution between the source point and the measurement station. Regarding the distance between fixed stations located all over the globe, the typical volume activities measured are near 1 mBq m⁻³. To avoid the constraints induced by atmospheric dilution, the development of a mobile detection system is in progress; this system will allow on-site measurements in order to confirm or infringe a suspicious measurement detected by a fixed station. Furthermore, this system will use beta/gamma coincidence measurement technique in order to drastically reduce environmental background (which masks such activities). The detector prototype consists of a gas cell surrounded by two large silicon wafers, coupled with two square NaI(Tl) detectors. The gas cell has a sample volume of 30 cm³ and the silicon wafers are 500 µm thick with an active surface area of 3600 mm². In order to minimize leakage current, each wafer has been segmented into four independent silicon pixels. This cell is sandwiched between two low background NaI(Tl) detectors (70x70x40 mm³ crystal). The expected Minimal Detectable Concentration (MDC) for each radio-xenon is in the order of 1-10 mBq m⁻³. Three 4-channels digital acquisition modules (Pixie-NET) are used to process all the signals. Time synchronization is ensured by a dedicated PTP-network, using the IEEE 1588 Precision Time Protocol. We would like to present this system from its simulation to the laboratory tests.Keywords: beta/gamma coincidence technique, low level measurement, radioxenon, silicon pixels
Procedia PDF Downloads 1261574 Epistemic Uncertainty Analysis of Queue with Vacations
Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine
Abstract:
The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion
Procedia PDF Downloads 4331573 Impact of Neuron with Two Dendrites in Heart Behavior
Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue
Abstract:
Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.Keywords: neural networks, neuron, dendrites, heart behavior, ECG
Procedia PDF Downloads 861572 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment
Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref
Abstract:
In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment
Procedia PDF Downloads 1831571 Effective Factors on Self-Care in Women with Osteoporosis: A Study with Content Analysis Approach
Authors: Arezoo Fallahi, Siamak Derakhshan, Parvaneh Taymoori, Babak Nematshahrbabaki
Abstract:
Background: Osteoporosis, the most common metabolic bone disease, is an important health care issue. Not only the cost of disease is high but also is one of the causes of disability and mortality and effect on quality of life. Although self-care is effective on disease, s control and treatment but still effective factors on self-care of patient, s viewpoint have not been survey. The aim of this study was to explore effective factors on self-care in women with osteoporosis. Materials and methods: This study was done by conventional content analysis approach in year 2014. Through purposeful sampling 15 women referred to bone mass densitometry centers participated in this study. Inclusion criteria were: Women older than 50 years old with osteoporosis, final diagnosis of osteoporosis for over six –month period, T-score index below -2.5 (lower back or hip), drug use by patients with a physician’s prescription, ability in speaking and attending to participate in the study. Data was collected by face to face and group semi-structure deep interviews and analyzed via content analysis method. To support of rigor of data, criteria credibility, confirmability and transferability were used. Results: during data analysis five categories developed: “hope and disability in the face of illness”, “mutual roles of physician”, “role of family” and “administrative centers and organizations”. To perform self-care behaviors, the participations of this study emphasized on pay attention to their own healthy, regarding patients' rights by physician, pay attention to women's health by men, and the role of media especially radio and television. Conclusion: the finding of the study showed that women’s responsibility with osteoporosis for their health is not a factor but it is multifactorial. Increasing life expectancy in patients, attention to patients needs by physician, increasing health promotion programs in the media and enhancing role of family may provide conditions and infrastructure to empowerment women in doing self-care behavior.Keywords: women, osteoporosis, self-care, content analysis
Procedia PDF Downloads 4631570 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks
Authors: Shin-Pin Tseng
Abstract:
Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG
Procedia PDF Downloads 3841569 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks
Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba
Abstract:
The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.Keywords: authentication, long term evolution, security, vehicle-to-everything
Procedia PDF Downloads 1671568 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 891567 A Survey on Linear Time Invariant Multivariable Positive Real Systems
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties
Procedia PDF Downloads 2741566 A Succinct Method for Allocation of Reactive Power Loss in Deregulated Scenario
Authors: J. S. Savier
Abstract:
Real power is the component power which is converted into useful energy whereas reactive power is the component of power which cannot be converted to useful energy but it is required for the magnetization of various electrical machineries. If the reactive power is compensated at the consumer end, the need for reactive power flow from generators to the load can be avoided and hence the overall power loss can be reduced. In this scenario, this paper presents a succinct method called JSS method for allocation of reactive power losses to consumers connected to radial distribution networks in a deregulated environment. The proposed method has the advantage that no assumptions are made while deriving the reactive power loss allocation method.Keywords: deregulation, reactive power loss allocation, radial distribution systems, succinct method
Procedia PDF Downloads 3761565 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection
Authors: Mahshid Arabi
Abstract:
With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.Keywords: data protection, digital technologies, information security, modern management
Procedia PDF Downloads 301564 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3
Procedia PDF Downloads 2971563 A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect
Authors: Amin Chegenizadeh, Mahdi Keramatikerman, Hamid Nikraz
Abstract:
Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement.Keywords: rigid pavement, Kenpave, Kenslab, thickness, temperature
Procedia PDF Downloads 3731562 Smart Structures for Cost Effective Cultural Heritage Preservation
Authors: Tamara Trček Pečak, Andrej Mohar, Denis Trček
Abstract:
This article investigates the latest technological means, which deploy smart structures that are based on (advanced) wireless sensors technologies and ubiquitous computing in general in order to support the above mentioned decision making. Based on two years of in-field research experiences it gives their analysis for these kinds of purposes and provides appropriate architectures and architectural solutions. Moreover, the directions for future research are stated, because these technologies are currently the most promising ones to enable cost-effective preservation of cultural heritage not only in uncontrolled places, but also in general.Keywords: smart structures, wireless sensors, sensors networks, green computing, cultural heritage preservation, monitoring, cost effectiveness
Procedia PDF Downloads 4461561 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 1891560 Implicature of Jokes in Broadcast Messages
Authors: Yuli Widiana
Abstract:
The study of implicature which is one of the discussions of pragmatics is an interesting and challenging topic to discuss. Implicature is a meaning which is implied in an utterance which is not the same as its literal meaning. The rapid development of information technology results in social networks as media to broadcast messages. The broadcast messages may be in the form of jokes which contain implicature. The research applies the pragmatic equivalent method to analyze the topics of jokes based on the implicatures contained in them. Furthermore, the method is also applied to reveal the purpose of creating implicature in jokes. The findings include the kinds of implicature found in jokes which are classified into conventional implicature and conversational implicature. Then, in detailed analysis, implicature in jokes is divided into implicature related to gender, culture, and social phenomena. Furthermore, implicature in jokes may not only be used to give entertainment but also to soften criticisms or satire so that it does not sound rude and harsh.Keywords: implicature, broadcast messages, conventional implicature, conversational implicature
Procedia PDF Downloads 3591559 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets
Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso
Abstract:
Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow
Procedia PDF Downloads 831558 Time Compression in Engineer-to-Order Industry: A Case Study of a Norwegian Shipbuilding Industry
Authors: Tarek Fatouh, Chehab Elbelehy, Alaa Abdelsalam, Eman Elakkad, Alaa Abdelshafie
Abstract:
This paper aims to explore the possibility of time compression in Engineer to Order production networks. A case study research method is used in a Norwegian shipbuilding project by implementing a value stream mapping lean tool with total cycle time as a unit of analysis. The analysis resulted in demonstrating the time deviations for the planned tasks in one of the processes in the shipbuilding project. So, authors developed a future state map by removing time wastes from value stream process.Keywords: engineer to order, total cycle time, value stream mapping, shipbuilding
Procedia PDF Downloads 1641557 Parallel Computing: Offloading Matrix Multiplication to GPU
Authors: Bharath R., Tharun Sai N., Bhuvan G.
Abstract:
This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks
Procedia PDF Downloads 581556 QCARNet: Networks for Quality-Adaptive Compression Artifact
Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho
Abstract:
We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.Keywords: compression artifact reduction, deblocking, image denoising, image restoration
Procedia PDF Downloads 141