Search results for: modified stillinger-weber potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13228

Search results for: modified stillinger-weber potential

11578 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 430
11577 An Analysis of Legal and Ethical Implications of Sports Doping in India

Authors: Prathyusha Samvedam, Hiranmaya Nanda

Abstract:

Doping refers to the practice of using drugs or practices that enhance an athlete's performance. This is a problem that occurs on a worldwide scale and compromises the fairness of athletic tournaments. There are rules that have been created on both the national and international levels in order to prevent doping. However, these rules sometimes contradict one another, and it is possible that they don't do a very good job of prohibiting people from using PEDs. This study will contend that India's inability to comply with specific Code criteria, as well as its failure to satisfy "best practice" standards established by other countries, demonstrates a lack of uniformity in the implementation of anti-doping regulations and processes among nations. Such challenges have the potential to undermine the validity of the anti-doping system, particularly in developing nations like India. This article on the legislative framework in India governing doping in sports is very important. To begin, doping in sports is a significant problem that affects the spirit of fair play and sportsmanship. Moreover, it has the potential to jeopardize the integrity of the sport itself. In addition, the research has the potential to educate policymakers, sports organizations, and other stakeholders about the current legal framework and how well it discourages doping in athletic competitions. This article is divided into four distinct sections. The first section offers an explanation of what doping is and provides some context about its development throughout time. Followed the role of anti-doping authorities and the responsibilities they perform are investigated. Case studies and the research technique that will be employed for the study are in the third section; finally, the results are presented in the last section. In conclusion, doping is a severe problem that endangers the honest competition that exists within sports.

Keywords: sports law, doping, NADA, WADA, performance enhancing drugs, anti-doping bill 2022

Procedia PDF Downloads 65
11576 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 298
11575 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 77
11574 Potential Contribution of Local Food Resources towards Sustainable Food Tourism in Nueva Vizcaya

Authors: Marvin Eslava

Abstract:

The over-arching aim of this research is to determine the potential contribution of local food resources to the tourism growth of Nueva Vizcaya. It reviews some of the underpinning concepts and to provide a set of considerations for stakeholders to maximize the opportunity of local food can offer to businesses and the wider community. The basis of the study is to develop a sustainable food tourism model for Nueva Vizcaya. For the purpose of this research, there were 60 total numbers of respondents classified as samples from a six municipality. The respondents of the study were stakeholder consisting of government official, local producers, businessman and Non-government organizations in the selected municipalities of Nueva Vizcaya. Stratified purposive sampling was the appropriate technique that was used to the local government officials and employees, NGOs including the businessmen who are associated with local food resources and local producers. The documentary study, focus group discussion and survey questionnaire was used in order to meet the objectives of the study. Kruskall Wallis test was used to test the variances the ratings of the participants. This was used in the computation of hypothesis. The study concluded that the province of Nueva Vizcaya is blessed for its rich farmlands and fertile mountain soil boasts to produce high quality agricultural products. It is a home of various different indigenous groups creating a wide range of local cuisine. The province has substantial local food development evidence by the various food tourism related resources, increase in facilities and celebrating food tourism related events. The local food resources provide extensive potential economic empowerment and help in building the identity of the province. In addition, the local food resources extensively enhance the agriculture sector and other attractions in the province. Finally, it helps to preserve the authenticity of the food culture and generated pride among all stakeholders extensively. All stakeholders have the same perception on the potential contribution of local food resources to the development of the province of Nueva Vizcaya. The public and private sectors are cognizant on their roles to support the production of local food resources in Nueva Vizcaya. Major challenges and barriers in the development of sustainable food tourism in Nueva Vizcaya include production or supply and marketing.

Keywords: local food resources, contribution, food tourism, benefits

Procedia PDF Downloads 259
11573 Environmental Impact of Cysts of Some Dinoflagellates Species in the Bizerta Lagoon

Authors: M. Bellakhal, M. Bellakhal, L. Aleya

Abstract:

The specific composition and abundance of dinoflagellate resistance cysts in relation to environmental factors were studied from the superficial sediment at 123 stations in the Bizerte lagoon. 48 morphotypes of dinoflagellate cysts were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pacificum, Alexandrium pseudogonyaulax, and Lingulodinum machaerophorum. The density of cysts ranged from 1276 to 20126 cysts g⁻¹ dry sediment. Significant differences in the distribution pattern of the cysts were recorded, which allowed us to distinguish two areas; thus the inner areas of the lagoon have an abundance of cysts greater than the areas with marine influence. Ballast water discharges and shellfish culture may be incriminated as potential sources of introduction of species, particularly potentially toxic ones such as A. pacificum and Polysphaeridium zoharyi, without neglecting the role of currents in cyst distribution. Cyst mapping can be used as an indicator of potential foci of future toxic species blooms in this ecosystem.

Keywords: Bizerta Lagoon, cysts, dinoflagellates, mapping

Procedia PDF Downloads 128
11572 Identification of Potential Small Molecule Inhibitors Against β-hCG for Cancer Therapy: An In-Silico Study

Authors: Shreya Sara Ittycheria, K. C. Sivakumar, Shijulal Nelson Sathi, Priya Srinivas

Abstract:

hCG, a heterodimer composed of α and β subunits, is a peptide hormone having numerous biological functions. Although hCG is expressed by placenta during pregnancy, ectopic β-hCG secretion is observed in many non-trophoblastic tumors including that of breast. In-vitro and in-vivo studies done in the lab, have proved that BRCA1 defective cancers express β-hCG and when β-hCG is expressed or supplemented, it promotes tumor progression and exhibits resistance to carboplatin and ABT888, in such cancers but not in BRCA1 wild type cancers. In cancer cells, instead of binding to its regular receptor, LH-CGR, β-hCG binds with Transforming Growth Factor Receptor 2 (TGFβRII) and phosphorylates it resulting in faster tumor progression through the Smad signaling pathway. Targeting β-hCG could be a potential therapeutic strategy for managing BRCA1 defective cancers. Here, molecular docking and dynamic simulation studies were done to identify potential small molecule inhibitors against β-hCG as there are currently no such inhibitors reported. The binding sites of TGFβRII on β-hCG were identified from the top 10 predicted complexes from Z Dock. Virtual screening of selected commercially available small molecules from various libraries such as ZINC, NCI and Life Chemicals amounting to a total of 50,025 molecules were done. Four potential small molecule inhibitors were identified, RgcbPs-1, RgcbPs-2, RgcbPs-3 and RgcbPs-4 with binding affinities -60.778 kcal/mol, -45.447 kcal/mol, -65.2268 kcal/mol and -82.040 kcal/mol respectively. Further, 100ns Molecular Dynamics (MD) simulation showed that these molecules form stable complexes with β-hCG. RgcbPs-1 maintains hydrogen bonds with Q54, L52, Q46, C100, G36, C57, C38 residues, RgcbPs-2 maintains hydrogen bonds with A83 residue, RgcbPs-3 maintains hydrogen bonds with C57, Y58, R94, G101 residues and RgcbPs-4 maintains hydrogen bonds with G36, C38, T40, C57, D99, C100, G101 and L104 residues of β-hCG all of which coincide with the TGFβRII binding site on β-hCG. These results show that these two inhibitors could be used either singly or in combination for inhibiting β-hCG from binding to TGFβRII and thereby directly inhibiting the tumorigenesis pathway.

Keywords: β-hCG, breast cancer, dynamic simulations, molecular docking, small molecule inhibitors, virtual screening.

Procedia PDF Downloads 99
11571 Multifunctionality of Cover Crops in South Texas: Looking at Multiple Benefits of Cover Cropping on Small Farms in a Subtropical Climate

Authors: Savannah Rugg, Carlo Moreno, Pushpa Soti, Alexis Racelis

Abstract:

Situated in deep South Texas, the Lower Rio Grande Valley (LRGV) is considered one the most productive agricultural regions in the southern US. With the highest concentration of organic farms in the state (Hidalgo county), the LRGV has a strong potential to be leaders in sustainable agriculture. Finding management practices that comply with organic certification and increase the health of the agroecosytem and the farmers working the land is increasingly pertinent. Cover cropping, or the intentional planting of non-cash crop vegetation, can serve multiple functions in an agroecosystem by decreasing environmental pollutants that originate from the agroecosystem, reducing inputs needed for crop production, and potentially decreasing on-farm costs for farmers—overall increasing the sustainability of the farm. Use of cover crops on otherwise fallow lands have shown to enhance ecosystem services such as: attracting native beneficial insects (pollinators), increase nutrient availability in topsoil, prevent nutrient leaching, increase soil organic matter, and reduces soil erosion. In this study, four cover crops (Lablab, Sudan Grass, Sunn Hemp, and Pearl Millet) were analyzed in the subtropical region of south Texas to see how their multiple functions enhance ecosystem services. The four cover crops were assessed to see their potential to harbor native insects, their potential to increase soil nitrogen, to increase soil organic matter, and to suppress weeds. The preliminary results suggest that these subtropical varieties of cover crops have potential to enhance ecosystem services on agricultural land in the RGV by increasing soil organic matter (in all varieties), increasing nitrogen in topsoil (Lablab, Sunn Hemp), and reducing weeds (Sudan Grass).

Keywords: cover crops, ecosystem services, subtropical agriculture, sustainable agriculture

Procedia PDF Downloads 294
11570 The Effect of Chloride Dioxide and High Concentration of CO2 Gas Injection on the Quality and Shelf-Life for Exporting Strawberry 'Maehyang' in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Mohammad Zahirul Islam, Jun Pill Baek, Ho-Min Kang

Abstract:

The strawberry ‘Maehyang’ cultivated in South Korea has been increased to export to Southeast Asia. The degradation of quality often occurs in strawberries during short export period. Botrytis cinerea has been known to cause major damage to the export strawberries and the disease was caused during shipping and distribution. This study was conducted to find out the sterilized effect of chlorine dioxide(ClO2) gas and high concentration of CO2 gas injection for ‘Maehyang’ strawberry and it was packaged with oxygen transmission rate (OTR) films. The strawberry was harvested at 80% color changed stage and packaged with OTR film and perforated film (control). The treatments were a MAP used by with 20,000 cc·m-2·day·atm OTR film and gas injection in packages. The gas type of ClO2 and CO2 were injected into OTR film packages, and treatments were 6 mg/L ClO2, 15% CO2, and they were combined. The treated strawberries were stored at 3℃ for 30 days. Fresh weight loss rate was less than 1% in all OTR film packages but it was more than 15% in a perforated film treatment that showed severe deterioration of visual quality during storage. Carbon dioxide concentration within a package showed approximately 15% of the maximum CO2 concentration in all treatments except control until the 21st day, it was the tolerated range of maximum CO2 concentration of strawberry in recommended CA or MA conditions. But, it increased to almost 50% on the 30th day. Oxygen concentration showed a decrease down to approximately 0% in all treatments except control for 25 days. Ethylene concentration was shown to be steady until the 17th day, but it quickly increased on the 17th day and dropped down on the final storage day (30th day). All treatments did not show any significant differences in gas treatments. Firmness increased in CO2 (15%) and ClO2 (6mg/L) + CO2 (15%) treatments during storage. It might be the effect of high concentration CO2 known by reducing decay and cell wall degradation. The soluble solid decreased in all treatments during storage. These results were caused to use up the sugar by the increase of respiration during storage. The titratable acidity showed a similarity in all treatments. Incidence of fungi was 0% in CO2 (15%) and ClO2 (6mg/L)+ CO2 (15%), but was more than 20% in a perforated film treatment. Consequently, The result indicates that Chloride Dioxide(ClO2) and high concentration of CO2 inhibited fungi growth. Due to the fact that fresh weight loss rate and incidence of fungi were lower, the ClO2(6mg/L)+ CO2(15%) prove to be most efficient in sterilization. These results suggest that Chloride Dioxide (ClO2) and high concentration of CO2 gas injection treatments were an effective decontamination technique for improving the safety of strawberries.

Keywords: chloride dioxide, high concentration of CO2, modified atmosphere condition, oxygen transmission rate films

Procedia PDF Downloads 337
11569 Application of Metroxylon Sagu Waste in Textile Process

Authors: Nazlina Shaari

Abstract:

Sustainability is economic, social and environmental systems that make up the community in providing a healthy, productive, meaningful life for all community residents, present and future. The environmental profile of goods and services that satisfy our individual and societal needs were shaped by design activities. The integration of environmental aspect of product design, especially in textiles present much confusion surrounds the incorporation of environmental objectives into the design process. This paper explores the effective use of waste materials that can contribute to the development of more environmentally responsible practice in textile sector. It introduces key elements of the ecological approach and innovative ideas from waste to wealth. The paper focuses on the potential methods of utilizing sago residue as a natural colour enhancer in natural dyeing process. It will discover the potential of waste materials to be fully utilized to attempt to make the production of that textile more environmentally friendly.

Keywords: sustainability, textiles, waste materials, environmentally friendly

Procedia PDF Downloads 306
11568 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 234
11567 Flexural Behavior of Eco-Friendly Prefabricated Low Cost Bamboo Reinforced Wall Panels

Authors: Vishal Puri, Pradipta Chakrabortty, Swapan Majumdar

Abstract:

Precast concrete construction is the most commonly used technique for a rapid construction. This technique is very frequently used in the developed countries. Different guidelines required to utilize the potential of prefabricated construction are still not available in the developing countries. This causes over dependence on in-situ construction procedure which further affects the quality, scheduling, and duration of construction. Also with the ever increasing costs of building materials and their negative impact on the environment it has become imperative to look out for alternate construction materials which are cheap and sustainable. Bamboo and fly ash are alternate construction materials having great potential in the construction industry. Thus there is a great need to develop prefabricated components by utilizing the potential of these materials. Bamboo reinforced beams, bamboo reinforced columns and bamboo arches as researched previously have shown great prospects for prefabricated construction industry. But, many other prefabricated components still need to be studied and widely tested before their utilization in the prefabricated construction industry. In the present study, authors have showcased prefabricated bamboo reinforced wall panel for the prefabricated construction industry. It presents a detailed methodology for the development of such prefabricated panels. It also presents the flexural behavior of such panels as tested under flexural loads following ASTM guidelines. It was observed that these wall panels are much flexible and do not show brittle failure as observed in traditional brick walls. It was observed that prefabricated walls are about 42% cheaper as compared to conventional brick walls. It was also observed that prefabricated walls are considerably lighter in weight and are environment friendly. It was thus concluded that this type of wall panels are an excellent alternative for partition brick walls.

Keywords: bamboo, prefabricated walls, reinforced structure, sustainable infrastructure

Procedia PDF Downloads 300
11566 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient

Authors: Ping-Ben Liu, Chien-Chou Tseng

Abstract:

The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.

Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient

Procedia PDF Downloads 343
11565 Exploring Cardiovascular and Behavioral Impacts of Aerobic Exercise: A ‎Moroccan Perspective

Authors: Ahmed Boujdad

Abstract:

‎ Morocco, a North African nation known for its rich culture and diverse landscapes, is facing evolving challenges related to cardiovascular health and behavioral well-being. Against this backdrop, the paper aims to spotlight the insights emerging from Moroccan research into the impacts of aerobic exercise on cardiovascular physiology and psychological outcomes. Presentations will encompass a range of topics, including exercise-induced adaptations in heart function, blood pressure management, and vascular health specific to the Moroccan population. A notable focus of the paper will be the examination of how aerobic exercise intertwines with Moroccan behavioral patterns and sociocultural factors. The research will delve into the links between regular exercise and its potential to alleviate stress, anxiety, and depression in the Moroccan context. This exploration extends to the role of exercise in bolstering the cultural fabric of Moroccan society, enhancing community engagement, and promoting a sense of well-being.

Keywords: event-related potential‎, executive function, physical activity, kinesiology

Procedia PDF Downloads 78
11564 Study of Three Channel Electrode Position to Detect Optimum Myoelectric Signal on Five Type Grasp Movement

Authors: Ilham Priadythama, Pringgo Widyo Laksono, Agung Pamungkas

Abstract:

Myoelectric is prosthetic, flexible, and offered industrial application has been highly developed and widely used. Myoelectric hand use myoelectric signal from muscle to activate and control the membrane part of hand. Commonly myoelectric signal is detected on human arm from skin surface. So that it only small magnitude signal captured. Detecting myoelectric signal on the skin surface takes proper and consistent procedure. This paper provides preliminary study of electrodes position which gives best signal strength for five basic grasping. Two-position scenario used to place three channel electrodes set. A bi-potential amplifier based on AD620 used to amplify the signal. Finally, the signal was analyzed using DSSF3 software. From this study, we found that grasp type was stronger using first scenario electrode placement while the rest type better with another scenario.

Keywords: myoelectric signal, basic grasp, DSSF3, electrode, bi-potential amplifier

Procedia PDF Downloads 318
11563 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 94
11562 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: climate, reanalysis, renewable energy, solar radiation

Procedia PDF Downloads 205
11561 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection

Authors: Pukhrambam Helena Chanu, Janardan Yadav

Abstract:

This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.

Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.

Procedia PDF Downloads 42
11560 Corticomotor Excitability after Two Different Repetitive Transcranial Magnetic Stimulation Protocols in Ischemic Stroke Patients

Authors: Asrarul Fikri Abu Hassan, Muhammad Hafiz bin Hanafi, Jafri Malin Abdullah

Abstract:

This study is to compare the motor evoked potential (MEP) changes using different settings of repetitive transcranial magnetic stimulation (rTMS) in the post-haemorrhagic stroke patient which treated conservatively. The goal of the study is to determine changes in corticomotor excitability and functional outcome after repetitive transcranial magnetic stimulation (rTMS) therapy regime. 20 post-stroke patients with upper limb hemiparesis were studied due to haemorrhagic stroke. One of the three settings; (I) Inhibitory setting, or (II) facilitatory setting, or (III) control group, no excitatory or inhibitory setting have been applied randomly during the first meeting. The motor evoked potential (MEP) were recorded before and after application of the rTMS setting. Functional outcomes were evaluated using the Barthel index score. We found pre-treatment MEP values of the lesional side were lower compared to post-treatment values in both settings. In contrast, we found that the pre-treatment MEP values of the non-lesional side were higher compared to post-treatment values in both settings. Interestingly, patients with treatment, either facilitatory setting and inhibitory setting have faster motor recovery compared to the control group. Our data showed both settings might improve the MEP of the upper extremity and functional outcomes in the haemorrhagic stroke patient.

Keywords: Barthel index, corticomotor excitability, motor evoked potential, repetitive transcranial magnetic stimulation, stroke

Procedia PDF Downloads 153
11559 Cytotoxicity and Androgenic Potential of Antifungal Drug Substances on MDA-KB2 Cells

Authors: Benchouala Amira, Bojic Clement, Poupin Pascal, Cossu Leguille-carole

Abstract:

The objective of this study is to evaluate in vitro the cytotoxic and androgenic potential of several antifungal molecules (amphotericin B, econazole, ketoconazole and miconazole) on MDA-Kb2 cell lines. This biological model is an effective tool for the detection of endocrine disruptors because it responds well to the main agonist of the androgen receptor (testosterone) and also to an antagonist: flutamide. The cytotoxicity of each chemical compound tested was measured using an MTT assay (tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which measures the activity of the reductase function of mitochondrial succinate dehydrogenase enzymes of cultured cells. This complementary cytotoxicity test is essential to ensure that the effects of reduction in luminescence intensity observed during androgenic tests are only attributable to the anti-androgenic action of the compounds tested and not to their possible cytotoxic properties. Tests of the androgenic activity of antifungals show that these compounds do not have the capacity to induce transcription of the luciferase gene. These compounds do not exert an androgenic effect on MDA-Kb2 cells in culture for the environmental concentrations tested. The addition of flutamide for the same tested concentrations of antifungal molecules reduces the luminescence induced by amphotericin B, econazole and miconazole, which is explained by a strong interaction of these molecules with flutamide which may have a greater toxic effect than when tested alone. The cytotoxicity test shows that econazole and ketoconazole can cause cell death at certain concentrations tested. This cell mortality is perhaps induced by a direct or indirect action on deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or proteins necessary for cell division.

Keywords: cytotoxicity, androgenic potential, antifungals, MDA-Kb2

Procedia PDF Downloads 38
11558 Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer

Authors: Emad A. Jaffar Al-Mulla

Abstract:

In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants.

Keywords: polycaprolactone, starch, biodegradable, nanocomposite

Procedia PDF Downloads 352
11557 Overcoming Obstacles in UHTHigh-protein Whey Beverages by Microparticulation Process: Scientific and Technological Aspects

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh, Seyed Jalal Razavi Zahedkolaei

Abstract:

Herein, a shelf stable (no refrigeration required) UHT processed, aseptically packaged whey protein drink was formulated by using a new strategy in microparticulate process. Applying thermal and two-dimensional mechanical treatments simultaneously, a modified protein (MWPC-80) was produced. Then the physical, thermal and thermodynamic properties of MWPC-80 were assessed using particle size analysis, dynamic temperature sweep (DTS), and differential scanning calorimetric (DSC) tests. Finally, using MWPC-80, a new RTD beverage was formulated, and shelf stability was assessed for three months at ambient temperature (25 °C). Non-isothermal dynamic temperature sweep was performed, and the results were analyzed by a combination of classic rate equation, Arrhenius equation, and time-temperature relationship. Generally, results showed that temperature dependency of the modified sample was significantly (Pvalue<0.05) less than the control one contained WPC-80. The changes in elastic modulus of the MWPC did not show any critical point at all the processed stages, whereas, the control sample showed two critical points during heating (82.5 °C) and cooling (71.10 °C) stages. Thermal properties of samples (WPC-80 & MWPC-80) were assessed using DSC with 4 °C /min heating speed at 20-90 °C heating range. Results did not show any thermal peak in MWPC DSC curve, which suggested high thermal resistance. On the other hands, WPC-80 sample showed a significant thermal peak with thermodynamic properties of ∆G:942.52 Kj/mol ∆H:857.04 Kj/mole and ∆S:-1.22Kj/mole°K. Dynamic light scattering was performed and results showed 0.7 µm and 15 nm average particle size for MWPC-80 and WPC-80 samples, respectively. Moreover, particle size distribution of MWPC-80 and WPC-80 were Gaussian-Lutresian and normal, respectively. After verification of microparticulation process by DTS, PSD and DSC analyses, a 10% why protein beverage (10% w/w/ MWPC-80, 0.6% w/w vanilla flavoring agent, 0.1% masking flavor, 0.05% stevia natural sweetener and 0.25% citrate buffer) was formulated and UHT treatment was performed at 137 °C and 4 s. Shelf life study did not show any jellification or precipitation of MWPC-80 contained beverage during three months storage at ambient temperature, whereas, WPC-80 contained beverage showed significant precipitation and jellification after thermal processing, even at 3% w/w concentration. Consumer knowledge on nutritional advantages of whey protein increased the request for using this protein in different food systems especially RTD beverages. These results could make a huge difference in this industry.

Keywords: high protein whey beverage, micropartiqulation, two-dimentional mechanical treatments, thermodynamic properties

Procedia PDF Downloads 65
11556 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 513
11555 Slope Stability Considering the Top Building Load

Authors: Micke Didit, Xiwen Zhang, Weidong Zhu

Abstract:

Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. Therefore, it is of great importance to study the relationship between the load and the stability of the slope. This study aims to analyze the influence of the building load applied on the top of the slope and deduces its effect on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (fos) increases with the increase of the distance between the top-loading and the slope shoulder, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.

Keywords: building load, finite-difference analysis, FLAC3D software, slope factor of safety, slope stability

Procedia PDF Downloads 167
11554 Application of Mesenchymal Stem Cells in Diabetic Therapy

Authors: K. J. Keerthi, Vasundhara Kamineni, A. Ravi Shanker, T. Rammurthy, A. Vijaya Lakshmi, Q. Hasan

Abstract:

Pancreatic β-cells are the predominant insulin-producing cell types within the Islets of Langerhans and insulin is the primary hormone which regulates carbohydrate and fat metabolism. Apoptosis of β-cells or insufficient insulin production leads to Diabetes Mellitus (DM). Current therapy for diabetes includes either medical management or insulin replacement and regular monitoring. Replacement of β- cells is an attractive treatment option for both Type-1 and Type-2 DM in view of the recent paper which indicates that β-cells apoptosis is the common underlying cause for both the Types of DM. With the development of Edmonton protocol, pancreatic β-cells allo-transplantation became possible, but this is still not considered as standard of care due to subsequent requirement of lifelong immunosuppression and the scarcity of suitable healthy organs to retrieve pancreatic β-cell. Fetal pancreatic cells from abortuses were developed as a possible therapeutic option for Diabetes, however, this posed several ethical issues. Hence, in the present study Mesenchymal stem cells (MSCs) were differentiated into insulin producing cells which were isolated from Human Umbilical cord (HUC) tissue. MSCs have already made their mark in the growing field of regenerative medicine, and their therapeutic worth has already been validated for a number of conditions. HUC samples were collected with prior informed consent as approved by the Institutional ethical committee. HUC (n=26) were processed using a combination of both mechanical and enzymatic (collagenase-II, 100 U/ml, Gibco ) methods to obtain MSCs which were cultured in-vitro in L-DMEM (Low glucose Dulbecco's Modified Eagle's Medium, Sigma, 4.5 mM glucose/L), 10% FBS in 5% CO2 incubator at 37°C. After reaching 80-90% confluency, MSCs were characterized with Flowcytometry and Immunocytochemistry for specific cell surface antigens. Cells expressed CD90+, CD73+, CD105+, CD34-, CD45-, HLA-DR-/Low and Vimentin+. These cells were differentiated to β-cells by using H-DMEM (High glucose Dulbecco's Modified Eagle's Medium,25 mM glucose/L, Gibco), β-Mercaptoethanol (0.1mM, Hi-Media), basic Fibroblast growth factor (10 µg /L,Gibco), and Nicotinamide (10 mmol/L, Hi-Media). Pancreatic β-cells were confirmed by positive Dithizone staining and were found to be functionally active as they released 8 IU/ml insulin on glucose stimulation. Isolating MSCs from usually discarded, abundantly available HUC tissue, expanding and differentiating to β-cells may be the most feasible cell therapy option for the millions of people suffering from DM globally.

Keywords: diabetes mellitus, human umbilical cord, mesenchymal stem cells, differentiation

Procedia PDF Downloads 253
11553 The Potential Role of University Libraries in the Fight against Terrorism in Upper Egypt

Authors: Essam Mansour

Abstract:

The purpose of this study is to explore the potential role of South Valley University (SVU) libraries’ manpower, collections and services in the fight against terrorism in the Upper Egypt. A quantitative research methodology was used in the form of a survey sent to 127 library staff at the SVU. The survey was undertaken from June to July 2015 with a response rate 73.2%. Printed materials were the most adequate collections in the SVU libraries. Other materials, such as CDs/DVDs, audiovisual materials, microfilm and microfiche, online resources and electronic materials respectively were inadequate at SVU libraries. Few of the services provided by SVU libraries were characterized as adequate services, some are inadequate and other services do not exist. The average of the facilities provided by SVU libraries was somewhat adequate. Activities, such as holding social field trips, holding training workshops and holding academic field trip were, at least, somewhat adequate to SVU libraries. SVU libraries had no a significant role in fighting terrorism in the Upper Egypt. There is no a relationship between the SVU library staff’s professional characteristics and the potential role that their libraries may play in the fight against this phenomenon. As a result of the lack of SVU libraries’ collections, services, facilities and activities, this study concluded that that such role could not be achieved. Almost all the library staff admitted that this severe lack has affected the provision of library patrons and members of the library community to these collections and services, which help in countering the threat of terrorism. Despite the significance of all these problems faced by SVU libraries in the fight against terrorism, it was found that the inadequacy of the library opening hours is significantly correlated with the professional characteristics of the library staff, particularly their job title and work experience.

Keywords: terrorism, national security, university libraries, south valley university, Egypt, survey

Procedia PDF Downloads 245
11552 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 250
11551 Solving Operating Room Scheduling Problem by Using Dispatching Rule

Authors: Yang-Kuei Lin, Yin-Yi Chou

Abstract:

In this research, we have considered operating room scheduling problem. The objective is to minimize total operating cost. The total operating cost includes idle cost and overtime cost. We have proposed a dispatching rule that can guarantee to find feasible solutions for the studied problem efficiently. We compared the proposed dispatching rule with the optimal solutions found by solving Inter Programming, and other solutions found by using modified existing dispatching rules. The computational results indicates that the proposed heuristic can find near optimal solutions efficiently.

Keywords: assignment, dispatching rule, operation rooms, scheduling

Procedia PDF Downloads 227
11550 Preparation and Evaluation of Poly(Ethylene Glycol)-B-Poly(Caprolactone) Diblock Copolymers with Zwitterionic End Group for Thermo-Responsive Properties

Authors: Bo Keun Lee, Doo Yeon Kwon, Ji Hoon Park, Gun Hee Lee, Ji Hye Baek, Heung Jae Chun, Young Joo Koh, Moon Suk Kim

Abstract:

Thermo-responsive materials are viscoelastic materials that undergo a sol-to-gel phase transition at a specific temperature and many materials have been developed. MPEG-b-PCL (MPC) as a thermo-responsive material contained hydrophilic and hydrophobic segments and it formed an ordered crystalline structure of hydrophobic PCL segments in aqueous solutions. The ordered crystalline structure packed tightly or aggregated and finally induced an aggregated gel through intra- and inter-molecular interactions as a function of temperature. Thus, we introduced anionic and cationic groups into the end positions of the PCL chain to alter the hydrophobicity of the PCL segment. Introducing anionic and cationic groups into the PCL end position altered their solubility by changing the crystallinity and hydrophobicity of the PCL block domains. These results indicated that the properties of the end group in the hydrophobic PCL blockand the balance between hydrophobicity and hydrophilicity affect thermo-responsivebehavior of the copolymers in aqueous solutions. Thus, we concluded that determinant of the temperature-dependent thermo-responsive behavior of MPC depend on the ionic end group in the PCL block. So, we introduced zwitterionic end groups to investigate the thermo-responsive behavior of MPC. Methoxypoly(ethylene oxide) and ε-caprolactone (CL) were randomly copolymerized that introduced varying hydrophobic PCL lengths and an MPC featuring a zwitterionic sulfobetaine (MPC-ZW) at the chain end of the PCL segment. The MPC and MPC-ZW copolymers were obtained formed sol-state at room temperature when prepared as 20-wt% aqueous solutions. The solubility of MPC decreased when the PCL block was increased from molecular weight. The solubilization time of MPC-2.4k was around 20 min and MPC-2.8k, MPC-3.0k increased to 30 min and 1 h, respectively. MPC-3.6k was not solubilized. In case of MPC-ZW 3.6k, However, the zwitterion-modified MPC copolymers were solubilized in 3–5 min. This result indicates that the zwitterionic end group of the MPC-ZW diblock copolymer increased the aqueous solubility of the diblock copolymer even when the length of the hydrophobic PCL segment was increased. MPC and MPC-ZW diblock copolymers that featuring zwitterionic end groups were synthesized successfully. The sol-to-gel phase-transition was formed that specific temperature depend on the length of the PCL hydrophobic segments introduced and on the zwitterion groups attached to the MPC chain end. This result indicated that the zwitterionic end groups reduced the hydrophobicity in the PCL block and changed the solubilization. The MPC-ZW diblock copolymer can be utilized as a potential injectable drug and cell carrier.

Keywords: thermo-responsive material, zwitterionic, hydrophobic, crystallization, phase transition

Procedia PDF Downloads 503
11549 Analysis of Reduced Mechanisms for Premixed Combustion of Methane/Hydrogen/Propane/Air Flames in Geometrically Modified Combustor and Its Effects on Flame Properties

Authors: E. Salem

Abstract:

Combustion has been used for a long time as a means of energy extraction. However, in recent years, there has been a further increase in air pollution, through pollutants such as nitrogen oxides, acid etc. In order to solve this problem, there is a need to reduce carbon and nitrogen oxides through learn burning modifying combustors and fuel dilution. A numerical investigation has been done to investigate the effectiveness of several reduced mechanisms in terms of computational time and accuracy, for the combustion of the hydrocarbons/air or diluted with hydrogen in a micro combustor. The simulations were carried out using the ANSYS Fluent 19.1. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios and adding small amounts of hydrogen into the fuel blends then analyzing the flammable limit, the reduction in NOx and CO emissions, then comparing it to experimental data. By solving the conservations equations, several global reduced mechanisms (2-9-12) were obtained. These reduced mechanisms were simulated on a 2D cylindrical tube with dimensions of 40 cm in length and 2.5 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air blends to visualize the flame characteristics than were compared with experimental data. Once the results were within acceptable range, the geometry of the combustor was modified through changing the length, diameter, adding hydrogen by volume, and changing the equivalence ratios from lean to rich in the fuel blends, the results on flame temperature, shape, velocity and concentrations of radicals and emissions were observed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity and geometry of the tube lead to an increase of the temperature and CO2 emissions, highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio. Addition of hydrogen blends into combustor fuel blends resulted in; reduction in CO and NOx emissions, expansion of the flammable limit, under the condition of having same laminar flow, and varying equivalence ratio with hydrogen additions. The production of NO is reduced because the combustion happens in a leaner state and helps in solving environmental problems.

Keywords: combustor, equivalence-ratio, hydrogenation, premixed flames

Procedia PDF Downloads 113