Search results for: enhancement mode
1722 Unfolding the Social Clash between Online and Non-Online Transportation Providers in Bandung
Authors: Latifah Putti Tiananda, Sasti Khoirunnisa, Taniadiana Yapwito, Jessica Noviena
Abstract:
Innovations are often met with two responses, acceptance or rejection. In the past few years, Indonesia is experiencing a revolution of transportation service, which utilizes online platform for its operation. Such improvement is welcomed by consumers and challenged by conventional or ‘non-online’ transportation providers simultaneously. Conflicts arise as the existence of this online transportation mode results in declining income of non-online transportation workers. Physical confrontations and demonstrations demand policing from central authority. However, the obscurity of legal measures from the government persists the social instability. Bandung, a city in West Java with the highest rate of online transportation usage, has recently issued a recommendation withholding the operation of online transportation services to maintain peace and order. Thus, this paper seeks to elaborate the social unrest between the two contesting transportation actors in Bandung and explore community-based approaches to solve this problem. Using qualitative research method, this paper will also feature in-depth interviews with directly involved sources from Bandung.Keywords: Bandung, market competition, online transportation services, social unrest
Procedia PDF Downloads 2741721 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger
Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani
Abstract:
Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.Keywords: heat transfer coefficient, aluminium, entry length, design
Procedia PDF Downloads 3331720 Relationship between Entrepreneurial Orientation and Small and Medium Enterprises Growth in Bauchi Metropolis, Nigeria
Authors: Muhammed Auwal Umar, M. Saleh
Abstract:
The main purpose of this research is to examine the relationship between entrepreneurial orientation (innovativeness, risk-taking propensity, and proactiveness) and SME's growth in Bauchi metropolis. The study is quantitative in nature using a cross-sectional survey. The population of the study was 364 SMEs. Using simple random sampling, 183 questionnaires were personally distributed, out of which 165 (90%) were found valid for the analysis. Kregcie and Morgan (1970) table was used to determine the sample size. Pearson correlation was used to test the hypotheses. The analysis was conducted with the aid of IBM Statistical Package for Social Sciences (SPSS) version 20. The results established that innovativeness, risk-taking propensity, and proactiveness have significant positive relationship with SME's growth. It is therefore recommended that SMEs’ owners/managers should change their attitude by changing their product and mode of operation in line with customer demand, being proactive ahead of other competitors in trying a better way of doing things, and taking calculated risks in anticipation of high return in order for their businesses to survive and grow.Keywords: SMEs growth, innovativeness, risk-taking propensity, proactiveness
Procedia PDF Downloads 1181719 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures
Authors: WooYoung Jung, V. Sim
Abstract:
This paper presents numerical analysis in terms of buckling resistance strength of polymer matrix composite (PMC) infill panels system under the influence of temperature on the foam core. Failure mode under in-plane compression is investigated by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its Young's Modulus under the thermal influence. Variation of temperature is considered in static cases and only applied to core. Indeed, it is shown that the effect of temperature on the panel system mechanical properties is significance. Moreover, the variations of temperature result in the decrements of the system strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Hence, by comparing difference type of core material, the variation can be reducing.Keywords: buckling, contact length, foam core, temperature dependent
Procedia PDF Downloads 2981718 Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species
Authors: Mukesh Kumar, Mahendra Pal Sharma
Abstract:
Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation.Keywords: fuel quality, methyl ester yield, microalgae, transesterification
Procedia PDF Downloads 2151717 Nitrogen Doping Effect on Enhancement of Electrochemical Performance of a Carbon Nanotube Based Microsupercapacitor
Authors: Behnoush Dousti, Ye Choi, Gil S. Lee
Abstract:
Microsupercapacitors (MScs) are known as the future of miniaturized energy sources that can be coupled to a battery to deliver stable and constant energy to microelectronics. Among all their counterparts, electrochemical microsupercapacitor have drawn the most research attention due to their higher power density and long cycle life. Designing the microstructure and choosing the electroactive materials are two significant factors that greatly affect the performance of the device. Here, we report successful fabrication and characterization of a microsupercapacitor with interdigitated structure based on Carbon nanotube sheets (CNT sheet). Novel structure of highly aligned CNT sheet as the electrode materials which also offers excellent conductivity and large surface area along with doping with nitrogen, enabled us to develop a device with serval order of magnitude higher electrochemical performance than the pristine CNT in aqueous electrolyte including high specific capacitance and rate capabilities and excellent cycle life over 10000 cycles. Geometric parameters such as finger width and gap size were also studied and it was shown the device performance is much depended on them. Results of this study confirms the potential of CNT sheet for future energy storage devices.Keywords: carbon nanotube, energy storage systems, microsupercapacitor, nitrogen doping
Procedia PDF Downloads 1321716 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes
Authors: Baghdasaryan Marinka
Abstract:
The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.Keywords: electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree
Procedia PDF Downloads 2701715 Implementation of a Lattice Boltzmann Method for Multiphase Flows with High Density Ratios
Authors: Norjan Jumaa, David Graham
Abstract:
We present a Lattice Boltzmann Method (LBM) for multiphase flows with high viscosity and density ratios. The motion of the interface between fluids is modelled by solving the Cahn-Hilliard (CH) equation with LBM. Incompressibility of the velocity fields in each phase is imposed by using a pressure correction scheme. We use a unified LBM approach with separate formulations for the phase field, the pressure less Naiver-Stokes (NS) equations and the pressure Poisson equation required for correction of the velocity field. The implementation has been verified for various test case. Here, we present results for some complex flow problems including two dimensional single and multiple mode Rayleigh-Taylor instability and we obtain good results when comparing with those in the literature. The main focus of our work is related to interactions between aerated or non-aerated waves and structures so we also present results for both high viscosity and low viscosity waves.Keywords: lattice Boltzmann method, multiphase flows, Rayleigh-Taylor instability, waves
Procedia PDF Downloads 2341714 Failure Cases Analysis in Petrochemical Industry
Authors: S. W. Liu, J. H. Lv, W. Z. Wang
Abstract:
In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.Keywords: cases analysis, corrosion, failure, petrochemical industry
Procedia PDF Downloads 3071713 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm
Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding
Abstract:
Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection
Procedia PDF Downloads 1531712 A Study of Flipped Classroom’s Influence on Classroom Environment of College English Reading, Writing and Translating
Authors: Xian Xie, Qinghua Fang
Abstract:
This study used quantitative and qualitative methods to explore the characteristics of flipped classroom’s influence on classroom environment of college English reading, writing, and translating, and to summarize and reflect on the teaching characteristics of college English Reading, writing, and translating. The results of the study indicated that after the flipped classroom applied to reading, writing, and translating, students’ performance was improved to a certain extent, the classroom environment was improved to some extent, students of the flipped classroom are generally satisfied with the classroom environment; students showed a certain degree of individual differences to the degree of cooperation, participation, self-responsibility, task-orientation, and the teacher leadership and innovation. The study indicated that the implementation of flipped classroom teaching mode can optimize College English reading, writing, and translating classroom environment and realize target-learner as the center in foreign language teaching and learning, but bring a greater challenge to teachers.Keywords: classroom environment, college English reading, writing and translating, individual differences, flipped classroom
Procedia PDF Downloads 2651711 Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications
Authors: Yuncang Li, Cuie Wen
Abstract:
Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys.Keywords: biocompatibility, magnesium, mechanical and biodegrade properties, rare earth elements
Procedia PDF Downloads 1211710 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines
Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna
Abstract:
Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.Keywords: nanoparticles, vincristine, drug delivery, PNIPAM
Procedia PDF Downloads 1561709 Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria
Authors: Sanam Pudasaini, A. T. K. Perera, Ahmed Syed Shaheer Uddin, Sum Huan Ng, Chun Yang
Abstract:
Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum.Keywords: electroporation, high-efficiency, inactivation, microfluidics, micropillar
Procedia PDF Downloads 1801708 Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers
Authors: Rafik Taleb, Farid Bouriche, Mehdi Boukri, Fouad Kehila
Abstract:
The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers.Keywords: ambient vibrations, masonry buildings, forced vibrations, structural dynamic identification
Procedia PDF Downloads 4081707 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram
Procedia PDF Downloads 1361706 Solar Photovoltaic System (PV) Usages on Residential Houses in the Absheron Peninsula Region of the Republic of Azerbaijan: Obstacles and Opportunities
Authors: Elnur Abbasov
Abstract:
Energy security and climate change comprise some of the most important concerns facing humankind today and probably in the future if they are not addressed appropriately. In order to stabilize the global climate, there is the need for the world to lessen its use of fossil energy, which requires enhancement of current energy efficiency as well as the development of novel energy sources, such as energy obtained from renewable sources. There is no doubt that the steady transition towards a solar-based economy is likely to result in the development of completely new sectors, behaviours, and jobs that are pro-environmental. Azerbaijan Republic as the largest nation state in the South Caucasus Region has the potential for using and developing the renewable sources of energy in order to support the environmental challenge resolution associated with the climate change, improving the environmental situation in the country. Solar PV comprises one of the direct usages of solar energy. In this paper, sustainable PV usage scenario in residential houses was introduced to reduce negative environmental effects of land use, water consumption, air pollution etc. It was recommended by an author that, PV systems can be part of function and design of residential building components: such as roofs, walls, windows.Keywords: energy efficiency, environmentally friendly, photovoltaic engineering, sustainable energy usage scenario
Procedia PDF Downloads 2411705 Biosorption of Chromium (VI) Ions Using Polyaniline Coated Maize Tassels
Authors: F. Chigondo, G. Chitabati
Abstract:
Hexavalent chromium is toxic and is widely used in many industries hence efficient and economical methods must be explored to remove the chromium(VI) from the environment. The removal of Cr (VI) from aqueous solutions onto polyaniline coated maize tassel was studied in batch mode at varying initial metal concentrations, adsorbent doses, pH and contact times. The residual Cr (VI) concentrations before and after adsorption were analyzed by Ultraviolet–visible spectroscopy. FTIR analysis of the polyaniline coated maize tassel showed the presence of C=C, C=N, C-H, C-N and N-H groups. Adsorption conditions were deduced to be pH of 2, adsorbent dosage 1g/L, Cr(VI) initial concentration of 40mg/L contact time of 150 minutes and agitation speed of 140rpm. Data obtained fitted best to the Langmuir isotherm (R2 = 0.972) compared to the Freundlich isotherm (R2 0.671. The maximum adsorption capacity was found to be 125mg/L. Correlation coefficients for pseudo first order and pseudo second order were 0.952 and 0.971 respectively. The adsorption process followed the pseudo-second order kinetic model. The studied polyaniline coated maize tassel can therefore be used as a promising adsorbent for the removal of Cr (VI) ion from aqueous solution.Keywords: polyaniline-coated, maize tassels, adsorption, hexavalent chromium
Procedia PDF Downloads 2031704 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs.Keywords: natural frequencies, mode shapes, modal analysis, RC slabs
Procedia PDF Downloads 4081703 The Correlation of Physical Activity and Plantar Pressure in Young Adults
Authors: Lovro Štefan
Abstract:
Background: The main purpose of the present study was to explore the correlations between physical activity and peak plantar pressure in dynamic mode. Methods: Participants were one hundred forty-six first-year university students (30.8% girls). Plantar pressure generated under each region of the foot (forefoot, midfoot, and heel) was measured by using Zebris dynamometric platform (Isny, Germany). The level of physical activity (PA) was calculated with the International Physical Activity questionnaire (IPAQ - short form). Results: In boys, forefoot peak plantar pressure was correlated with moderate PA (MPA; r=-0.21), vigorous PA (VPA; r=-0.18), and moderate-to-vigorous PA (MVPA; r=-0.28). No significant correlations with other foot regions (p>0.05) were observed. In girls, forefoot peak plantar pressure was correlated with MPA (r =-0.30), VPA (r=-0.39) and MVPA (r=-0.38). Also, heel peak pressure was significantly correlated with MPA (r=-0.33), while no significant correlations with VPA (r=0.05) and MVPA (r=-0.15) were observed. Conclusion: This study shows that different intensities of PA were mostly correlated with forefoot peak plantar pressure in both boys and girls. Therefore, strategies that reduce plantar pressure through a more active lifestyle should be implemented within the education system.Keywords: pedobarography, youth, exercise, associations
Procedia PDF Downloads 971702 Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis
Authors: Gurubasavaraju T. M.
Abstract:
The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating.Keywords: MR fluid, double ended MR damper, CFD, FEA
Procedia PDF Downloads 1801701 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: common rail, hydrogen engine, port injection, wave propagation
Procedia PDF Downloads 4241700 A Phenomenological-Hermeneutic Account of Design Thinking by Way of an Exposition of Four Species of Negatite: 'Not Being', 'Non-Being', 'Absence', 'Non-Existence'
Authors: Soheil Ashrafi
Abstract:
In this paper, it is attempted to chart and exposit terra incognito of the transcendental intuition of ‘non-being’, a peculiar species of négatité and a form of consciousness which underpins the phenomenal capacity for design thinking, and which serves as the ground of the ‘designing being-relation to the world’. The paper’s contention is that the transcendental intuition of the non-being indwells the agent’s being-relation to the world as a continual tension in that neither does the agent relinquish its ontological leverage and submit altogether to the world’s curbs and dictates, nor is it able to subdue satisfactorily or settle into the world once and for all. By way of phenomenological-hermeneutic analysis, it is endeavoured to argue that design thinking occurs by virtue of a phenomenal transition between the a priori ‘not-being’, the basis of ‘that-which-is’, and the transcendental intuition of non-being through which that-which-is-not-yet announces itself. Along with this, the other two species of négatité as ‘absence’ and ‘non-existence’ are clarified and contrasted with not-being and non-being, which have widely been used in the literature interchangeably as identical terms. In conclusion, it is argued that not only has design thinking in its unadulterated, originary mode historically preceded scientific thinking, but it also has served as the foundation of its emergence. In short, scientific thinking is a derivative, reformed application of design thinking; it indeed supervenes upon it.Keywords: design thinking, designing being-relation to the world, négatité, not-being, non-being
Procedia PDF Downloads 1701699 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application
Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr
Abstract:
Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion
Procedia PDF Downloads 4001698 Information Theoretic Approach for Beamforming in Wireless Communications
Authors: Syed Khurram Mahmud, Athar Naveed, Shoaib Arif
Abstract:
Beamforming is a signal processing technique extensively utilized in wireless communications and radars for desired signal intensification and interference signal minimization through spatial selectivity. In this paper, we present a method for calculation of optimal weight vectors for smart antenna array, to achieve a directive pattern during transmission and selective reception in interference prone environment. In proposed scheme, Mutual Information (MI) extrema are evaluated through an energy constrained objective function, which is based on a-priori information of interference source and desired array factor. Signal to Interference plus Noise Ratio (SINR) performance is evaluated for both transmission and reception. In our scheme, MI is presented as an index to identify trade-off between information gain, SINR, illumination time and spatial selectivity in an energy constrained optimization problem. The employed method yields lesser computational complexity, which is presented through comparative analysis with conventional methods in vogue. MI based beamforming offers enhancement of signal integrity in degraded environment while reducing computational intricacy and correlating key performance indicators.Keywords: beamforming, interference, mutual information, wireless communications
Procedia PDF Downloads 2801697 Analysis of Bank Characteristics in a Hydrogen Refueling Station
Authors: Bo Hyun Kim, Sarng Woo Karng
Abstract:
In constructing a hydrogen refueling station, minimizing the volume and reducing the number of banks enable lessening the construction cost. This study aims at performing the dynamic simulation on 250 kg/day of a refueling station for light-duty vehicles. The primary compressor boosts hydrogen from a tube trailer of 250 to 480 bar and stores it in a medium-pressure bank. Then, additional compression of hydrogen from 480 to 900 bar is carried out and stored in a high-pressure bank. Economic analysis was conducted considering the amount of electricity consumed by compression corresponding to the volume and the number of banks (cascade system) in charging mode. NIST REFPROP was selected as the equation of state on the ASPEN HYSYS for thermodynamic analysis of the tube-trailer, the compressors, the chillers, and the banks. Compared to a single high-pressure bank system of 3000 L, the volume of the cascade high-pressure banks (bank1: 250 L and bank 2: 1850 L) was reduced by 30%, and the power consumption of the chiller for precooling was also decreased by 16%.Keywords: light-duty vehicles, economic analysis, cascade system, hydrogen refueling station
Procedia PDF Downloads 931696 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 3121695 Determinants of Infrastructure Provision in Ghana
Authors: Clifford Kwakwa Amoah, De-Graft Owusu-Manu, Prince Antwi-Afari
Abstract:
Infrastructure is the lifeline for economic development of any country. Hence, obtaining infrastructure quality cannot be overemphasized. Nevertheless, challenges of infrastructure quality persist, and it is worse in developing countries despite the diverse study on the subject matter. Therefore, this study was formulated to identify the prevalent determinants of infrastructure quality using synthesis of extant literature (to identify key variables), and analysis of survey questionnaire of data collected by means of the inductive methodology approach, mean score ranking and descriptive statistics. The variables “partner with the private sector, growth stimulation and poverty reduction, and adherence to procurement core principles” were the most significant challenges that the government faces. Moreover, it would be of utmost concern to adopt some stringent measures to help improve and accelerate on the growth and development of the nation, thereby achieving the best quality required. This study is novel conducted to provide insight into some of the punitive measures, considered in ensuring that quality infrastructure is obtained in both developing (specifically) and developed economies. The research findings therefore provide some guidance for overcoming the accumulative challenges. Application of the stated findings will help bridge the gap of infrastructure challenges; this is because the study found strong empirical evidence that infrastructure plays a pivotal role in the productivity enhancement.Keywords: challenges, development, economic growth, government, infrastructure quality
Procedia PDF Downloads 1451694 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor
Procedia PDF Downloads 1241693 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows
Authors: F. A. Hamad, S. He
Abstract:
In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow
Procedia PDF Downloads 397