Search results for: well data integration
25149 Developing API Economy: Associating Value to APIs and Microservices in an Enterprise
Authors: Mujahid Sultan
Abstract:
The IT industry has seen many transformations in the Software Development Life Cycle (SDLC) methodologies and development approaches. SDLCs range from waterfall to agile, and the development approaches from monolith to microservices. Management, orchestration, and monetization of microservices have created an API economy in the modern enterprise. There are two approaches to API design, code first and design first. Design first is gaining popularity in the industry as this allows capturing the API needs from the stakeholders rather than the development teams guesstimating the needs and associating a monetary value with the APIs and microservices. In this publication, we describe an approach to organizing and creating stakeholder needs and requirements for designing microservices and APIs.Keywords: requirements engineering, enterprise architecture, APIs, microservices, DevOps, continuous delivery, continuous integration, stakeholder viewpoints
Procedia PDF Downloads 19125148 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 20025147 Challenges in Employment and Adjustment of Academic Expatriates Based in Higher Education Institutions in the KwaZulu-Natal Province, South Africa
Authors: Thulile Ndou
Abstract:
The purpose of this study was to examine the challenges encountered in the mediation of attracting and recruiting academic expatriates who in turn encounter their own obstacles in adjusting into and settling in their host country, host academic institutions and host communities. The none-existence of literature on attraction, placement and management of academic expatriates in the South African context has been acknowledged. Moreover, Higher Education Institutions in South Africa have voiced concerns relating to delayed and prolonged recruitment and selection processes experienced in the employment process of academic expatriates. Once employed, academic expatriates should be supported and acquainted with the surroundings, the local communities as well as be assisted to establish working relations with colleagues in order to facilitate their adjustment and integration process. Hence, an employer should play a critical role in facilitating the adjustment of academic expatriates. This mixed methods study was located in four Higher Education Institutions based in the KwaZulu-Natal province, in South Africa. The explanatory sequential design approach was deployed in the study. The merits of this approach were chiefly that it employed both the quantitative and qualitative techniques of inquiry. Therefore, the study examined and interrogated its subject from a multiplicity of quantitative and qualitative vantage points, yielding a much more enriched and enriching illumination. Mixing the strengths of both the quantitative and the qualitative techniques delivered much more durable articulation and understanding of the subject. A 5-point Likert scale questionnaire was used to collect quantitative data relating to interaction adjustment, general adjustment and work adjustment from academic expatriates. One hundred and forty two (142) academic expatriates participated in the quantitative study. Qualitative data relating to employment process and support offered to academic expatriates was collected through a structured questionnaire and semi-structured interviews. A total of 48 respondents; including, line managers, human resources practitioners, and academic expatriates participated in the qualitative study. The Independent T-test, ANOVA and Descriptive Statistics were performed to analyse, interpret and make meaning of quantitative data and thematic analysis was used to analyse qualitative data. The qualitative results revealed that academic talent is sourced from outside the borders of the country because of the academic skills shortage in almost all academic disciplines especially in the disciplines associated with Science, Engineering and Accounting. However, delays in work permit application process made it difficult to finalise the recruitment and selection process on time. Furthermore, the quantitative results revealed that academic expatriates experience general and interaction adjustment challenges associated with the use of local language and understanding of local culture. However, female academic expatriates were found to be better adjusted in the two areas as compared to male academic expatriates. Moreover, significant mean differences were found between institutions suggesting that academic expatriates based in rural areas experienced adjustment challenges differently from the academic expatriates based in urban areas. The study gestured to the need for policy revisions in the area of immigration, human resources and academic administration.Keywords: academic expatriates, recruitment and selection, interaction and general adjustment, work adjustment
Procedia PDF Downloads 30625146 Blended Wing Body (BWB) Vertical Takeoff and Landing (VTOL) Hybrids: Bridging Urban Gaps Through Computational Design and Optimization, A Comparative Study
Authors: Sai Siddharth S., Prasanna Kumar G. M., Alagarsamy R.
Abstract:
This research introduces an alternative approach to urban road maintenance by utilizing Blended Wing Body (BWB) design and Vertical Takeoff and Landing (VTOL) drones. The integration of this aerospace innovation, combining blended wing efficiency with VTOL maneuverability, aims to optimize fuel consumption and explore versatile applications in solving urban problems. A few problems are discussed along with optimization of the design and comparative study with other drone configurations.Keywords: design optimization, CFD, CAD, VTOL, blended wing body
Procedia PDF Downloads 9625145 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 33825144 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 22525143 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks
Procedia PDF Downloads 43425142 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 49725141 Single Phase PV Inverter Applying a Dual Boost Technology
Authors: Sudha Bhutada, S. R. Nigam
Abstract:
In this paper, a single-phase PV inverter applying a dual boost converter circuit inverter is proposed for photovoltaic (PV) generation system and PV grid connected system. This system is designed to improve integration of a Single phase inverter with Photovoltaic panel. The DC 24V is converted into to 86V DC and then 86V DC to 312V DC. The 312 V DC is then successfully inverted to AC 220V. Hence, solar energy is powerfully converted into electrical energy for fulfilling the necessities of the home load, or to link with the grid. Matlab Simulation software was used for simulation of the circuit and outcome are presented in this paper.Keywords: H bridge inverter, dual boost converter, PWM, SPWM
Procedia PDF Downloads 64625140 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact
Authors: Edward Nartey
Abstract:
Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations
Procedia PDF Downloads 6425139 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants
Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver
Abstract:
This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants
Procedia PDF Downloads 35225138 Status and Results from EXO-200
Authors: Ryan Maclellan
Abstract:
EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.Keywords: double-beta, Majorana, neutrino, neutrinoless
Procedia PDF Downloads 41425137 Unconventional Calculus Spreadsheet Functions
Authors: Chahid K. Ghaddar
Abstract:
The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.Keywords: calculus, differential algebraic equations, solvers, spreadsheet
Procedia PDF Downloads 36025136 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 43625135 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 37425134 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 9725133 Prevalence and Factors Associated with Illicit Drug Use Among Undergraduate Students in the University of Lagos, Nigeria
Authors: Abonyi, Emmanuel Ebuka, Amina Jafaru O.
Abstract:
Background: Illicit substance use among students is a phenomenon that has been widely studied, but it remains of interest due to its high prevalence and potential consequences. It is a major mental health concern among university students which may result in behavioral and academic problems, psychiatric disorders, and infectious diseases. Thus, this study was done to ascertain the prevalence and factors associated with the use of illicit drugs among these groups of people. Methods: A cross-sectional and descriptive survey was conducted among undergraduate students of the University of Lagos for the duration of three(3) months (August to October 2021). A total number of 938 undergraduate students were selected from seventeen faculties in the university. Pretested questionnaires were administered, completed, and returned. The data were analyzed using descriptive statistics and multivariate regression analysis. Results: From the data collected, it was observed that out of 938 undergraduate students of the University of Lagos that completed and returned the questionnaires, 56.3% were female and 43.7% were male. No gender differences were observed in the prevalence of use of any of the illicit substances. The result showed that the majority of the students that participated in the research were females(56.6%); it was observed that there were a total of 541 2nd-year students(57.7%) and 397 final-year students(42.3). Students between the age brackets of 20- 24 years had the highest frequency of 648(69.1%) of illicit drug use and students in none health-related disciplines. The result also showed that the majority of the students reported that they use Marijuana (31.7%), while lifetime use of LSD (6.3%), Heroin(4.8%), Cocaine (4.7%), and Ecstasy(4.5), Ketamine (3.4%). Besides, the use of alcohol was below average(44.1%). Additionally, Marijuana was among the ones that were mostly taken by students having a higher percentage and most of these respondents had experienced relationship problems with their family and intentions (50.9%). From the responses obtained, major reasons students indulge in illicit drug use were; curiosity to experiment, relief of stress after rigorous academic activities, social media influence, and peer pressure. Most Undergraduate students are in their most hyperactive stage in life, which makes them vulnerable to always want to explore practically every adventure. Hence, individual factors and social media influence are identified as major contributors to the prevalence of illicit drug use among undergraduate students at the University of Lagos, Nigeria. Conclusion: Control programs are most needed among the students. They should be comprehensive and focused on students' psycho-education about substances and their related negative consequences, plus the promotion of students' life skills, and integration into the family – and peer-based preventive interventions.Keywords: illicit drugs, addiction, undergraduate students, prevalence, substances
Procedia PDF Downloads 10425132 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 24725131 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan
Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen
Abstract:
In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.Keywords: automation, integration, value, communication
Procedia PDF Downloads 14625130 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 4425129 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 1225128 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 41825127 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection
Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger
Abstract:
Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor
Procedia PDF Downloads 39925126 Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco
Authors: I .Ait El Harch, K. Outaaoui, Y. El Foutayeni
Abstract:
This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium.Keywords: bioeconomical modeling, optimization techniques, linear complementarity problem LCP, biological equilibrium, maximizing profits
Procedia PDF Downloads 2425125 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks
Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode
Abstract:
The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control
Procedia PDF Downloads 8425124 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index
Authors: A. Sathiya Susuman, Hamisi F. Hamisi
Abstract:
Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index
Procedia PDF Downloads 47625123 Challenges That People with Autism and Caregivers Face in Public Environments
Authors: Andrei Pomana, Graham Brewer
Abstract:
Autism is a lifelong developmental disorder that affects verbal and non-verbal communication, behaviour and sensory processing. As a result, people on the autism spectrum have a difficult time when confronted with environments that have high levels of sensory stimulation. This is often compounded by the inability to properly communicate their wants and needs to caregivers. The capacity for people with autism to integrate depends on their ability to at least tolerate highly stimulating public environments for short periods of time. The overall challenges that people on the spectrum and their caregivers face need to be established in order to properly create and assess methods to mitigate the effects of high stimulus public spaces. The paper aims to identify the challenges that people on the autism spectrum and their caregivers face in typical public environments. Nine experienced autism therapists have participated in a semi-structured interview regarding the challenges that people with autism and their caregivers face in public environments. The qualitative data shows that the unpredictability of events and the high sensory stimulation present in public environments, especially auditory, are the two biggest contributors to the difficulties that people on the spectrum face. If the stimuli are not removed in a short period of time, uncontrollable behaviours or 'meltdowns' can occur, which leave the person incapacitated and unable to respond to any outside input. Possible solutions to increase integration in public spaces for people with autism revolve around removing unwanted sensory stimulus, creating personalized barriers for certain stimuli, equipping people with autism with better tools to communicate their needs or to orient themselves to a safe location and providing a predictable pattern of events that would prepare individuals for tasks ahead of time.Keywords: autism, built environment, meltdown, public environment, sensory processing disorders
Procedia PDF Downloads 16325122 An Investigation of the Integration of Synchronous Online Tools into Task-Based Language Teaching: The Example of SpeakApps
Authors: Nouf Aljohani
Abstract:
The research project described in this presentation focuses on designing and evaluating oral tasks related to students’ needs and levels to foster communication and negotiation of meaning for a group of female Saudi university students. The significance of the current research project lies in its contribution to determining the usefulness of synchronous technology-mediated interactive group discussion in improving different speaking strategies through using synchronous technology. Also, it discovers how to optimize learning outcomes, expand evaluation for online learning tasks and engaging students’ experience in evaluating synchronous interactive tools and tasks. The researcher used SpeakApps, a synchronous technology, that allows the students to practice oral interaction outside the classroom. Such a course of action was considered necessary due to low English proficiency among Saudi students. According to the author's knowledge, the main factor that causes poor speaking skills is that students do not have sufficient time to communicate outside English language classes. Further, speaking and listening course contents are not well designed to match the Saudi learning context. The methodology included designing speaking tasks to match the educational setting; a CALL framework for designing and evaluating tasks; participant involvement in evaluating these tasks in each online session; and an investigation of the factors that led to the successful implementation of Task-based Language Teaching (TBLT) and using SpeakApps. The analysis and data were drawn from the technology acceptance model surveys, a group interview, teachers’ and students’ weekly reflections, and discourse analysis of students’ interactions.Keywords: CALL evaluation, synchronous technology, speaking skill, task-based language teaching
Procedia PDF Downloads 31025121 Chongqing, a Megalopolis Disconnected with Its Rivers: An Assessment of Urban-Waterside Disconnect in a Chinese Megacity and Proposed Improvement Strategies, Chongqing City as a Case Study
Authors: Jaime E. Salazar Lagos
Abstract:
Chongqing is located in southwest China and is becoming one of the most significant cities in the world. Its urban territories and metropolitan-related areas have one of the largest urban populations in China and are partitioned and shaped by two of the biggest and longest rivers on Earth, the Yangtze and Jialing Rivers, making Chongqing a megalopolis intersected by rivers. Historically, Chongqing City enjoyed fundamental connections with its rivers; however, current urban development of Chongqing City has lost effective integration of the riverbanks within the urban space and structural dynamics of the city. Therefore, there exists a critical lack of physical and urban space conjoined with the rivers, which diminishes the economic, tourist, and environmental development of Chongqing. Using multi-scale satellite-map site verification the study confirmed the hypothesis and urban-waterside disconnect. Collected data demonstrated that the Chongqing urban zone, an area of 5292 square-kilometers and a water front of 203.4 kilometers, has only 23.49 kilometers of extension (just 11.5%) with high-quality physical and spatial urban-waterside connection. Compared with other metropolises around the world, this figure represents a significant lack of spatial development along the rivers, an issue that has not been successfully addressed in the last 10 years of urban development. On a macro scale, the study categorized the different kinds of relationships between the city and its riverbanks. This data was then utilized in the creation of an urban-waterfront relationship map that can be a tool for future city planning decisions and real estate development. On a micro scale, we discovered there are three primary elements that are causing the urban-waterside disconnect: extensive highways along the most dense areas and city center, large private real estate developments that do not provide adequate riverside access, and large industrial complexes that almost completely lack riverside utilization. Finally, as part of the suggested strategies, the study concludes that the most efficient and practical way to improve this situation is to follow the historic master-planning of Chongqing and create connective nodes in critical urban locations along the river, a strategy that has been used for centuries to handle the same urban-waterside relationship. Reviewing and implementing this strategy will allow the city to better connect with the rivers, reducing the various impacts of disconnect and urban transformation.Keywords: Chongqing City, megalopolis, nodes, riverbanks disconnection, urban
Procedia PDF Downloads 22625120 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 428