Search results for: adaptive type-I hybrid progressive censoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3284

Search results for: adaptive type-I hybrid progressive censoring

1634 Enhancement of coupler-based delay line filters modulation techniques using optical wireless channel and amplifiers at 100 Gbit/s

Authors: Divya Sisodiya, Deepika Sipal

Abstract:

Optical wireless communication (OWC) is a relatively new technology in optical communication systems that allows for high-speed wireless optical communication. This research focuses on developing a cost-effective OWC system using a hybrid configuration of optical amplifiers. In addition to using EDFA amplifiers, a comparison study was conducted to determine which modulation technique is more effective for communication. This research examines the performance of an OWC system based on ASK and PSK modulation techniques by varying OWC parameters under various atmospheric conditions such as rain, mist, haze, and snow. Finally, the simulation results are discussed and analyzed.

Keywords: OWC, bit error rate, amplitude shift keying, phase shift keying, attenuation, amplifiers

Procedia PDF Downloads 132
1633 Offering a Model for Selecting the Most Suitable Type of Thinking for Managers

Authors: H. Emari, Z. Emari

Abstract:

The purpose of this paper is to design an applied framework for strategic thinking which can be applied in all managerial levels and all types of organizational environments. No special applied frame has been presented for this thinking. This paper presents a theoretical framework for the thinking type of a manager by making a historical research and studying the scientific documents about thinking of a strategist. In the new theoretical framework it has been tried to suggest the best type of thinking for a strategist after analyzing the environment of his decisions. So, in this framework, the traditional viewpoint about strategic thinking, which has considered it as a special type of right-brain thinking against other types of right-brain thinking and suggested it for a strategist, was put aside and suggests that the strategist should use a suitable type of thinking under different conditions.

Keywords: strategic thinking, systemic thinking, lateral thinking, intuitive thinking, hybrid thinking

Procedia PDF Downloads 331
1632 State and Benefit: Delivering the First State of the Bays Report for Victoria

Authors: Scott Rawlings

Abstract:

Victoria’s first State of the Bays report is an historic baseline study of the health of Port Phillip Bay and Western Port. The report includes 50 assessments of 36 indicators across a broad array of topics from the nitrogen cycle and water quality to key marine species and habitats. This paper discusses the processes for determining and assessing the indicators and comments on future priorities identified to maintain and improve the health of these water ways. Victoria’s population is now at six million, and growing at a rate of over 100,000 people per year - the highest increase in Australia – and the population of greater Melbourne is over four million. Port Phillip Bay and Western Port are vital marine assets at the centre of this growth and will require adaptive strategies if they are to remain in good condition and continue to deliver environmental, economic and social benefits. In 2014, it was in recognition of these pressures that the incoming Victorian Government committed to reporting on the state of the bays every five years. The inaugural State of the Bays report was issued by the independent Victorian Commissioner for Environmental Sustainability. The report brought together what is known about both bays, based on existing research. It was a baseline on which future reports will build and, over time, include more of Victoria’s marine environment. Port Phillip Bay and Western Port generally demonstrate healthy systems. Specific threats linked to population growth are a significant pressure. Impacts are more significant where human activity is more intense and where nutrients are transported to the bays around the mouths of creeks and drainage systems. The transport of high loads of nutrients and pollutants to the bays from peak rainfall events is likely to increase with climate change – as will sea level rise. Marine pests are also a threat. More than 100 introduced marine species have become established in Port Phillip Bay and can compete with native species, alter habitat, reduce important fish stocks and potentially disrupt nitrogen cycling processes. This study confirmed that our data collection regime is better within the Marine Protected Areas of Port Phillip Bay than in other parts. The State of the Bays report is a positive and practical example of what can be achieved through collaboration and cooperation between environmental reporters, Government agencies, academic institutions, data custodians, and NGOs. The State of the Bays 2016 provides an important foundation by identifying knowledge gaps and research priorities for future studies and reports on the bays. It builds a strong evidence base to effectively manage the bays and support an adaptive management framework. The Report proposes a set of indicators for future reporting that will support a step-change in our approach to monitoring and managing the bays – a shift from reporting only on what we do know, to reporting on what we need to know.

Keywords: coastal science, marine science, Port Phillip Bay, state of the environment, Western Port

Procedia PDF Downloads 210
1631 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: small scale wave, potential energy, optimized energy recovery, auto-adaptive system

Procedia PDF Downloads 259
1630 Evaluation of Interspecific Pollination of Elaeis guineensis and Elaeis oleifera Carried Out in the Ucayali Region-Peru

Authors: Victor Sotero, Cindy Castro, Ena Velazco, Ursula Monteiro, Dora Garcia

Abstract:

The aim of this study is to carry out the evaluation of the artificial pollination of the female flowers of E. oleifera with pollen of E. guineensis, to obtain the hybrid Palma OXG, which presents two characteristics of interest, such as high resistance to the disease of spear rot and high concentration of oleic acid. The works were carried out with matrices from the experimental fields and INIA in the Province of Colonel Portillo in the Ucayali Region-Peru. From the pollination of five species of E. oleifera, fruits were obtained in two of them, called O7 and O68, with a percentage of 23.6% and 18.6% of fertile fruits. When germination was carried out in a controlled environment of temperature, air, and humidity, only the O17 species were germinated with a yield of 68.7%.

Keywords: Elaeis oleífera, Elaeis guineensis, palm OXG, pollination

Procedia PDF Downloads 141
1629 The Current And Prospective Legal Regime of Non-Orbital Flights

Authors: Olga Koutsika

Abstract:

The paper deals primarily with the question of the legal framework of non-orbital flights. The submission is based upon two pillars, starting with the ill-defined current legal regime and proceeding to further recommendations for the prospective legal regime for non-orbital flights. For this reason, the paper focuses on certain key legal aspects of the topic, including among other things liability, responsibility, jurisdiction, registration and authorisation. Furthermore, taking into consideration the hybrid nature of both the craft conducting non-orbital flights and of the flights themselves, which exit airspace but do not enter an orbit in outer space, the paper addresses each legal question from the perspective of both air law and space law and concludes to a number of recommendations regarding the applicability of each legal regime for each legal question individually.

Keywords: current regime, legal framework, non-orbital flights, prospective regime

Procedia PDF Downloads 383
1628 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns

Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim

Abstract:

Whether the data has been well parallelized is an important factor in the Solid-State-Drive (SSD) performance. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.

Keywords: dynamic allocation, NAND flash based SSD, SSD parallelism, static allocation

Procedia PDF Downloads 339
1627 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez

Abstract:

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Keywords: flow-shop scheduling problem, makespan, Petri nets, state equation

Procedia PDF Downloads 298
1626 Indicators of Value of Life in Children with Colorectal Illness

Authors: Enkelejda Shkurti, Diamant Shtiza

Abstract:

Background: Health-related quality of life (HRQoL) is a significant consequence in health care. The objective of our study was to recognize features related to lower HRQoL scores in children with anorectal malformation (ARM) and Hirschsprung disease (HD). Methods: Children younger than 18 years, with HD or ARM, that were assessed at our private clinic in Tirana, Albania, from December 2018 to October 2019, were acknowledged. The outcomes of broad questionnaires concerning diagnosis, symptoms, and preceding health/surgical history and authenticated tools to measure urinary status, stooling grade, and HRQoL were appraised. Results: In patients aged 0-6 years, vomiting and abdominal enlargement were allied with a substantial decrease in total HRQoL scores. In children > 6 years of age, vomiting, abdominal swelling, and abdominal discomfort were also linked to a considerably lower HRQoL. The main indicator of lower HRQoL scores on regression tree analysis in all age clusters was the occurrence of psychosomatic, behavioral, or progressive comorbidity. Conclusion: Children with both HD or ARM that have a psychosomatic, behavioral, or growing problem experience considerably lower HRQoL than patients deprived of such problems, proposing that establishment of behavioral/growing sustenance as part of the care of these patients may have a considerable influence on their HRQoL.

Keywords: anorectal malformation, Hirsch Sprung disease, quality of life, Albania

Procedia PDF Downloads 174
1625 Strategies to Achieve Deep Decarbonisation in Power Generation: A Review

Authors: Abdullah Alotaiq

Abstract:

The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across the heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.

Keywords: review, power generation, energy transition, decarbonisation

Procedia PDF Downloads 54
1624 Engaging Teacher Inquiry via New Media in Traditional and E-Learning Environments

Authors: Daniel A. Walzer

Abstract:

As the options for course delivery and development expand, plenty of misconceptions still exist concerning e-learning and online course delivery. Classroom instructors often discuss pedagogy, methodologies, and best practices regarding teaching from a singular, traditional in-class perspective. As more professors integrate online, blended, and hybrid courses into their dossier, a clearly defined rubric for gauging online course delivery is essential. The transition from a traditional learning structure towards an updated distance-based format requires careful planning, evaluation, and revision. This paper examines how new media stimulates reflective practice and guided inquiry to improve pedagogy, engage interdisciplinary collaboration, and supply rich qualitative data for future research projects in media arts disciplines.

Keywords: action research, inquiry, new media, reflection

Procedia PDF Downloads 307
1623 Rectenna Modeling Based on MoM-GEC Method for RF Energy Harvesting

Authors: Soulayma Smirani, Mourad Aidi, Taoufik Aguili

Abstract:

Energy harvesting has arisen as a prominent research area for low power delivery to RF devices. Rectennas have become a key element in this technology. In this paper, electromagnetic modeling of a rectenna system is presented. In our approach, a hybrid technique was demonstrated to associate both the method of auxiliary sources (MAS) and MoM-GEC (the method of moments combined with the generalized equivalent circuit technique). Auxiliary sources were used in order to substitute specific electronic devices. Therefore, a simple and controllable model is obtained. Also, it can easily be interconnected to form different topologies of rectenna arrays for more energy harvesting. At last, simulation results show the feasibility and simplicity of the proposed rectenna model with high precision and computation efficiency.

Keywords: computational electromagnetics, MoM-GEC method, rectennas, RF energy harvesting

Procedia PDF Downloads 171
1622 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 80
1621 A Comparative Analysis of Self-help Housing and Government Mass Housing Scheme in Addressing the Challenge of Housing Access in Mararaba Area of Karu Local Government Area, Nasarawa State, Nigeria

Authors: John Abubakar

Abstract:

Access to decent housing is a global challenge. An estimated one billion people currently live in slum settlements globally. About 80 percent of these slum dwellers are in Asia and Africa. Nigeria accounts for a significant percentage of African slum dwellers because of its size. Addressing the challenge of slum settlement in Nigeria can have far reaching positive implications in Africa. A major slum settlement in Nigeria is Mararaba slum in Karu local government of Nasarawa state. The importance of this slum settlement hinges on its proximity to Abuja, Nigeria’s capital city. This study is an attempt at identifying the impact of self-help housing and government mass housing scheme in addressing the problem of housing access in Mararaba area of Karu local government, Nasarawa state. The research method used is the content analysis of existing literature. After the review of existing literature, the paper argues that self-help house is more impactful in addressing housing access in Mararaba area of Karu local government. Therefore, self-help housing should be recognized and incorporated into the housing policy of Nasarawa state. Both self-help housing and government mass housing programs are reviewed comparatively, and their strengths and weaknesses analyses.

Keywords: slum settlement, informal settlement, progressive improvement, holistic planning

Procedia PDF Downloads 78
1620 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm

Authors: Vahid Bayrami Rad

Abstract:

Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.

Keywords: arduino board, artificial intelligence, image processing, solenoid lock

Procedia PDF Downloads 69
1619 Evaluation and Selection of SaaS Product Based on User Preferences

Authors: Boussoualim Nacira, Aklouf Youcef

Abstract:

Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.

Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)

Procedia PDF Downloads 483
1618 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 168
1617 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 436
1616 The Prevalence of Musculoskeletal Disorders and Their Associated Factors among Nurses in Jordan

Authors: Khader A. Almhdawi, Hassan Alrabbaie

Abstract:

Background: Musculoskeletal disorders (MSDs) represent a significant challenge for registered nurses. To our best knowledge, there is no published study that investigated the prevalence of MSDs among nurses and their associated factors comprehensively in Jordan. This study aimed to find the prevalence of MSDs, their possible predictors among registered nurses in Jordanian hospitals. Methods: A cross-sectional design was used. Outcome measures included Nordic Musculoskeletal Questioner (NMQ), Depression Anxiety Stress Scale (DASS), Pittsburgh Sleep Quality Index (PSQI), IPAQ, and sociodemographic data. Prevalence of musculoskeletal complaints was reported using descriptive analysis. Logistic regression analyses were conducted to identify predictors of MSDs. Results: 597 nurses from different hospitals in Jordan participated in this study. Reported MSDs prevalence was the highest at neck (61.1%), followed by upper back (47.2%), shoulder (46.7%), wrist and hands (27.3%), and elbow (13.9%). Significant predictors of MSDs among Jordanian nurses included: being a female, poor sleep quality, high physical activity levels, poor ergonomics, increased workload, and mental stress. Conclusion: This study showed a high prevalence of MSDs among Jordanian nurses and identified their significant predictors. Future studies are needed to investigate the progressive nature of MSDs and their effective treatment strategies.

Keywords: musculoskeletal disorders, nursing, ergonomic, occupational stress

Procedia PDF Downloads 99
1615 Modern Machine Learning Conniptions for Automatic Speech Recognition

Authors: S. Jagadeesh Kumar

Abstract:

This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.

Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning

Procedia PDF Downloads 448
1614 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach

Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour

Abstract:

The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.

Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system

Procedia PDF Downloads 350
1613 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization

Procedia PDF Downloads 156
1612 ZBTB17 Gene rs10927875 Polymorphism in Slovak Patients with Dilated Cardiomyopathy

Authors: I. Boroňová, J. Bernasovská, J. Kmec, E. Petrejčíková

Abstract:

Dilated cardiomyopathy (DCM) is a severe cardiovascular disorder characterized by progressive systolic dysfunction due to cardiac chamber dilatation and inefficient myocardial contractility often leading to chronic heart failure. Recently, a genome-wide association studies (GWASs) on DCM indicate that the ZBTB17 gene rs10927875 single nucleotide polymorphism is associated with DCM. The aim of the study was to identify the distribution of ZBTB17 gene rs10927875 polymorphism in 50 Slovak patients with DCM and 80 healthy control subjects using the Custom Taqman®SNP Genotyping assays. Risk factors detected at baseline in each group included age, sex, body mass index, smoking status, diabetes and blood pressure. The mean age of patients with DCM was 52.9±6.3 years; the mean age of individuals in control group was 50.3±8.9 years. The distribution of investigated genotypes of rs10927875 polymorphism within ZBTB17 gene in the cohort of Slovak patients with DCM was as follows: CC (38.8%), CT (55.1%), TT (6.1%), in controls: CC (43.8%), CT (51.2%), TT (5.0%). The risk allele T was more common among the patients with dilated cardiomyopathy than in normal controls (33.7% versus 30.6%). The differences in genotype or allele frequencies of ZBTB17 gene rs10927875 polymorphism were not statistically significant (p=0.6908; p=0.6098). The results of this study suggest that ZBTB17 gene rs10927875 polymorphism may be a risk factor for susceptibility to DCM in Slovak patients with DCM. Studies of numerous files and additional functional investigations are needed to fully understand the roles of genetic associations.

Keywords: ZBTB17 gene, rs10927875 polymorphism, dilated cardiomyopathy, cardiovascular disorder

Procedia PDF Downloads 405
1611 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B

Procedia PDF Downloads 688
1610 Literature Review: The Efficacy of Play-Based Therapy Programs in Decreasing Core Symptoms of Autism Spectrum Disorder

Authors: Rozan El-Khateeb

Abstract:

This literature review examines the effectiveness of therapy programs that utilize play as an intervention for reducing symptoms associated with Autism Spectrum Disorder (ASD). Play-based therapy approaches provide a child-centered and developmentally appropriate framework to address the core symptoms of ASD, including social communication deficits, restricted and repetitive behaviors, and sensory sensitivities. The review explores various play-based therapy strategies and their impact on improving social skills, communication abilities, adaptive behaviors, and overall functioning in individuals with ASD. The findings suggest that play-based therapy programs hold promise as effective interventions for reducing symptoms and enhancing the quality of life for individuals with ASD. However, further research is necessary to establish standardized protocols, identify optimal dosage and duration, and evaluate long-term outcomes.

Keywords: autism, ABA, play, NET, systematic review

Procedia PDF Downloads 77
1609 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms

Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour

Abstract:

This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.

Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks

Procedia PDF Downloads 707
1608 The Transformative Landscape of the University of the Western Cape’s Elearning Center: Institutionalizing ELearning

Authors: Paul Dankers, Juliet Stoltenkamp, Carolynne Kies

Abstract:

In May 2005, the University of the Western Cape (UWC) established an eLearning Division (ED) that, over the past 18 years, accelerated into the institutionalization of an efficient eLearning Centre. The initial objective of the ED was to incessantly align itself with emerging technologies caused by digital transformation, which progressively impacted Higher Education Institutions (HEIs) globally. In this paper, we present how the UWC eLearning Division (ED) first evolved into the eLearning Development and Support Unit (EDUS), currently called the ‘Centre for Innovative Education and Communication Technologies (CIECT). CIECT was strategically separated from the Department of Information and Communication Services (ICS) in 2009 and repositioned as an independent structure at UWC. Using a comparative research method, we highlight the transformative eLearning landscape at UWC by doing a detailed account of the shift in practices. Our research method will determine the initial vision and outcomes of institutionalizing an eLearning division. The study aims to compare across space or time the eLearning division’s rate of growth. By comparing the progressive growth of the UWCs eLearning division over the years, we will be able to document the successes and achievements of the eLearning division precisely. This study’s outcomes will act as a reference for novel research subjects on formalising eLearning. More research that delves into the effectiveness of having an eLearning division at HEIs in support of students’ teaching and learning is needed.

Keywords: eLearning, institutionalization, teaching and learning, transformation

Procedia PDF Downloads 40
1607 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel

Procedia PDF Downloads 131
1606 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
1605 Antioxidant Effects of Regular Aerobic Exercise in Postmenopausal Women with Type 2 Diabetes Mellitus

Authors: Parvin Farzanegi

Abstract:

Background: Diabetes is a metabolic disorder associated with increased free radicals and oxidative stress. The evidence indicates that physical inactivity is a modifiable behavioral risk factor for a wide range of chronic disorders such as diabetes mellitus. We investigated the effects of eight-week aerobic exercise on some antioxidant enzyme activities in postmenopausal women with type 2 diabetes mellitus (T2DM). Methods: sixteen sedentary postmenopausal women with T2DM were randomly assigned to the control (n=8; CG) and exercise group (n=8; EG). The exercise consisted of progressive aerobic training at a moderate intensity (50-70% of the maximum heart rate), for 25-60 min/day, and 3 days/week for 8 weeks. Age, sex, and body mass index were similar in the two groups. Antioxidant status was evaluated by measuring the superoxide dismutase (SOD) and catalase (CAT) activity. Also levels of malondialdehyde (MDA) as an index of lipid peroxidation and glucose in the plasma were measured before and after the intervention. Results: Following the 8 weeks of exercise training, the plasma MDA and glucose levels were significantly reduced in EG compared to CG (P=0.001 and P=0.011 respectively). However, SOD (P=0.017) and CAT (P=0.011) activities were increased in EG compared to CG. Conclusion: The present study suggests regular aerobic exercise appears can exert protective effects against oxidative stress due to its ability to increase antioxidant defense and glucose control in postmenopausal women with T2DM.

Keywords: aerobic exercise, antioxidant, diabetes mellitus, type 2

Procedia PDF Downloads 170