Search results for: nano calcium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1815

Search results for: nano calcium

165 Material Chemistry Level Deformation and Failure in Cementitious Materials

Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo

Abstract:

Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.

Keywords: cementitious materials, deformation, failure, material chemistry modeling

Procedia PDF Downloads 277
164 Polypropylene Matrix Enriched With Silver Nanoparticles From Banana Peel Extract For Antimicrobial Control Of E. coli and S. epidermidis To Maintain Fresh Food

Authors: Michail Milas, Aikaterini Dafni Tegiou, Nickolas Rigopoulos, Eustathios Giaouris, Zaharias Loannou

Abstract:

Nanotechnology, a relatively new scientific field, addresses the manipulation of nanoscale materials and devices, which are governed by unique properties, and is applied in a wide range of industries, including food packaging. The incorporation of nanoparticles into polymer matrices used for food packaging is a field that is highly researched today. One such combination is silver nanoparticles with polypropylene. In the present study, the synthesis of the silver nanoparticles was carried out by a natural method. In particular, a ripe banana peel extract was used. This method is superior to others as it stands out for its environmental friendliness, high efficiency and low-cost requirement. In particular, a 1.75 mM AgNO₃ silver nitrate solution was used, as well as a BPE concentration of 1.7% v/v, an incubation period of 48 hours at 70°C and a pH of 4.3 and after its preparation, the polypropylene films were soaked in it. For the PP films, random PP spheres were melted at 170-190°C into molds with 0.8cm diameter. This polymer was chosen as it is suitable for plastic parts and reusable plastic containers of various types that are intended to come into contact with food without compromising its quality and safety. The antimicrobial test against Escherichia coli DFSNB1 and Staphylococcus epidermidis DFSNB4 was performed on the films. It appeared that the films with silver nanoparticles had a reduction, at least 100 times, compared to those without silver nanoparticles, in both strains. The limit of detection is the lower limit of the vertical error lines in the presence of nanoparticles, which is 3.11. The main reasons that led to the adsorption of nanoparticles are the porous nature of polypropylene and the adsorption capacity of nanoparticles on the surface of the films due to hydrophobic-hydrophilic forces. The most significant parameters that contributed to the results of the experiment include the following: the stage of ripening of the banana during the preparation of the plant extract, the temperature and residence time of the nanoparticle solution in the oven, the residence time of the polypropylene films in the nanoparticle solution, the number of nanoparticles inoculated on the films and, finally, the time these stayed in the refrigerator so that they could dry and be ready for antimicrobial treatment.

Keywords: antimicrobial control, banana peel extract, E. coli, natural synthesis, microbe, plant extract, polypropylene films, S.epidermidis, silver nano, random pp

Procedia PDF Downloads 159
163 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 297
162 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa

Authors: Parimelazhagan Thangaraj

Abstract:

Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.

Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic

Procedia PDF Downloads 319
161 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 239
160 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes

Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka

Abstract:

Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.

Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering

Procedia PDF Downloads 290
159 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties

Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.

Abstract:

Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.

Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant

Procedia PDF Downloads 239
158 The Relationship between Osteoporosis-Related Knowledge and Physical Activity among Women Age over 50 Years

Authors: P. Tardi, B. Szilagyi, A. Makai, P. Acs, M. Hock, M. Jaromi

Abstract:

Osteoporosis is becoming a major public health problem, particularly in postmenopausal women, as the incidence of this disease is getting higher. Nowadays, one of the most common chronic musculoskeletal diseases is osteoporosis. Osteoporosis-related knowledge is an important contributor to prevent or to treat osteoporosis. The most important strategies to prevent or treat the disease are increasing the level of physical activity at all ages, cessation of smoking, reduction of alcohol consumption, adequate dietary calcium, and vitamin D intake. The aim of the study was to measure the osteoporosis-related knowledge and physical activity among women age over 50 years. For the measurements, we used the osteoporosis questionnaire (OPQ) to examine the disease-specific knowledge and the global physical activity questionnaire (GPAQ) to measure the quantity and quality of the physical activity. The OPQ is a self-administered 20-item questionnaire with five categories: general information, risk factors, investigations, consequences, and treatment. There are four choices per question (one of them is the 'I do not know'). The filler gets +1 for a good answer, -1 point for a bad answer, and 0 for 'I do not know' answer. We contacted with 326 women (63.08 ± 9.36 year) to fill out the questionnaires. Descriptive analysis was carried out, and we calculated Spearman's correlation coefficient to examine the relationship between the variables. Data were entered into Microsoft Excel, and all statistical analyses were performed using SPSS (Version 24). The participants of the study (n=326) reached 8.76 ± 6.94 points on OPQ. Significant (p < 0.001) differences were found in the results of OPQ according to the highest level of education. It was observed that the score of the participants with osteoporosis (10.07 ± 6.82 points) was significantly (p=0.003) higher than participants without osteoporosis (9.38 ± 6.66 points) and the score of those women (6.49 ± 6.97 points) who did not know that osteoporosis exists in their case. The GPAQ results showed the sample physical activity in the dimensions of vigorous work (479.86 ± 684.02 min/week); moderate work (678.16 ± 804.5 min/week); travel (262.83 ± 380.27 min/week); vigorous recreation (77.71 ± 123.46 min/week); moderate recreation (115.15 ± 154.82 min/week) and total weekly physical activity (1645.99 ± 1432.88 min/week). Significant correlations were found between the osteoporosis-related knowledge and the physical activity in travel (R=0.21; p < 0.001), vigorous recreation (R=0.35; p < 0.001), moderate recreation (R=0.35; p < 0.001), total vigorous minutes/week (R=0.15; p=0.001) and total moderate minutes/week (R=0.13; p=0.04) dimensions. According to the results that were achieved, the highest level of education significantly determines osteoporosis-related knowledge. Physical activity is an important contributor to prevent or to treat osteoporosis, and it showed a significant correlation with osteoporosis-related knowledge. Based on the results, the development of osteoporosis-related knowledge may help to improve the level of physical activity, especially recreation. Acknowledgment: Supported by the ÚNKP-20-1 New National Excellence Program of The Ministry for Innovation and Technology from the Source of the National Research, Development and Innovation Fund.

Keywords: osteoporosis, osteoporosis-related knowledge, physical activity, prevention

Procedia PDF Downloads 100
157 Environmental Threats and Great Barrier Reef: A Vulnerability Assessment of World’s Best Tropical Marine Ecosystems

Authors: Ravi Kant Anand, Nikkey Keshri

Abstract:

The Great Barrier Reef of Australia is known for its beautiful landscapes and seascapes with ecological importance. This site was selected as a World Heritage site in 1981 and popularized internationally for tourism, recreational activities and fishing. But the major environmental hazards such as climate change, pollution, overfishing and shipping are making worst the site of marine ecosystem. Climate change is directly hitting on Great Barrier Reef through increasing level of sea, acidification of ocean, increasing in temperature, uneven precipitation, changes in the El Nino and increasing level of cyclones and storms. Apart from that pollution is second biggest factor which vanishing the coral reef ecosystem. Pollution including over increasement of pesticides and chemicals, eutrophication, pollution through mining, sediment runoff, loss of coastal wetland and oil spills. Coral bleaching is the biggest problem because of the environmental threatening agents. Acidification of ocean water reduced the formation of calcium carbonate skeleton. The floral ecosystem (including sea grasses and mangroves) of ocean water is the key source of food for fishes and other faunal organisms but the powerful waves, extreme temperature, destructive storms and river run- off causing the threat for them. If one natural system is under threat, it means the whole marine food web is affected from algae to whale. Poisoning of marine water through different polluting agents have been affecting the production of corals, breeding of fishes, weakening of marine health and increased in death of fishes and corals. In lieu of World Heritage site, tourism sector is directly affected and causing increasement in unemployment. Fishing sector also affected. Fluctuation in the temperature of ocean water affects the production of corals because it needs desolate place, proper sunlight and temperature up to 21 degree centigrade. But storms, El Nino, rise in temperature and sea level are induced for continuous reduction of the coral production. If we do not restrict the environmental problems of Great Barrier Reef than the best known ecological beauty with coral reefs, pelagic environments, algal meadows, coasts and estuaries, mangroves forests and sea grasses, fish species, coral gardens and the one of the best tourist spots will lost in upcoming years. My research will focus on the different environmental threats, its socio-economic impacts and different conservative measures.

Keywords: climate change, overfishing, acidification, eutrophication

Procedia PDF Downloads 360
156 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety

Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar

Abstract:

The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.

Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality

Procedia PDF Downloads 143
155 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 69
154 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties

Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon

Abstract:

At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.

Keywords: inorganic oxides, electrochromic, photochromic, thermochromic

Procedia PDF Downloads 207
153 Characterization, Replication and Testing of Designed Micro-Textures, Inspired by the Brill Fish, Scophthalmus rhombus, for the Development of Bioinspired Antifouling Materials

Authors: Chloe Richards, Adrian Delgado Ollero, Yan Delaure, Fiona Regan

Abstract:

Growing concern about the natural environment has accelerated the search for non-toxic, but at the same time, economically reasonable, antifouling materials. Bioinspired surfaces, due to their nano and micro topographical antifouling capabilities, provide a hopeful approach to the design of novel antifouling surfaces. Biological organisms are known to have highly evolved and complex topographies, demonstrating antifouling potential, i.e. shark skin. Previous studies have examined the antifouling ability of topographic patterns, textures and roughness scales found on natural organisms. One of the mechanisms used to explain the adhesion of cells to a substrate is called attachment point theory. Here, the fouling organism experiences increased attachment where there are multiple attachment points and reduced attachment, where the number of attachment points are decreased. In this study, an attempt to characterize the microtopography of the common brill fish, Scophthalmus rhombus, was undertaken. Scophthalmus rhombus is a small flatfish of the family Scophthalmidae, inhabiting regions from Norway to the Mediterranean and the Black Sea. They reside in shallow sandy and muddy coastal areas at depths of around 70 – 80 meters. Six engineered surfaces (inspired by the Brill fish scale) produced by a 2-photon polymerization (2PP) process were evaluated for their potential as an antifouling solution for incorporation onto tidal energy blades. The micro-textures were analyzed for their AF potential under both static and dynamic laboratory conditions using two laboratory grown diatom species, Amphora coffeaeformis and Nitzschia ovalis. The incorporation of a surface topography was observed to cause a disruption in the growth of A. coffeaeformis and N. ovalis cells on the surface in comparison to control surfaces. This work has demonstrated the importance of understanding cell-surface interaction, in particular, topography for the design of novel antifouling technology. The study concluded that biofouling can be controlled by physical modification, and has contributed significant knowledge to the use of a successful novel bioinspired AF technology, based on Brill, for the first time.

Keywords: attachment point theory, biofouling, Scophthalmus rhombus, topography

Procedia PDF Downloads 89
152 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond

Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu

Abstract:

Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.

Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density

Procedia PDF Downloads 426
151 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton

Procedia PDF Downloads 218
150 Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus

Authors: Alaa G. M. Osman, Abd-El –Baset M. Abd El Reheem, Khaled Y. Abouelfadl, Usama M. Mahmoud, Mohsen A. Moustafa

Abstract:

This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish.

Keywords: biomarkers, water pollution, blood parameters, river nile, african catfish, nile tilapia

Procedia PDF Downloads 282
149 Effects of Supplementation of Nano-Particle Zinc Oxide and Mannan-Oligosaccharide (MOS) on Growth, Feed Utilization, Fatty Acid Profile, Intestinal Morphology, and Hematology in Nile tilapia, Oreochromis niloticus (L.) fry

Authors: Tewodros Abate Alemayehu, Abebe Getahun, Akewake Geremew, Dawit Solomon Demeke, John Recha, Dawit Solomon, Gebremedihin Ambaw, Fasil Dawit Moges

Abstract:

The purpose of this study was to examine the effects of supplementation of zinc oxide (ZnO) nanoparticles and Mannan-oligosaccharide (MOS) on growth performance, feed utilization, fatty acid profiles, hematology, and intestinal morphology of Chamo strain Nile tilapia Oreochromis niloticus (L.) fry reared at optimal temperature (28.62 ± 0.11 ⁰C). Nile tilapia fry (initial weight 1.45 ± 0.01g) were fed basal diet/control diet (Diet-T1), 6 g kg-¹ MOS supplemented diet (Diet-T2), 4 mg ZnO-NPs supplemented diet (Diet-T3), 4 mg ZnO-Bulk supplemented diet (Diet-T4), a combination of 6 g kg-¹ MOS and 4 mg ZnO-Bulk supplemented diet (Diet-T5) and combination of 6 g kg-¹ MOS and 4 mg ZnO-NPs supplemented diet (Diet-T6). Randomly, duplicate aquariums for each diet were assigned and hand-fed to apparent satiation three times daily (08:00, 12:00, and 16:00) for 12 weeks. Fish fed MOS, ZnO-NPs, and a combination of MOS and ZnO-Bulk supplemented diet had higher weight gain, Daily Growth Rate (DGR), and Specific Growth Rate (SGR) than fish fed the basal diet and other feeding groups, although the effect was not significant. According to the GC analysis, Nile tilapia was supplemented with 6 g kg-¹ MOS, 4 mg ZnO-NPs, or a combination of ZnO-NPs, and MOS showed the highest content of EPA, DHA, and higher ratios of PUFA/SFA than other feeding groups. Mean villi length in the proximal and middle portion of the Nile tilapia intestine was affected significantly (p<0.05) by diet. Fish fed Diet-T2 and Diet-T3 had significantly higher villi lengths in the proximal and middle portions of the intestine compared to other feeding groups. The inclusion of additives significantly improved goblet numbers at the proximal, middle, and distal portions of the intestine. Supplementation of additives had also improved some hematological parameters compared with control groups. In conclusion, dietary supplementation of additives MOS and ZnO-NPs could confer benefits on growth performance, fatty acid profiles, hematology, and intestinal morphology of Chamo strain Nile tilapia.

Keywords: chamo strain nile tilapia, fatty acid profile, hematology, intestinal morphology, MOS, ZnO-Bulk, ZnO-NPs

Procedia PDF Downloads 62
148 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices

Authors: Ekta, G. K. Darbha

Abstract:

Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.

Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology

Procedia PDF Downloads 247
147 Altering Surface Properties of Magnetic Nanoparticles with Single-Step Surface Modification with Various Surface Active Agents

Authors: Krupali Mehta, Sandip Bhatt, Umesh Trivedi, Bhavesh Bharatiya, Mukesh Ranjan, Atindra D. Shukla

Abstract:

Owing to the dominating surface forces and large-scale surface interactions, the nano-scale particles face difficulties in getting suspended in various media. Magnetic nanoparticles of iron oxide offer a great deal of promise due to their ease of preparation, reasonable magnetic properties, low cost and environmental compatibility. We intend to modify the surface of magnetic Fe₂O₃ nanoparticles with selected surface modifying agents using simple and effective single-step chemical reactions in order to enhance dispersibility of magnetic nanoparticles in non-polar media. Magnetic particles were prepared by hydrolysis of Fe²⁺/Fe³⁺ chlorides and their subsequent oxidation in aqueous medium. The dried particles were then treated with Octadecyl quaternary ammonium silane (Terrasil™), stearic acid and gallic acid ester of stearyl alcohol in ethanol separately to yield S-2 to S-4 respectively. The untreated Fe₂O₃ was designated as S-1. The surface modified nanoparticles were then analysed with Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Gravimetric Analysis (TGA) and Scanning Electron Microscopy and Energy dispersive X-Ray analysis (SEM-EDAX). Characterization reveals the particle size averaging 20-50 nm with and without modification. However, the crystallite size in all cases remained ~7.0 nm with the diffractogram matching to Fe₂O₃ crystal structure. FT-IR suggested the presence of surfactants on nanoparticles’ surface, also confirmed by SEM-EDAX where mapping of elements proved their presence. TGA indicated the weight losses in S-2 to S-4 at 300°C onwards suggesting the presence of organic moiety. Hydrophobic character of modified surfaces was confirmed with contact angle analysis, all modified nanoparticles showed super hydrophobic behaviour with average contact angles ~129° for S-2, ~139.5° for S-3 and ~151° for S-4. This indicated that surface modified particles are super hydrophobic and they are easily dispersible in non-polar media. These modified particles could be ideal candidates to be suspended in oil-based fluids, polymer matrices, etc. We are pursuing elaborate suspension/sedimentation studies of these particles in various oils to establish this conjecture.

Keywords: iron nanoparticles, modification, hydrophobic, dispersion

Procedia PDF Downloads 131
146 Validation of an Impedance-Based Flow Cytometry Technique for High-Throughput Nanotoxicity Screening

Authors: Melanie Ostermann, Eivind Birkeland, Ying Xue, Alexander Sauter, Mihaela R. Cimpan

Abstract:

Background: New reliable and robust techniques to assess biological effects of nanomaterials (NMs) in vitro are needed to speed up safety analysis and to identify key physicochemical parameters of NMs, which are responsible for their acute cytotoxicity. The central aim of this study was to validate and evaluate the applicability and reliability of an impedance-based flow cytometry (IFC) technique for the high-throughput screening of NMs. Methods: Eight inorganic NMs from the European Commission Joint Research Centre Repository were used: NM-302 and NM-300k (Ag: 200 nm rods and 16.7 nm spheres, respectively), NM-200 and NM- 203 (SiO₂: 18.3 nm and 24.7 nm amorphous, respectively), NM-100 and NM-101 (TiO₂: 100 nm and 6 nm anatase, respectively), and NM-110 and NM-111 (ZnO: 147 nm and 141 nm, respectively). The aim was to assess the biological effects of these materials on human monoblastoid (U937) cells. Dispersions of NMs were prepared as described in the NANOGENOTOX dispersion protocol and cells were exposed to NMs at relevant concentrations (2, 10, 20, 50, and 100 µg/mL) for 24 hrs. The change in electrical impedance was measured at 0.5, 2, 6, and 12 MHz using the IFC AmphaZ30 (Amphasys AG, Switzerland). A traditional toxicity assay, Trypan Blue Dye Exclusion assay, and dark-field microscopy were used to validate the IFC method. Results: Spherical Ag particles (NM-300K) showed the highest toxic effect on U937 cells followed by ZnO (NM-111 ≥ NM-110) particles. Silica particles were moderate to non-toxic at all used concentrations under these conditions. A higher toxic effect was seen with smaller sized TiO2 particles (NM-101) compared to their larger analogues (NM-100). No interferences between the IFC and the used NMs were seen. Uptake and internalization of NMs were observed after 24 hours exposure, confirming actual NM-cell interactions. Conclusion: Results collected with the IFC demonstrate the applicability of this method for rapid nanotoxicity assessment, which proved to be less prone to nano-related interference issues compared to some traditional toxicity assays. Furthermore, this label-free and novel technique shows good potential for up-scaling in directions of an automated high-throughput screening and for future NM toxicity assessment. This work was supported by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584), the Research Council of Norway, project NorNANoREG (239199/O70), the EuroNanoMed II 'GEMN' project (246672), and the UH-Nett Vest project.

Keywords: cytotoxicity, high-throughput, impedance, nanomaterials

Procedia PDF Downloads 351
145 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 146
144 Curcumin-Loaded Pickering Emulsion Stabilized by pH-Induced Self-Aggregated Chitosan Particles for Encapsulating Bioactive Compounds for Food, Flavor/Fragrance, Cosmetics, and Medicine

Authors: Rizwan Ahmed Bhutto, Noor ul ain Hira Bhutto, Mingwei Wang, Shahid Iqbal, Jiang Yi

Abstract:

Curcumin, a natural polyphenolic compound, boasts numerous health benefits; however, its industrial applications are hindered by instabilities and poor solubility. Encapsulating curcumin in Pickering emulsion presents a promising strategy to enhance its bioavailability. Yet, the development of an efficient and straightforward method to fabricate a natural emulsifier for Pickering emulsion poses a significant challenge. Chitosan has garnered attention due to its non-toxicity and excellent emulsifying properties. This study aimed to prepare four distinct types of self-aggregated chitosan particles using a pH-responsive self-assembling approach. The properties of the aggregated particles were adjusted by pH, degree of deacetylation (DDA), and molecular weight (MW), thereby controlling surface charge, size (ranging from nano to micro and floc), and contact angle. Pickering emulsions were then formulated using these various aggregated particles. As MW and pH increased and DDA decreased, the networked structures of the aggregated particles formed, resulting in highly elastic gels that were more resistant to the breakdown of Pickering emulsion at ambient temperature. With elevated temperatures, the kinetic energy of the aggregated particles increased, disrupting hydrogen bonds and potentially transforming the systems from fluids to gels. The Pickering emulsion based on aggregated particles served as a carrier for curcumin encapsulation. It was observed that DDA and MW played crucial roles in regulating drug loading, encapsulation efficiency, and release profile. This research sheds light on selecting suitable chitosan for controlling the release of bioactive compounds in Pickering emulsions, considering factors such as adjustable rheological properties, microstructure, and macrostructure. Furthermore, this study introduces an environmentally friendly and cost-effective synthesis of pH-responsive aggregate particles without the need for high-pressure homogenizers. It underscores the potential of aggregate particles with various MWs and DDAs for encapsulating other bioactive compounds, offering valuable applications in industries including food, flavor/fragrance, cosmetics, and medicine.

Keywords: chitosan, molecular weight, rheological properties, curcumin encapsulation

Procedia PDF Downloads 56
143 Effects of Dietary Polyunsaturated Fatty Acids and Beta Glucan on Maturity, Immunity, and Fry Quality of Pabdah Catfish, Ompok pabda

Authors: Zakir Hossain, Saddam Hossain

Abstract:

A nutritionally balanced diet and selection of appropriate species are important criteria in aquaculture. The present study was conducted to evaluate the effects of polyunsaturated fatty acids (PUFAs) and beta glucan-containing diets on growth performance, feed utilization, maturation, immunity, early embryonic and larval development of endangered Pabdah catfish, Ompok pabda. In this study, squid extracted lipids and mushroom powder were used as the source of PUFAs and beta-glucan, respectively, and formulated two isonitrogenous diets such as a basal or control (CON) diet and a treated (PBG) diet with maintaining 30% protein levels. During the study period, similar physicochemical conditions of water such as temperature, pH, and dissolved oxygen (DO) were 26.5±2 °C, 7.4±0.2, and 6.7±0.5 ppm, respectively, in each cistern. The results showed that final mean body weight, final mean length gain, food conversion ratio (FCR), specific growth rate (SGR), food conversion efficiency (%), hepato somatic index (HSI), kidney index (KI), and viscerosomatic index (VSI) were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The length-weight relationship and relative condition factor (K) of O. pabda were significantly (P<0.05) affected by the PBG diet. The gonadosomatic index (GSI), sperm viability, blood serum calcium ion concentrations (Ca²⁺), and vitellogenin level were significantly (P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet; which was used to the indication of fish maturation. During the spawning season, lipid granules and normal morphological structure were observed in the treated fish liver, whereas fewer lipid granules of liver were observed in the control group. Based on the immunity and stress resistance-related parameters such as hematological indices, antioxidant activity, lysozyme level, respiratory burst activity, blood reactive oxygen species (ROS), complement activity (ACH50 assay), specific IgM, brain AChE, plasma PGOT, and PGPT enzyme activity were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The fecundity, fertilization rate (92.23±2.69%), hatching rate (87.43±2.17 %), and survival (76.62±0.82%) of offspring were significantly higher (P˂0.05) in the PBG diet than in control. Consequently, early embryonic and larval development was better in PBG treated group than in control. Therefore, the present study showed that the polyunsaturated fatty acids (PUFAs) and beta-glucan enriched experimental diet were more effective and achieved better growth, feed utilization, maturation, immunity, and spawning performances of O. pabda.

Keywords: lipids, beta-glucan, fish maturity, fish immunity

Procedia PDF Downloads 90
142 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 102
141 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 247
140 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 196
139 Recovery of Food Waste: Production of Dog Food

Authors: K. Nazan Turhan, Tuğçe Ersan

Abstract:

The population of the world is approximately 8 billion, and it increases uncontrollably and irrepressibly, leading to an increase in consumption. This situation causes crucial problems, and food waste is one of these. The Food and Agriculture Organization of the United Nations (FAO) defines food waste as the discarding or alternative utilization of food that is safe and nutritious for the consumption of humans along the entire food supply chain, from primary production to end household consumer level. In addition, according to the estimation of FAO, one-third of all food produced for human consumption is lost or wasted worldwide every year. Wasting food endangers natural resources and causes hunger. For instance, excessive amounts of food waste cause greenhouse gas emissions, contributing to global warming. Therefore, waste management has been gaining significance in the last few decades at both local and global levels due to the expected scarcity of resources for the increasing population of the world. There are several ways to recover food waste. According to the United States Environmental Protection Agency’s Food Recovery Hierarchy, food waste recovery ways are source reduction, feeding hungry people, feeding animals, industrial uses, composting, and landfill/incineration from the most preferred to the least preferred, respectively. Bioethanol, biodiesel, biogas, agricultural fertilizer and animal feed can be obtained from food waste that is generated by different food industries. In this project, feeding animals was selected as a food waste recovery method and food waste of a plant was used to provide ingredient uniformity. Grasshoppers were used as a protein source. In other words, the project was performed to develop a dog food product by recovery of the plant’s food waste after following some steps. The collected food waste and purchased grasshoppers were sterilized, dried and pulverized. Then, they were all mixed with 60 g agar-agar solution (4%w/v). 3 different aromas were added, separately to the samples to enhance flavour quality. Since there are differences in the required amounts of different species of dogs, fulfilling all nutritional needs is one of the problems. In other words, there is a wide range of nutritional needs in terms of carbohydrates, protein, fat, sodium, calcium, and so on. Furthermore, the requirements differ depending on age, gender, weight, height, and species. Therefore, the product that was developed contains average amounts of each substance so as not to cause any deficiency or surplus. On the other hand, it contains more protein than similar products in the market. The product was evaluated in terms of contamination and nutritional content. For contamination risk, detection of E. coli and Salmonella experiments were performed, and the results were negative. For the nutritional value test, protein content analysis was done. The protein contents of different samples vary between 33.68% and 26.07%. In addition, water activity analysis was performed, and the water activity (aw) values of different samples ranged between 0.2456 and 0.4145.

Keywords: food waste, dog food, animal nutrition, food waste recovery

Procedia PDF Downloads 32
138 Impact of Sunflower Oil Supplemented Diet on Performance and Hematological Stress Indicators of Growing-Finishing Pigs Exposed to Hot Environment

Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara Duarte Borges, Antoni D. Bueno, Leandro Batista Costa

Abstract:

As homeothermic animals, pigs manifest maximum performance when kept at comfortable temperature levels, represented by a limit where thermoregulatory processes are minimal (18 - 20°C). In a stress situation where it will have a higher energy demand for thermal maintenance, the energy contribution to the productive functions will be reduced, generating health imbalances, drop in productive rates and welfare problems. The hypothesis of this project is that 5% starch replacement per 5% sunflower oil (SO), in growing and finishing pig’s diet (Iberic x Duroc), is effective as a nutritional strategy to reduce the negative impacts of thermal stress on performance and animal welfare. Seventy-two crossbred males (51± 6,29 kg body weight- BW) were housed according to the initial BW, in climate-controlled rooms, in collective pens, and exposed to heat stress conditions (30 - 32°C; 35% to 50% humidity). The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). The treatments studied were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed was provided in two phases, 50–100 Kg BW for growing and 100-140 Kg BW for finishing period, respectively. Hematological, biochemical and growth performance parameters were evaluated on all animals at the beginning of the environmental treatment, on the transition of feed (growing to finishing) and in the final of experiment. After the experimental period, when animals reached a live weight of 130-140 kg, they were slaughtered by carbon dioxide (CO2) stunning. Data have shown for the growing phase no statistical interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on animal performance. At finishing phase, pigs fed with SO diet with restriction feed intake had the same average daily gain (ADG) compared with pigs in control diet with ad libitum feed intake. Furthermore, animals fed with the same diet (SO), presented a better feed gain (p < 0,05) due to feed intake reduce (p < 0,05) when compared with control group. To hematological and biochemical parameters, animals under heat stress had an increase in hematocrit, corpuscular volume, urea concentration, creatinine, calcium, alanine aminotransferase and aspartate aminotransferase (p < 0,05) when compared with the beginning of experiment. These parameters were efficient to characterize the heat stress, although the experimental treatments were not able to reduce the hematological and biochemical stress indicators. In addition, the inclusion of SO on pig diets improve feed gain in pigs at finishing phase, even with restriction feed intake.

Keywords: hematological, performance, pigs, welfare

Procedia PDF Downloads 267
137 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 65
136 Modification of Carbon-Based Gas Sensors for Boosting Selectivity

Authors: D. Zhao, Y. Wang, G. Chen

Abstract:

Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.

Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials

Procedia PDF Downloads 109