Search results for: numerical integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5971

Search results for: numerical integration

4321 Partnering with Stakeholders to Secure Digitization of Water

Authors: Sindhu Govardhan, Kenneth G. Crowther

Abstract:

Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.

Keywords: cyber security, shared responsibility, IIOT, threat modelling

Procedia PDF Downloads 69
4320 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms

Authors: Eman Ayman, Gehan Nagy

Abstract:

The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.

Keywords: flexibility, learning space, immersive technology, learning environment, interior design

Procedia PDF Downloads 85
4319 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 59
4318 Developing Future New Roles for Traditional Birth Attendants in Nigeria

Authors: Hauwau Mohammed

Abstract:

Research purpose: the integration of Traditional Birth Attendants (TBAs) has long been initiated into healthcare systems. This has been to help improve maternal mortality, particularly in developing countries. Nigeria is seen as one of the countries with a high maternal death rate due to common pregnancy complications and low resources. Communities with challenges of universal coverage of skilled workers rely on TBAs for pregnancy-related services, including delivery. The Sokoto State government has conducted several training programs on a significant number of TBAs to enable a formal integration of relationships with skilled healthcare for women in rural regions. This study aims to explore a standard method and develop an assessment framework for improving TBAs training programs in Sokoto State. Research Design, Methodology & Methods : Using a qualitative design, an interpretive phenomenology approach will be applied to explore the lived-experiences of 28 TBAs, who have undergone a form of training while also examining the strategies used to develop those programs through 8 policymakers and/or program trainers. For the collection stage, a focus group discussion and a face-to-face interview will be conducted, where the latter is for TBAs and the former for policymakers and training officials. Analysis: Data will be analyse through IPA format while using Nvivo to code and catalog personal experiential generated patterns. Secondary review: a scoping review of secondary data from Nigeria was used to map the knowledge gap and the extent of available data. The thematic analytic findings suggested that there are various approaches used to incorporate TBAs into the healthcare system, which include interventional programs targeted at specific health issues. In addition, incentives were used to encourage TBAs to facilitate the frequent use of skilled care for women.

Keywords: traditional birth attendants, Nigeria, training, program

Procedia PDF Downloads 77
4317 Impact of Quality Assurance Mechanisms on the Work Efficiency of Staff in the Educational Space of Georgia

Authors: B. Gechbaia, K. Goletiani, G. Gabedava, N. Mikeltadze

Abstract:

At this stage, Georgia is a country which is actively involved in the European integration process, for which the primary priority is effective integration in the European education system. The modern Georgian higher education system is the process of establishing a new sociocultural reality, whose main priorities are determined by the Quality System as a continuous cycle of planning, implementation, checking and acting. Obviously, in this situation, the issue of management of education institutions comes out in the foreground, since the proper planning and implementation of personnel management processes is one of the main determinants of the company's performance. At the same time, one of the most important factors is the psychological comfort of the personnel, ensuring their protection and efficiency of stress management policy. The purpose of this research is to determine how intensely the relationship is between the psychological comfort of the personnel and the efficiency of the quality system in the institution as the quality assurance mechanisms of educational institutions affect the stability of personnel, prevention and management of the stressful situation. The research was carried out within the framework of the Internal Grant Project «The Role of Organizational Culture in the Process of Settlement of Management of Stress and Conflict, Georgian Reality and European Experience » of the Batumi Navigation Teaching University, based on the analysis of the survey results of target groups. The small-scale research conducted by us has revealed that the introduction of quality assurance system and its active implementation increased the quality of management of Georgian educational institutions, increased the level of universal engagement in internal and external processes and as a result, it has improved the quality of education as well as social and psychological comfort indicators of the society.

Keywords: quality assurance, effective management, stability of personnel, psychological comfort, stress management

Procedia PDF Downloads 151
4316 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 119
4315 The Effects of Semi-Public Spaces with Distinctive Functions on the Urban Space Quality

Authors: Melike Orhan

Abstract:

Along with impetuous physical change, configuration and increase in the density of cities, urban public spaces have started to become a transition area rather than spaces to inhabit. The insufficiency of public spaces, one of the most significant components of a city, where communal life is maintained and the decrease in the quality of urban spaces have led to an increase in the use of semi-public spaces as urban space. Semi-public spaces are those that ensure transition between private and public spaces and can be seen, observed, reached and used by urban-dwellers. Humans are in a constant relation to their surroundings and care for integration as part of their surroundings. Semi-public spaces providing balance for the individual between private spaces (structures) and urban-public spaces make this integration easier. Spaces with a semi-public characteristic serve for a particular neighboring unit and the user (i.e. common use areas in residential spaces and dwellings, common outdoor areas situated between office buildings, and etc.) These spaces, whose density of usage is increased with distinctive functions and activities, gain different attributions according to the characteristics of the urban space they are located in (commercial, residential, touristic, and etc.) and to the functions of the structures with which they are in relation. At the same time, they begin to serve other neighboring units along with an increase in public usage. As a result, the interaction between environment-space-structure-humans changes, which directly affects the urban space quality. The aim of this study is to determine how and depending on what characteristics the public usage density of semi-public spaces change and to put forth the effects of this change on the urban environment it is located in and to designate its role in terms of 'urban space quality'. In conclusion, within the scope of this study, semi-public spaces located in urban spaces with distinctive functions will be explored through examples, and the effects of these spaces with altered public usage and density on urban space and quality of life will be put forward. Accordingly, applicable criteria will be determined by means of semi-public spaces oriented at increasing and sustaining the quality of urban space.

Keywords: semi-public spaces, urban public spaces, urban space quality, public usage

Procedia PDF Downloads 235
4314 Collaborative Planning and Forecasting

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Collaborative planning and forecasting are the innovative and systematic approaches towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate collaborative planning and forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.

Keywords: information transfer, forecasting, optimization, supply chain management

Procedia PDF Downloads 429
4313 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach

Authors: Kavindan Balakrishnan

Abstract:

Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.

Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure

Procedia PDF Downloads 121
4312 Young People’s Perceptions of Disability: The New Generation’s View of a Public Seen as Vulnerable and Marginalized

Authors: Ulysse Lecomte, Maryline Thenot

Abstract:

For a long time, disabled people lived in isolation within the family environment, with little interaction with the outside world and a high risk of social exclusion. However, in a number of countries, progress has been made thanks to changes in legislation on the social integration of disabled people, a significant change in attitudes, and the development of CSR. But the problem of their social, economic, and professional exclusion persists and has been further exacerbated by the COVID-19 pandemic. This societal phenomenon is sufficiently important to be the subject of management science research. We have therefore focused our work on society's current perception of people with disabilities and their possible integration. Our aim is to find out what levers could be put in place to bring about positive change in the situation. We have chosen to focus on the perception of young people in France, who are the new generation responsible for the future of our society and from whom tomorrow's decisionmakers, future employers, and stakeholders who can influence the living conditions of disabled people will be drawn. Our study sample corresponds to the 18-30 age group, which is the population of young adults likely to have sufficient experience and maturity. The aim of this study is not only to find out how this population currently perceives disability but also to identify the factors influencing this perception and the most effective levers for action to act positively on this phenomenon and thus promote better social integration of people with disabilities in the future. The methodology is based on theoretical and empirical research. The literature review includes a historical and etymological approach to disability, a definition of the different concepts of disability, an approach to disability as a vector of social exclusion, and the role of perception and representations in defining the social image of disability. This literature review is followed by an empirical part carried out by means of a questionnaire administered to 110 young people aged 18 to 30. Analysis of our results suggests that, despite a recent improvement, disabled people are still perceived as vulnerable and socially marginalised. The following factors stand out as having a significant influence (positive or negative) on the perception of disability: the individual's familiarity with the 'world of disability', cultural factors, the degree of 'visibility' of the disability and the empathy level of the disabled person him/herself. Others, on the other hand, such as socio-political and economic factors, have little impact on this perception. In addition, it is possible to classify the various levers of action likely to improve the social perception of disability according to their degree of effectiveness. Our study population prioritised training initiatives for the various players and stakeholders (teachers, students, disabled people themselves, companies, sports clubs, etc.). This was followed by communication, ecommunication and media campaigns in favour of disability. Lastly, the sample was judged as 'less effective' positive discrimination actions such as setting a minimum percentage for the representation of disabled people in various fields (studies, employment, politics ...).

Keywords: disability, perception, social image, young people, influencing factors, levers for action

Procedia PDF Downloads 30
4311 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound

Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu

Abstract:

Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.

Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model

Procedia PDF Downloads 283
4310 Transcending Boundaries: Integrating Urban Vibrancy with Contemporary Interior Design through Vivid Wall Pieces

Authors: B. C. Biermann

Abstract:

This in-depth exploration investigates the transformative integration of urban vibrancy into contemporary interior design through the strategic incorporation of vivid wall pieces. Bridging the gap between public dynamism and private tranquility, this study delves into the nuanced methodologies, creative processes, and profound impacts of this innovative approach. Drawing inspiration from street art's dynamic language and the timeless allure of natural beauty, these artworks serve as conduits, orchestrating a dialogue that challenges traditional boundaries and redefines the relationship between external chaos and internal sanctuaries. The fusion of urban vibrancy with contemporary interior design represents a paradigm shift, where the inherent dynamism of public spaces harmoniously converges with the curated tranquility of private environments. This paper aims to explore the underlying principles, creative processes, and transformative impacts of integrating vivid wall pieces as instruments for bringing the "outside in." Employing an innovative and meticulous methodology, street art elements are synthesized with the refined aesthetics of contemporary design. This delicate balance necessitates a nuanced understanding of both artistic realms, ensuring a synthesis that captures the essence of urban energy while seamlessly blending with the sophistication of modern interior design. The creative process involves a strategic selection of street art motifs, colors, and textures that resonate with the organic beauty found in natural landscapes, creating a symbiotic relationship between the grittiness of the streets and the elegance of interior spaces. This groundbreaking approach defies traditional boundaries by integrating dynamic street art into interior spaces, blurring the demarcation between external chaos and internal tranquility. Vivid wall pieces serve as dynamic focal points, transforming physical spaces and challenging conventional perceptions of where art belongs. This redefinition asserts that boundaries are fluid and meant to be transcended. Case studies illustrate the profound impact of integrating vivid wall pieces on the aesthetic appeal of interior spaces. Urban vibrancy revitalizes the atmosphere, infusing it with palpable energy that resonates with the vivacity of public spaces. The curated tranquility of private interiors coexists harmoniously with the dynamic visual language of street art, fostering a unique and evolving relationship between inhabitants and their living spaces. Emphasizing harmonious coexistence, the paper underscores the potential for a seamless dialogue between public urban spaces and private interiors. The integration of vivid wall pieces acts as a bridge rather than a dichotomy, merging the dynamism of street art with the curated elegance of contemporary design. This unique visual tapestry transcends traditional categorizations, fostering a symbiotic relationship between contrasting worlds. In conclusion, this paper posits that the integration of vivid wall pieces represents a transformative tool for contemporary interior design, challenging and redefining conventional boundaries. By strategically bringing the "outside in," this approach transforms interior spaces and heralds a paradigm shift in the relationship between urban aesthetics and contemporary living. The ongoing narrative between urban vibrancy and interior design creates spaces that reflect the dynamic and ever-evolving nature of the surrounding environment.

Keywords: Art Integration, Contemporary Interior Design, Interior Space Transformation, Vivid Wall Pieces

Procedia PDF Downloads 73
4309 Transfigurative Changes of Governmental Responsibility

Authors: Ákos Cserny

Abstract:

The unequivocal increase of the area of operation of the executive power can happen with the appearance of new areas to be influenced and its integration in the power, or at the expense of the scopes of other organs with public authority. The extension of the executive can only be accepted within the framework of the rule of law if parallel with this process we get constitutional guarantees that the exercise of power is kept within constitutional framework. Failure to do so, however, may result in the lack, deficit of democracy and democratic sense, and may cause an overwhelming dominance of the executive power. Therefore, the aim of this paper is to present executive power and responsibility in the context of different dimensions.

Keywords: confidence, constitution, executive power, liabiliy, parliamentarism

Procedia PDF Downloads 396
4308 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 370
4307 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 114
4306 Krembo Wings Youth Movement for Children with and without Disabilities: An Inclusive Model from an Educational Perspective to a Professional Approach

Authors: Claudia Koby, Merav Boaz, Meirav Zaiger Kober

Abstract:

Krembo Wings is an all-inclusive youth movement which brings children and youth with any disability together with their able-bodied peers (counselors) for weekly fun and educational social activities. Krembo Wings utilizes a socio-educational framework to create and lead social change through members with and without disabilities. All the work that Krembo Wings engages in stems from its central goal of promoting inclusion and integration using social and psychological theories to develop its unique model and approach. The key to Krembo Wings' approach in promoting inclusion is active participation – each member, with and without disabilities, is enabled to participate to their fullest capacity in the youth movement and its activities. In order for this to be achieved, all activities are adjustable and are modified to fit the abilities of each member. Additionally, youth counselors – most of whom are members without disabilities – go through extensive training in order to act as 'intermediaries' for their partner with disabilities, enabling and facilitating their partner's participation in a way that allows them to be as independent and active as possible. The relationship is one of friendship and not of caretaking. There is always a nurse on-hand to tend to any caretaking needs. Two essential elements of Krembo Wings' model is the broadening of concepts – shifting and changing the understanding of certain concepts such as what it means to be 'independent' or 'able' – and the development of a unique language – creating a language which both reflects and shapes reality. These elements of Krembo Wings' model foster the development of the values of acceptance and appreciation of those who are 'different'. It instills in members and counselors a new way of perceiving the world, one in which inclusion and integration are achievable and natural. Krembo Wings is certain that implementation of this model will promote the participation and inclusion of individuals with disabilities in society while promoting diversity. This model can serve as a platform which can be replicated and adjusted to suit any environment.

Keywords: innovative model for inclusion, socio-educational movement, youth leadership, youth with and without disabilities

Procedia PDF Downloads 122
4305 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions

Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann

Abstract:

Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.

Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination

Procedia PDF Downloads 427
4304 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation

Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy

Abstract:

Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).

Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation

Procedia PDF Downloads 146
4303 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 613
4302 Convergence or Divergence of Economic Growth within the ASEAN Community: Challenges for the AEC

Authors: Philippe Gugler

Abstract:

This contribution reflects some important questions regarding inter alia the economic development occurring in the light of the ASEAN’s goal of creating the ASEAN Economic Community (AEC) by 2015. We observe a continuing economic growth of GDP per capita over recent years despite the negative effects of the world economic crisis. IMF forecasts indicate that this trend will continue. The paper focuses on the analysis and comparison of economic growth trends of ASEAN countries.

Keywords: ASEAN, convergence, divergence, economic growth, globalization, integration

Procedia PDF Downloads 514
4301 A Cross-Sectional Study on Management of Common Mental Disorders Among Patients Living with HIV/AIDS Attending Antiretroviral Treatment (ART) Clinic in Hoima Regional Referral Hospital Uganda

Authors: Agodo Mugenyi Herbert

Abstract:

Background: A high prevalence of both HIV infection and mental disorders exists in Sub-Saharan Africa, however there is little integration of care for mental health disorders among HIV-infected individuals. The study aimed at determining the management of common mental disorders among HIV/AIDS clients attending Antiretroviral clinic in Hoima regional referral hospital. Significancy of the study: The information generated by this study would help mental health advocates, ministry of health, Civil society organizations in HIV programming to advocate for enhanced mental health care for PLWHA. The result will be used in policy development and lobbying for integration of mental health care in HIV/AIDS care. Methods: This study applied a cross sectional design. It involved data collection from clients with HIV/AIDS attending ART clinic in Hoima regional referral hospital at one specific point in time. It aimed at providing data on the entire population under study. Data was collected from Hoima Regional Referral Hospital at the ART clinic. Data analysis was performed using SPSS version 24. Results: 66 HIV/AIDS clients and 10 health workers in the ART clinic who participated fully completed the study. The overall prevalence of at least one form of mental disorder was 83%. Majority of the health care practitioner do not use pharmacological, psychological, and social interventions to manage such disorders. Conclusion: These results are suggestive of a significant proportion of the HIV-infected patients experiencing psychological difficulty for which they do not receive treatment Recommendations: Current care practices applied to patients with HIV/AIDS should be integrated more generally to include treatment services to identify and manage common mental disorders.

Keywords: common mental disorders, mental health, mental illness, and severe mental illness

Procedia PDF Downloads 67
4300 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 319
4299 The Use of Simulation-Based Training to Improve Team Dynamics during Code in Critical Care Units

Authors: Akram Rasheed

Abstract:

Background: Simulation in the health care field has been increasingly used over the last years in the training of resuscitation and life support practices. It has shown the advantage of improving the decision-making and technical skills through deliberate practice and return demonstration. Local Problem: This article reports on the integration of simulation-based training (SBT) in the training program about proper team dynamics and leadership skills during cardiopulmonary resuscitation (CPR) in the intensive care unit (ICU). Method and Intervention: Training of 180 critical care nurses was conducted using SBT between 1st January and 30th 2020. We had conducted 15 workshops, with the integration of SBT using high fidelity manikins and using demonstration and return-demonstration approach to train the nursing staff about proper team dynamics and leadership skills during CPR. Results: After completing the SBT session, all 180 nurses completed the evaluation form. The majority of evaluation items were rated over 95% for the effectiveness of the education; four items were less than 95% (88–94%). Lower rated items considered training and practice time, improved competency, and commitment to apply to learn. The team dynamics SBT was evaluated as an effective means to improve team dynamics and leadership skills during CPR in the intensive care unit (ICU). Conclusion: The use of simulation-based training to improve team dynamics and leadership skills is an effective method for better patient management during CPR. Besides skills competency, closed-loop communication, clear messages, clear roles, and assignments, knowing one’s limitations, knowledge sharing, constructive interventions, re-evaluating and summarizing, and mutual respect are all important concepts that should be considered during team dynamics training. However, participants reported the need for a repeated practice opportunity to build competency.

Keywords: cardiopulmonary resuscitation, high fidelity manikins, simulation-based training, team dynamics

Procedia PDF Downloads 136
4298 Direct Measurement of Pressure and Temperature Variations During High-Speed Friction Experiments

Authors: Simon Guerin-Marthe, Marie Violay

Abstract:

Thermal Pressurization (TP) has been proposed as a key mechanism involved in the weakening of faults during dynamic ruptures. Theoretical and numerical studies clearly show how frictional heating can lead to an increase in pore fluid pressure due to the rapid slip along faults occurring during earthquakes. In addition, recent laboratory studies have evidenced local pore pressure or local temperature variation during rotary shear tests, which are consistent with TP theoretical and numerical models. The aim of this study is to complement previous ones by measuring both local pore pressure and local temperature variations in the vicinity of a water-saturated calcite gouge layer subjected to a controlled slip velocity in direct double shear configuration. Laboratory investigation of TP process is crucial in order to understand the conditions at which it is likely to become a dominant mechanism controlling dynamic friction. It is also important in order to understand the timing and magnitude of temperature and pore pressure variations, to help understanding when it is negligible, and how it competes with other rather strengthening-mechanisms such as dilatancy, which can occur during rock failure. Here we present unique direct measurements of temperature and pressure variations during high-speed friction experiments under various load point velocities and show the timing of these variations relatively to the slip event.

Keywords: thermal pressurization, double-shear test, high-speed friction, dilatancy

Procedia PDF Downloads 58
4297 Assessing the Impact of Construction Projects on Disabled Accessibility and Inclusion

Authors: Yasser Aboel-Magd

Abstract:

This research addresses the critical issue of accessibility for individuals with special needs and the broader implications of disability on one's ability to lead an independent and integrated life within society. It highlights the consequences of injury, illness, or disability not only on the physical level but also on psychological, social, educational, economic, and functional aspects of life. The study emphasizes the importance of inclusive design in urban spaces, reflecting on how a society's treatment of individuals with disabilities serves as a measure of its progress. The research delves into the challenges faced by people with special needs in the Kingdom, where, despite advancements in various sectors, there is a noticeable lack of accommodating public opportunities for this significant demographic. It argues for the necessity of a Saudi building code that considers the needs of a diverse population during the design phase. The paper discusses the role of urban space as a fundamental element in urban formation and its impact on the societal integration of individuals with special needs. The study explores a variety of inclusive design principles, ranging from physical features like ramps and tactile paving to digital and cognitive accessibility measures such as screen readers, closed captions, plain language, and visual aids. It also considers the impact of wayfinding and appropriate lighting design on the orientation and assistance of individuals within urban spaces at the lowest cost. The researchers connect inclusive design with sustainable practices, advocating for environments that are not only environmentally friendly but also adaptable and lasting. The paper concludes with the assertion that the integration of accessibility, universal design, and sustainability signifies a society's commitment to inclusivity and the empowerment of all individuals, paving the way for a future where everyone can participate fully and independently in society.

Keywords: accessibility, inclusive design, Saudi building code, disability inclusion, socioeconomic progress

Procedia PDF Downloads 80
4296 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD

Procedia PDF Downloads 229
4295 The Impact of Combined Loading on Lateral Capacity and Group Efficiency of Helical Piles

Authors: Hesham Hamdy Abdulmohsen, Ahmed Shawky Abdel Aziz, Mona Fawzy Aldaghma

Abstract:

Helical piles have gained significant attention as efficient alternatives for deep foundations due to their rapid installation process and dual functionality in compression and tension. They experience various combinations of axial and lateral loads. While extensive research has explored helical pile behavior under individual axial or lateral loads, the effects of combined axial compression and lateral loads still need further study. This paper compares experimental and numerical (PLAXIS-3D) results for vertical helical-pile groups under combined loads. The study aims to clarify the impact of key factors, including helix location and lateral load direction, on the lateral capacity of helical-pile groups and, consequently, their overall efficiency. The study concludes that the lateral capacity of the helical-pile group significantly depends on the helix location within the pile shaft length. Optimal lateral performance occurs when helices are positioned at a depth ratio of H/L = 0.4. Furthermore, rectangular plan distribution groups exhibit greater lateral capacity when subjected to lateral loads aligned with their long axis. The presence of vertical compression loading enhances the lateral capacity of the group, with the specific enhancement depending on the value of the vertical compression load, lateral load direction, and helix location.

Keywords: experimental, numerical model, lateral loading, group efficiency, helical piles

Procedia PDF Downloads 19
4294 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses

Authors: M. Y. Ismail, Arslan Kiyani

Abstract:

Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.

Keywords: numerical model, reflectarray resonant elements, scattering parameter measurements, variable substrate thickness

Procedia PDF Downloads 272
4293 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 383
4292 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 68