Search results for: panel data analysis
40740 Analysis of Train Passenger Seat Using Ergonomic Function Deployment Method
Authors: Robertoes K. K. Wibowo, Siswoyo Soekarno, Irma Puspitasari
Abstract:
Indonesian people use trains for their transportation, especially they use economy class train transportation because it is cheaper and has a more precise schedule than any other ground transportation. Nevertheless, the economy class passenger seat raises some inconvenience issues for passengers. This is due to the design of the chair on the economic class of trains that did not adjusted to the shape of anthropometry of Indonesian people. Thus, research needs to be conducted on the design of the seats in the economic class of trains. The purpose of this research is to make the design of economy class passenger seats ergonomic. This research method uses questionnaires and anthropometry measurements. The data obtained is processed using House of Quality of Ergonomic Function Development. From the results of analysis and data processing were obtained important changes from the original design. Ergonomic chair design according to the analysis is a stainless steel frame, seat height 390 mm, with a seat width for each passenger of 400 mm and a depth of 400 mm. Design of the backrest has a height of 840 mm, width of 430 mm and length of 300 mm that can move at the angle of 105-115 degrees. The width of the footrest is 42 mm and 400 mm length. The thickness of the seat cushion is 100 mm.Keywords: chair, ergonomics, function development, train passenger
Procedia PDF Downloads 29440739 Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach
Authors: Fatemehsadat Mortazavizadeh, Amin Dehghani, Majid Mirzaei, Nurulhuda Binti Mohammad Ramli, Adnan Dehghani
Abstract:
Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40.Keywords: flood inundation, kelantan river basin, hydrodynamic model, extreme value analysis
Procedia PDF Downloads 7040738 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 38240737 Differences in Production of Knowledge between Internationally Mobile versus Nationally Mobile and Non-Mobile Scientists
Authors: Valeria Aman
Abstract:
The presented study examines the impact of international mobility on knowledge production among mobile scientists and within the sending and receiving research groups. Scientists are relevant to the dynamics of knowledge production because scientific knowledge is mainly characterized by embeddedness and tacitness. International mobility enables the dissemination of scientific knowledge to other places and encourages new combinations of knowledge. It can also increase the interdisciplinarity of research by forming synergetic combinations of knowledge. Particularly innovative ideas can have their roots in related research domains and are sometimes transferred only through the physical mobility of scientists. Diversity among scientists with respect to their knowledge base can act as an engine for the creation of knowledge. It is therefore relevant to study how knowledge acquired through international mobility affects the knowledge production process. In certain research domains, international mobility may be essential to contextualize knowledge and to gain access to knowledge located at distant places. The knowledge production process contingent on the type of international mobility and the epistemic culture of a research field is examined. The production of scientific knowledge is a multi-faceted process, the output of which is mainly published in scholarly journals. Therefore, the study builds upon publication and citation data covered in Elsevier’s Scopus database for the period of 1996 to 2015. To analyse these data, bibliometric and social network analysis techniques are used. A basic analysis of scientific output using publication data, citation data and data on co-authored publications is combined with a content map analysis. Abstracts of publications indicate whether a research stay abroad makes an original contribution methodologically, theoretically or empirically. Moreover, co-citations are analysed to map linkages among scientists and emerging research domains. Finally, acknowledgements are studied that can function as channels of formal and informal communication between the actors involved in the process of knowledge production. The results provide better understanding of how the international mobility of scientists contributes to the production of knowledge, by contrasting the knowledge production dynamics of internationally mobile scientists with those being nationally mobile or immobile. Findings also allow indicating whether international mobility accelerates the production of knowledge and the emergence of new research fields.Keywords: bibliometrics, diversity, interdisciplinarity, international mobility, knowledge production
Procedia PDF Downloads 29340736 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.Keywords: client classification, loan suitability, risk rating, CART analysis
Procedia PDF Downloads 33840735 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges
Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh
Abstract:
For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.Keywords: guideline, law, data protection officer, personal data
Procedia PDF Downloads 7840734 Governance vs Diaspora Remittances for Sustainable Development: A Case of Rwanda and Kenya
Authors: Albert Maake, Ifunanya Isama
Abstract:
International remittances to developing countries reached US$ 485 billion in 2018. By 2015, the East African region had surpassed US$3.5 mark. Considering this, there is no argument as to the contribution of Diaspora remittances as an alternative source of funds in the development process of the developing countries. Nevertheless, this paper seeks to argue that good governance in areas such as policy design, implementation and monitoring play a critical role in the sustainable development process of a nation as opposed to Diaspora remittances in general. Therefore this study intends at analyzing the contribution of Governance as opposed to that of Diaspora remittances for nation development. Employing documentary analysis technique, the secondary data with respect to the countries under study on Diaspora remittances will be collected. Selected indicators for Governance-HDI, Debt-to-GDP Ratio and Corruption Index, will be sourced from the World Bank Data for the purpose of consistency and where applicable the Central Statistical Agencies of the Nations under study. By means of descriptive statistics and content analysis the data will be comparatively analyzed to highlight the unique experiences in Rwanda and Kenya. The findings and interpretations from the study will affirm and promote capacity building for best practices in good governance for the countries under study.Keywords: diaspora remittance, governance, Kenya, Rwanda, sustainable development
Procedia PDF Downloads 13440733 An Analysis of the Influence of Employee Readiness for Change on TQM Implementation
Authors: Mohamed Haffar, Khalil Al-Hyari, Mohammed Khair Abu Zaid, Ramadane Djbarni, Mohammed Hamdan
Abstract:
While employee readiness for change (ERFC) is recognised as critical for total quality management (TQM) implementation, there is a lack of systematic and empirical studies regarding the relationship between ERFC dimensions and TQM. Therefore, this study proposes to fill this gap by providing empirical evidence leading to advancement in the understanding of the influences of ERFC components on TQM implementation. The empirical data for this study was drawn from a survey of 400 middle and senior managers of Jordanian firms. The analysis of the collected data, which was conducted using Structural Equation Modeling technique, revealed that three of the ERFC components, namely personally beneficial, change self-efficacy and management support are the most supportive ERFC dimensions for TQM implementation. Therefore, this paper makes a novel contribution by providing a refined and deeper comprehension of the relationships between ERFCs and TQM implementation.Keywords: total quality management, employee readiness for change, manufacturing organisations, Jordan
Procedia PDF Downloads 55940732 Renewable Energy in Morocco: Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq, R. El Bachtiri
Abstract:
Renewable energies have a major importance of Morocco's new energy strategy. The geographical location of the Kingdom promotes the development of the use of solar energy. The use of this energy reduces the dependence on imports of primary energy, meets the growing demand for water and electricity in remote areas encourages the deployment of a local industry in the renewable energy sector and Minimize carbon emissions. Indeed, given the importance of the radiation intensity received and the duration of the sunshine, the country can cover some of its solar energy needs. The use of solar energy to pump water is one of the most promising application, this technique represents a solution wherever the grid does not exist. In this paper, we will present a presentation of photovoltaic pumping system components, and the important solar pumping projects installed in Morocco to supply water from remote area.Keywords: PV pumping system, Morocco, PV panel, renewable energy
Procedia PDF Downloads 49840731 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature
Authors: Shao Qi
Abstract:
The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.Keywords: research trends, visual analysis, habitat creation, ecological restoration
Procedia PDF Downloads 6140730 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 12940729 International Trade, Manufacturing and Employment: The First Two Decades of South African Democracy
Authors: Phillip F. Blaauw, Anna M. Pretorius
Abstract:
South Africa re-entered the international economy in the early 1990s, after Apartheid, at a time when globalisation was gathering momentum. Globalisation led to a more open economy, increased export volumes and a changed export mix. Manufacturing goods gained ground relative to mining products. After 21 years of democracy, South African researchers and policymakers need to evaluate the impact of international trade on the level of employment and compensation of employees in the South African manufacturing industry. This is important given the consistent and high levels of unemployment in South Africa. This paper has this evaluation as its aim. Two complimenting approaches are utilised. The 27 sub divisions of the South African manufacturing industry are classified according to capital/labour ratios. Possible trends in employment levels and employee compensation for these categories are then identified when comparing levels in 1995 to those in 2014. The supplementing empirical approach is cross-sectional and panel data regressions for the same period. The aim of the regression analysis is to explain the observed changes in employment and employee compensation levels between 1995 and 2014. The first part of the empirical approach revealed that over the 20-year period the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries all showed massive declines in overall employment. Only three of the 19 industries for these classifications showed marginal overall employment gains. The only meaningful gains were recorded in three of the eight capital intensive manufacturing industries. The overall performance of the South African manufacturing industry is therefore dismal at best. This scenario plays itself out for the skilled section of the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries as well. 18 out of the 19 industries displayed declines even for the skilled section of the labour force. The formal regression analysis supplements the above results. Real production growth is a statistically significant (95 per cent confidence level) explanatory variable of the overall employment level for the period under consideration, albeit with a small positive coefficient. The variables with the most significant negative relationship with changes in overall employment were the dummy variables for intermediate capital intensive and labour intensive manufacturing goods. Disaggregating overall changes in employment further in terms of skill levels revealed that skilled employment in particular responded negatively to increases in the ratio between imported and local inputs for manufacturing. The dummy variable for the labour intensive sectors remained negative and statistically significant, indicating that the labour intensive sectors of South African manufacturing remain vulnerable to the loss of employment opportunities. Whereas the first period (1995 to 2001) after the opening of the South African economy brought positive changes for skilled employment, continued increases in imported inputs displaced some of the skilled labour as well, putting further pressure on the South African economy with already high and persistent unemployment levels. Given the negative for the world commodity cycle and a stagnant local manufacturing sector, the challenge for policymakers is getting even more pronounced after South Africa’s political coming of age.Keywords: capital/labour ratios, employment, employee compensation, manufacturing
Procedia PDF Downloads 22040728 Diversity and Equality in Four Finnish and Italian Energy Companies' Open Access Material
Authors: Elisa Bertagna
Abstract:
A frame analysis of the work done by various energy multinational companies concerning diversity issues and gender equality is presented. Documents of four multinational companies - two from Finland and two from Italy - have been studied. The array of companies’ documents includes data from their websites, policies and so on. The Finnish and Italian contexts have been chosen as a sample of North and South Europe, of 'advanced' and 'less advanced'. The aim of the analysis is to understand if and how human resource and diversity management in Finnish and Italian multinational energy companies communicate their activity towards the employees. Attention is given on how employees are reacting in their role and on the consequences of its social positioning. The findings of this essay are crucially important. They show how the companies in object tend to focus on the HR and DM positive actions towards female employees’ struggles since the industry is characterized by multinationals with male-dominated employees. In this way, other categories, which are also depicted as sensitive such as young and elderly people or foreigners, do not receive the same amount of attention. Consequently, power hierarchies can be found: 'women' as a social category are given more importance and space in the companies’ data than others. Consequently, the present work analysis reflects on possible struggles that such companies might be facing concerning gender biases and further diverse issues.Keywords: energy, diversity, gender, multinationals, power hierarchies
Procedia PDF Downloads 14340727 Climate Change Effects on Agriculture
Authors: Abdellatif Chebboub
Abstract:
Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.Keywords: climate change, agriculture, weather change, danger of climate change
Procedia PDF Downloads 31640726 Performance Analysis of the First-Order Characteristics of Polling System Based on Parallel Limited (K=1) Services Mode
Authors: Liu Yi, Bao Liyong
Abstract:
Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment.Keywords: polling, parallel scheduling, mean queue length, average cycle time
Procedia PDF Downloads 3940725 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA
Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell
Abstract:
Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis
Procedia PDF Downloads 23040724 The Relationship among Perceived Risk, Product Knowledge, Brand Image and the Insurance Purchase Intention of Taiwanese Working Holiday Youths
Authors: Wan-Ling Chang, Hsiu-Ju Huang, Jui-Hsiu Chang
Abstract:
In 2004, the Ministry of Foreign Affairs Taiwan launched ‘An Arrangement on Working Holiday Scheme’ with 15 countries including New Zealand, Japan, Canada, Germany, South Korea, Britain, Australia and others. The aim of the scheme is to allow young people to work and study English or other foreign languages. Each year, there are 30,000 Taiwanese youths applied for participating in the working holiday schemes. However, frequent accidents could cause huge medical expenses and post-delivery fee, which are usually unaffordable for most families. Therefore, this study explored the relationship among perceived risk toward working holiday, insurance product knowledge, brand image and insurance purchase intention for Taiwanese youths who plan to apply for working holiday. A survey questionnaire was distributed for data collection. A total of 316 questionnaires were collected for data analyzed. Data were analyzed using descriptive statistics, independent samples T-test, one-way ANOVA, correlation analysis, regression analysis and hierarchical regression methods of analysis and hypothesis testing. The results of this research indicate that perceived risk has a negative influence on insurance purchase intention. On the opposite, product knowledge has brand image has a positive influence on the insurance purchase intention. According to the mentioned results, practical implications were further addressed for insurance companies when developing a future marketing plan.Keywords: insurance product knowledges, insurance purchase intention, perceived risk, working holiday
Procedia PDF Downloads 25040723 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 31440722 Parameter Estimation for Contact Tracing in Graph-Based Models
Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar
Abstract:
We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference
Procedia PDF Downloads 7740721 Solar Panel Design Aspects and Challenges for a Lunar Mission
Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair
Abstract:
TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude
Procedia PDF Downloads 23040720 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 14140719 Testing the Validity of Feldstein-Horioka Puzzle in BRICS Countries
Authors: Teboho J. Mosikari, Johannes T. Tsoku, Diteboho L. Xaba
Abstract:
The increase of capital mobility across emerging economies has become an interesting topic for many economic policy makers. The current study tests the validity of Feldstein–Horioka puzzle for 5 BRICS countries. The sample period of the study runs from 2001 to 2014. The study uses the following parameter estimates well known as the Fully Modified OLS (FMOLS), and Dynamic OLS (DOLS). The results of the study show that investment and savings are cointegrated in the long run. The parameters estimated using FMOLS and DOLS are 0.85 and 0.74, respectively. These results imply that policy makers within BRICS countries have to consider flexible monetary and fiscal policy instruments to influence the mobility of capital with the bloc.Keywords: Feldstein and Horioka puzzle, saving and investment, panel models, BRICS countries
Procedia PDF Downloads 25940718 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system
Procedia PDF Downloads 34940717 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 28240716 Effects of Boiling Temperature and Time on Colour, Texture and Sensory Properties of Volutharpa ampullacea perryi Meat
Authors: Xianbao Sun, Jinlong Zhao, Shudong He, Jing Li
Abstract:
Volutharpa ampullacea perryi is a high-protein marine shellfish. However, few data are available on the effects of boiling temperatures and time on quality of the meat. In this study, colour, texture and sensory characteristics of Volutharpa ampullacea perryi meat during the boiling cooking processes (75-100 °C, 5-60 min) were investigated by colors analysis, texture profile analysis (TPA), scanning electron microscope (SEM) and sensory evaluation. The ratio of cooking loss gradually increased with the increase of temperature and time. The colour of meat became lighter and more yellower from 85 °C to 95 °C in a short time (5-20 min), but it became brown after a 30 min treatment. TPA results showed that the Volutharpa ampullacea perryi meat were more firm and less cohesive after a higher temperature (95-100 °C) treatment even in a short period (5-15 min). Based on the SEM analysis, it was easily found that the myofibrils structure was destroyed at a higher temperature (85-100 °C). Sensory data revealed that the meat cooked at 85-90 °C in 10-20 min showed higher scores in overall acceptance, as well as color, hardness and taste. Based on these results, it could be constructed that Volutharpa ampullacea perryi meat should be heated on a suitable condition (such as 85 °C 15 min or 90 °C 10 min) in the boiling cooking to be ensure a better acceptability.Keywords: Volutharpa ampullacea perryi meat, boiling cooking, colour, sensory, texture
Procedia PDF Downloads 28140715 Blast Resistance Enhancement of Structures Subjected to Improvised Explosive Devices Attack: A Numerical Study
Authors: Michael I. Okereke, Ambrose I. Akpoyomare
Abstract:
This paper presents a numerical study of the impact mechanic of metallic and sandwich structures incorporate with blast resistance enhancements. The study focuses on structures that have been exposed to improvised explosives devices (IEDs) attacks. The results show numerical conclusions on mechanisms to ensure blast resistance enhancement for the applications studied in this work. The work has identified optimal panel configuration both in geometry and configurations to ensure optimal blast resistance response to such IEDs discharges. Findings from this work will drive improvements in especially military and civilian vehicles in countries where blast attacks on vehicular occupants are quite rampant like Pakistan and Afghanistan.Keywords: blast resistance, blast enhancement, explosives, material behavior
Procedia PDF Downloads 37340714 Behavioral Response of Bee Farmers to Climate Change in South East, Nigeria
Authors: Jude A. Mbanasor, Chigozirim N. Onwusiribe
Abstract:
The enigma climate change is no longer an illusion but a reality. In the recent years, the Nigeria climate has changed and the changes are shown by the changing patterns of rainfall, the sunshine, increasing level carbon and nitrous emission as well as deforestation. This study analyzed the behavioural response of bee keepers to variations in the climate and the adaptation techniques developed in response to the climate variation. Beekeeping is a viable economic activity for the alleviation of poverty as the products include honey, wax, pollen, propolis, royal jelly, venom, queens, bees and their larvae and are all marketable. The study adopted the multistage sampling technique to select 120 beekeepers from the five states of Southeast Nigeria. Well-structured questionnaires and focus group discussions were adopted to collect the required data. Statistical tools like the Principal component analysis, data envelopment models, graphs, and charts were used for the data analysis. Changing patterns of rainfall and sunshine with the increasing rate of deforestation had a negative effect on the habitat of the bees. The bee keepers have adopted the Kenya Top bar and Langstroth hives and they establish the bee hives on fallow farmland close to the cultivated communal farms with more flowering crops.Keywords: climate, farmer, response, smart
Procedia PDF Downloads 13340713 Improving Road Infrastructure Safety Management Through Statistical Analysis of Road Accident Data. Case Study: Streets in Bucharest
Authors: Dimitriu Corneliu-Ioan, Gheorghe FrațIlă
Abstract:
Romania has one of the highest rates of road deaths among European Union Member States, and there is a concern that the country will not meet its goal of "zero deaths" by 2050. The European Union also aims to halve the number of people seriously injured in road accidents by 2030. Therefore, there is a need to improve road infrastructure safety management in Romania. The aim of this study is to analyze road accident data through statistical methods to assess the current state of road infrastructure safety in Bucharest. The study also aims to identify trends and make forecasts regarding serious road accidents and their consequences. The objective is to provide insights that can help prioritize measures to increase road safety, particularly in urban areas. The research utilizes statistical analysis methods, including exploratory analysis and descriptive statistics. Databases from the Traffic Police and the Romanian Road Authority are analyzed using Excel. Road risks are compared with the main causes of road accidents to identify correlations. The study emphasizes the need for better quality and more diverse collection of road accident data for effective analysis in the field of road infrastructure engineering. The research findings highlight the importance of prioritizing measures to improve road safety in urban areas, where serious accidents and their consequences are more frequent. There is a correlation between the measures ordered by road safety auditors and the main causes of serious accidents in Bucharest. The study also reveals the significant social costs of road accidents, amounting to approximately 3% of GDP, emphasizing the need for collaboration between local and central administrations in allocating resources for road safety. This research contributes to a clearer understanding of the current road infrastructure safety situation in Romania. The findings provide critical insights that can aid decision-makers in allocating resources efficiently and institutionally cooperating to achieve sustainable road safety. The data used for this study are collected from the Traffic Police and the Romanian Road Authority. The data processing involves exploratory analysis and descriptive statistics using the Excel tool. The analysis allows for a better understanding of the factors contributing to the current road safety situation and helps inform managerial decisions to eliminate or reduce road risks. The study addresses the state of road infrastructure safety in Bucharest and analyzes the trends and forecasts regarding serious road accidents and their consequences. It studies the correlation between road safety measures and the main causes of serious accidents. To improve road safety, cooperation between local and central administrations towards joint financial efforts is important. This research highlights the need for statistical data processing methods to substantiate managerial decisions in road infrastructure management. It emphasizes the importance of improving the quality and diversity of road accident data collection. The research findings provide a critical perspective on the current road safety situation in Romania and offer insights to identify appropriate solutions to reduce the number of serious road accidents in the future.Keywords: road death rate, strategic objective, serious road accidents, road safety, statistical analysis
Procedia PDF Downloads 8440712 Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis
Authors: Arin Ghazarian, Cyril Rakovski
Abstract:
Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter calledKeywords: arrhythmia, cardiology, differential privacy, ECG, epsilon, medi-cal data, privacy preserving analytics, statistical databases
Procedia PDF Downloads 15240711 Role of Machine Learning in Internet of Things Enabled Smart Cities
Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav
Abstract:
This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.Keywords: IoT, smart city, embedded systems, sustainable environment
Procedia PDF Downloads 575