Search results for: hydrogen engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1650

Search results for: hydrogen engine

1650 The Effect of Hydrogen on Performance and Emissions of a Methanol Si-Engine at Part Load

Authors: Junaid Bin Aamir, Ma Fanhua

Abstract:

Methanol and hydrogen are the most suitable alternative fuel resources for the existing and future internal combustion engines. This paper experimentally examined the effects of hydrogen addition on the performance and emission characteristics of a spark-ignition engine fueled with methanol at part load conditions. The experiments were carried out for various engine speeds and loads. Hydrogen-rich syngas was used to enhance the performance of the test engine. It was formed by catalytic dissociation of methanol itself, and volumetric hydrogen fraction in syngas was about 67%. A certain amount of syngas dissociated from methanol was injected into the intake manifold in each engine cycle, and the low heating value (LHV) of hydrogen-rich syngas used was 4% of methanol in each cycle. Both the fuels were injected separately using port fuel injectors. The results showed that brake thermal efficiency of the engine was enhanced by 3-5% with hydrogen addition, while brake specific fuel consumption and exhaust gas temperature were reduced. There was a significant reduction (90-95%) in THC and (35-50%) in CO emissions at the exhaust. NOx emissions from hydrogen blended methanol increased slightly (10-15%), but they can be reduced by using lean fuel-air mixture to keep the cylinder temperature low.

Keywords: hydrogen, methanol, alternative fuel, emissions, spark ignition engines

Procedia PDF Downloads 160
1649 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: diesel engine, hydrogen, BTHE, BSEC, soot, NOx

Procedia PDF Downloads 506
1648 Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions

Authors: Junaid Bin Aamir, Ma Fanhua

Abstract:

Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy.

Keywords: alternative fuels, hydrogen, methanol, performance, spark ignition engines

Procedia PDF Downloads 267
1647 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine

Authors: Joseph Soliman, Youssef Attia, Khairy Megalla

Abstract:

The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.

Keywords: stirling engine, solar energy, new energy, dynamic motion

Procedia PDF Downloads 377
1646 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: common rail, hydrogen engine, port injection, wave propagation

Procedia PDF Downloads 387
1645 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 327
1644 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine

Authors: Anas Rao, Hao Duan, Fanhua Ma

Abstract:

The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.

Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet

Procedia PDF Downloads 221
1643 A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile

Authors: Jack Mason, Ahmad Pourmovhed

Abstract:

This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed.

Keywords: interal combustion engine, battery electric vehicle, fuel cell electric vehicle, emissions

Procedia PDF Downloads 140
1642 Effect of Hydrogen Content and Structure in Diamond-Like Carbon Coatings on Hydrogen Permeation Properties

Authors: Motonori Tamura

Abstract:

The hydrogen barrier properties of the coatings of diamond-like carbon (DLC) were evaluated. Using plasma chemical vapor deposition and sputtering, DLC coatings were deposited on Type 316L stainless steels. The hydrogen permeation rate was reduced to 1/1000 or lower by the DLC coatings. The DLC coatings with high hydrogen content had high hydrogen barrier function. For hydrogen diffusion in coatings, the movement of atoms through hydrogen trap sites such as pores in coatings, and crystal defects such as dislocations, is important. The DLC coatings are amorphous, and there are both sp3 and sp2 bonds, and excess hydrogen could be found in the interstitial space and the hydrogen trap sites. In the DLC coatings with high hydrogen content, these hydrogen trap sites are likely already filled with hydrogen atoms, and the movement of new hydrogen atoms could be limited.

Keywords: hydrogen permeation, stainless steels, diamond-like carbon, hydrogen trap sites

Procedia PDF Downloads 300
1641 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production

Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng

Abstract:

This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.

Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency

Procedia PDF Downloads 436
1640 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine

Authors: Hammam Aljabri, Hong G. Im

Abstract:

Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.

Keywords: hydrogen, combustion, engine knock, SI engine

Procedia PDF Downloads 98
1639 Transition to Hydrogen Cities in Korea and Japan

Authors: Minhee Son, Kyung Nam Kim

Abstract:

This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.

Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy

Procedia PDF Downloads 446
1638 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions

Authors: O. Onal, O. Turan

Abstract:

In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.

Keywords: turbofan, power, efficiency, trust

Procedia PDF Downloads 267
1637 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics

Procedia PDF Downloads 267
1636 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: Osamu Takakuwa, Yuta Mano, Hitoshi Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: hydrogen embrittlement, residual stress, surface finishing, stainless steel

Procedia PDF Downloads 348
1635 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept

Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.

Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions

Procedia PDF Downloads 268
1634 Microstructure of Hydrogen Permeation Barrier Coatings

Authors: Motonori Tamura

Abstract:

Ceramics coatings consisting of fine crystal grains, with diameters of about 100 nm or less, provided superior hydrogen-permeation barriers. Applying TiN, TiC or Al₂O₃ coatings on a stainless steel substrate reduced the hydrogen permeation by a factor of about 100 to 5,000 compared with uncoated substrates. Effect of the microstructure of coatings on hydrogen-permeation behavior is studied. The test specimens coated with coatings, with columnar crystals grown vertically on the substrate, tended to exhibit higher hydrogen permeability. The grain boundaries of the coatings became trap sites for hydrogen, and microcrystalline structures with many grain boundaries are expected to provide effective hydrogen-barrier performance.

Keywords: hydrogen permeation, tin coating, microstructure, crystal grain, stainless steel

Procedia PDF Downloads 354
1633 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation.

Keywords: hydrogen, well bore integrity, clean energy, cementing

Procedia PDF Downloads 177
1632 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine

Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar

Abstract:

In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.

Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine

Procedia PDF Downloads 508
1631 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: multi-level gear oil, engine oil, viscosity, abrasion

Procedia PDF Downloads 292
1630 A Novel Combustion Engine, Design and Modeling

Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh

Abstract:

Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.

Keywords: combustion engine, design, finite element method, modeling

Procedia PDF Downloads 474
1629 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 147
1628 Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis

Authors: Veena Chaudhary, Rakesh P. Gakkhar

Abstract:

In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm.

Keywords: diesel engine, exergy destruction, exergy efficiency, second law of thermodynamics

Procedia PDF Downloads 292
1627 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 288
1626 Hydrogen Storage in Carbonized Coconut Meat (Kernel)

Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava

Abstract:

Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.

Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca

Procedia PDF Downloads 380
1625 Design Improvement of Aircraft Turbofan Engine Following Bird Ingestion Testing

Authors: Ahmed H. Elkholy

Abstract:

Aircraft gas turbine engines are subject to damage by airborne foreign objects such as birds and garbage dumps. In order to assess their effect on engine performance, a complete foreign object damage (FOD) test was carried out and a component failure analysis was used to verify airworthiness standards (AWS) requirements for engine certification as set by international regulations. Ingestion damage due to 1.8 Kg (4 lb.) bird strike on an engine is presented in some detail. Based on the observed damage, improvements to the engine design were suggested in two different locations: the front bearing housing and the low compressor shaft. When these improvements were implemented, the engine showed an acceptable containment capability that meets AWS requirements.

Keywords: aircraft engine, airworthiness standards, bird ingestion, foreign object damage

Procedia PDF Downloads 388
1624 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission

Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel

Abstract:

The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.

Keywords: ceramic coating, material characterization, engine performance, exhaust emissions

Procedia PDF Downloads 339
1623 Thermal Stability of Hydrogen in ZnO Bulk and Thin Films: A Kinetic Monte Carlo Study

Authors: M. A. Lahmer, K. Guergouri

Abstract:

In this work, Kinetic Monte Carlo (KMC) method was applied to study the thermal stability of hydrogen in ZnO bulk and thin films. Our simulation includes different possible events such as interstitial hydrogen (Hi) jumps, substitutional hydrogen (HO) formation and dissociation, oxygen and zinc vacancies jumps, hydrogen-VZn complexes formation and dissociation, HO-Hi complex formation and hydrogen molecule (H2) formation and dissociation. The obtained results show that the hidden hydrogen formed during thermal annealing or at room temperature is constituted of both hydrogen molecule and substitutional hydrogen. The ratio of this constituants depends on the initial defects concentration as well as the annealing temperature. For annealing temperature below 300°C hidden hydrogen was found to be constituted from both substitutional hydrogen and hydrogen molecule, however, for higher temperature it is composed essentially from HO defects only because H2 was found to be unstable. In the other side, our results show that the remaining hydrogen amount in sample during thermal annealing depend greatly on the oxygen vacancies in the material. H2 molecule was found to be stable for thermal annealing up to 200°C, VZnHn complexes are stable up to 350°C and HO was found to be stable up to 450°C.

Keywords: ZnO, hydrogen, thermal annealing, kinetic Monte Carlo

Procedia PDF Downloads 299
1622 Electrolysis Ship for Green Hydrogen Production and Possible Applications

Authors: Julian David Hunt, Andreas Nascimento

Abstract:

Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.

Keywords: green hydrogen, electrolysis ship, renewable energies, seasonal variations

Procedia PDF Downloads 129
1621 Investigation of the Thermal Flow inside the Catalytic Combustor for Lean CH4-Air Mixture on a Platinum Catalyst with H2 Addition

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In order to elaborate the main idea of investigating the flow physics inside the catalytic combustor, the characteristics of the catalytic surface reactions are analyzed by employing the CHEMKIN methodology with detailed gas and surface chemistries. The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promotes desired chemical reactions. A single channel from the honeycomb monolith catalytic combustor is preferred to analyze the gas and surface reactions in the catalyst bed considering the fact that every channel in the honeycomb monolith behaves in similar fashion. The simplified approach with single catalyst channel using plug flow reactor can be used to predict the flow behavior inside the catalytic combustor. The hydrogen addition to the combustion reactants offers a way to light-off catalytic combustion of methane on platinum catalyst and aids to reduce the surface ignition temperature. Indeed, the hydrogen adsorption is higher on the uncovered Pt(s) surface sites because the sticking coefficient of hydrogen is larger than that of methane. The location of flame position in the catalyst bed is validated by igniting the methane fuel with the presence of hydrogen for corresponding multistep surface reactions.

Keywords: catalytic combustor, hydrogen adsorption, plug flow reactor, surface ignition temperature

Procedia PDF Downloads 317