Search results for: pilot optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4126

Search results for: pilot optimization

2506 Understanding ICT Behaviors among Health Workers in Sub-Saharan Africa: A Cross-Sectional Study for Laboratory Persons in Uganda

Authors: M. Kasusse, M. Rosette, E. Burke, C. Mwangi, R. Batamwita, N. Tumwesigye, S. Aisu

Abstract:

A cross-sectional survey to ascertain the capacity of laboratory persons in using ICTs was conducted in 15 Ugandan districts (July-August 2013). A self-administered questionnaire served as data collection tool, interview guide and observation checklist. 69 questionnaires were filled, 12 interviews conducted, 45 HC observed. SPSS statistics 17.0 and SAS 9.2 software were used for entry and analyses. 69.35% of participants find it difficult to access a computer at work. Of the 30.65% who find it easy to access a computer at work, a significant 21.05% spend 0 hours on a computer daily. 60% of the participants cannot access internet at work. Of the 40% who have internet at work, a significant 20% lack email address but 20% weekly read emails weekly and 48% daily. It is viable/feasible to pilot informatics projects as strategies to build bridges develop skills for e-health landscape in laboratory services with a bigger financial muscle.

Keywords: ICT behavior, clinical laboratory persons, Sub-Saharan Africa, Uganda

Procedia PDF Downloads 235
2505 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production

Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole

Abstract:

Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.

Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder

Procedia PDF Downloads 152
2504 Feasibility of Risk Assessment for Type 2 Diabetes in Community Pharmacies Using Two Different Approaches: A Pilot Study in Thailand

Authors: Thitaporn Thoopputra, Tipaporn Pongmesa, Shuchuen Li

Abstract:

Aims: To evaluate the application of non-invasive diabetes risk assessment tool in community pharmacy setting. Methods: Thai diabetes risk score was applied to assess individuals at risk of developing type 2 diabetes. Interactive computer-based risk screening (IT) and paper-based risk screening (PT) tools were applied. Participants aged over 25 years with no known diabetes were recruited in six participating pharmacies. Results: A total of 187 clients, mean aged (+SD) was 48.6 (+10.9) years. 35% were at high risk. The mean value of willingness-to-pay for the service fee in IT group was significantly higher than PT group (p=0.013). No significant difference observed for the satisfaction between groups. Conclusions: Non-invasive risk assessment tool, whether paper-based or computerized-based can be applied in community pharmacy to support the enhancing role of pharmacists in chronic disease management. Long term follow up is needed to determine the impact of its application in clinical, humanistic and economic outcomes.

Keywords: community pharmacy, intervention, prevention, risk assessment, type 2 diabetes

Procedia PDF Downloads 521
2503 Coastal Erosion Control Alternatives with Geosynthetics: Study Case of Ponta Negra Beach, Natal, Brazil

Authors: M. A. Medeiros, A. A. N. Dantas, F. A. N. França, R. F. Amaral

Abstract:

There are several alternatives of coastal erosion control with geosynthetics. As an important stage of any Civil Engineering project, literature review is necessary in order to evaluate these alternatives and to guide the decisions. Ponta Negra beachfront has a very intensive urban pressure. In addition, a very short sand area induces high intensity erosion processes. Different attempts of solving the problem were already built. However, erosion issues are still an important concern since these structures collapsed. Geosynthetics present a great potential to be applied in this area. In order to study coastal erosion control alternatives with the use of geosynthetics, this paper presents a literature review about this subject. Several studies were collected in which beach conditions are similar to those found in Ponta Negra beach. It was possible to evaluate the alternatives that might be used in the area. Further studies include the application of such techniques in pilot areas and the evaluation of the erosion process. Finally, the best alternative for futures studies on Ponta Negra beach is geocontainers of geotextiles.

Keywords: geosynthetics, coastal erosion control, alternatives, Ponta Negra beach

Procedia PDF Downloads 156
2502 Coping Orientation of Academic Community in the Time of COVID-19 Pandemic: A Pilot Survey Study

Authors: Fereshteh Ahmadi, Önver Cetrez, Said Zandi, Sharareh Akhavan

Abstract:

In this paper, we have mapped the coping methods used to address the coronavirus pandemic by members of the academic community. We conducted an anonymous survey of a convenient sample of 674 faculty/staff members and students from September to December 2020. A modified version of the RCOPE scale was used for data collection. The results indicate that both religious and existential coping methods were used by respondents. The study also indicates that even though 71% of in-formants believed in God or another religious figure, 61% reported that they had tried to gain control of the situation directly without the help of God or another religious figure. The ranking of the coping strategies used indicates that the first five methods used by informants were all non-religious coping methods (i.e., secular existential coping methods): regarding life as a part of a greater whole, regarding nature as an important resource, listening to the sound of surrounding nature, being alone and con-templating, and walking/engaging in any activities outdoors giving a spiritual feeling. Our results contribute to the new area of research on academic community’s coping with pandemic-related stress and challenges.

Keywords: academic staff, academics, coping strategies, coronavirus epidemic, higher education.

Procedia PDF Downloads 88
2501 Doing Cause-and-Effect Analysis Using an Innovative Chat-Based Focus Group Method

Authors: Timothy Whitehill

Abstract:

This paper presents an innovative chat-based focus group method for collecting qualitative data to construct a cause-and-effect analysis in business research. This method was developed in response to the research and data collection challenges faced by the Covid-19 outbreak in the United Kingdom during 2020-21. This paper discusses the methodological approaches and builds a contemporary argument for its effectiveness in exploring cause-and-effect relationships in the context of focus group research, systems thinking and problem structuring methods. The pilot for this method was conducted between October 2020 and March 2021 and collected more than 7,000 words of chat-based data which was used to construct a consensus drawn cause-and-effect analysis. This method was developed in support of an ongoing Doctorate in Business Administration (DBA) thesis, which is using Design Science Research methodology to operationalize organisational resilience in UK construction sector firms.

Keywords: cause-and-effect analysis, focus group research, problem structuring methods, qualitative research, systems thinking

Procedia PDF Downloads 226
2500 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity

Authors: Zi-Yan Chao

Abstract:

With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.

Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity

Procedia PDF Downloads 28
2499 Echinococcus in Eastern Cape Province, South Africa

Authors: C. I. Boshoff, S. Steenkamp-Jonker

Abstract:

Cystic echinococcosis (CE), caused by Echinococcus granulosus is an important parasitic infection in livestock worldwide, with severe zoonotic potential. It is important to understand the variability of Echinococcus granulosus, as genotype variations may influence lifecycle patterns, development rate, and transmission. Cystic Echinococcus samples were collected from domestic animals in Eastern Cape Province, South Africa. A molecular study was performed on 14 hydatid cysts obtained from caprine, ovine and bovine livers in order to determine the Echinococcus granulosus strain present in these hosts. The sequencing of the mitochondrial cytochrome C oxidase subunit I (coxI) gene of the hydatid cysts produced sequences of 400 bp for each sample analysed. These sequences were aligned with those present in GenBank and a phylogenetic tree was constructed. Based on coxI genotype the isolates could be grouped into E. granulosus sensu stricto. The findings of the study represent a pilot molecular study on Echinococcus from domestic animals undertaken in South Africa.

Keywords: Echinococcus granulosus, genotypes, livestock, South Africa

Procedia PDF Downloads 432
2498 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 427
2497 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 167
2496 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 91
2495 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 480
2494 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA

Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma

Abstract:

The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.

Keywords: friction stir welding, optimization, 6061 AA, Taguchi

Procedia PDF Downloads 106
2493 Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić

Abstract:

Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds.

Keywords: chemometrics, molecular modeling, molecular descriptors, prions, QSAR

Procedia PDF Downloads 324
2492 LORA: A Learning Outcome Modelling Approach for Higher Education

Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga

Abstract:

To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.

Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling

Procedia PDF Downloads 191
2491 Encouraging Skills and Entrepreneurial Spirit to Improve Employability of Young Artists

Authors: Olga Lasaga, Carmen Parra

Abstract:

Within the EU 'New Skills for New Jobs' initiative, the art and music sector is considered one of the most vulnerable. Its graduates are faced with the threat of the dole or of not finding work in the sector in which they trained. In this regard, an increasing number of students are graduating every year from European Conservatories and Fine Arts Centres, while the number of job opportunities in this sector has stagnated or decreased. Moreover, the traditional teaching of these institutes does not favour the acquisition of basic skills, such as team building, entrepreneurship, marketing, website design and the design of events, which are among the most important facets of project management and are precisely those aspects that are often most related to the improvement of employability in the art world. To remedy this situation, the results of the European Erasmus+ OMEGA project (Opening More Employment Gates for Art and Music Students) are presented. The OMEGA project aims to increase the employability of art and music students by equipping them with additional skills needed for the search for work. As a result of this project, a manual has been created, a pilot course has been designed and taught, and a comparative study has been conducted on the state of play of the participating countries.

Keywords: artists, employability, entrepreneurship, musicians, skills

Procedia PDF Downloads 247
2490 A Qualitative Student-Perspective Study of Student-Centered Learning Practices in the Context of Irish Teacher Education

Authors: Pauline Logue

Abstract:

In recent decades, the Irish Department of Education and Skills has pro-actively promoted student-center learning methodologies. Similarly, the National Forum for the Enhancement of Teaching and Learning has advocated such strategies, aligning them with student success. These developments have informed the author’s professional practice as a teacher educator. This qualitative student-perspective study focuses on a review of one pilot initiative in the academic year 2020-2021, namely, the implementation of universal design for learning strategies within teacher education, employing student-centered learning strategies. Findings included: that student-centered strategies enhanced student performance and success overall, with some minor evidence of student resistance. It was concluded that a dialogical review with student teachers on prior learning experiences (from intellectual and affective perspectives) and learning environments (physical, virtual, and emotional) could facilitate greater student ownership of learning. It is recommended to more formally structure such a dialogical review in a future delivery.

Keywords: professional practice, student-centered learning, teacher education, universal design for learning

Procedia PDF Downloads 199
2489 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 108
2488 Implementing Delivery Drones in Logistics Business Process: Case of Pharmaceutical Industry

Authors: Nikola Vlahovic, Blazenka Knezevic, Petra Batalic

Abstract:

In this paper, we will present a research about feasibility of implementing unmanned aerial vehicles, also known as 'drones', in logistics. Research is based on available information about current incentives and experiments in application of delivery drones in commercial use. Overview of current pilot projects and literature, as well as an overview of detected challenges, will be compiled and presented. Based on these findings, we will present a conceptual model of business process that implements delivery drones in business to business logistic operations. Business scenario is based on a pharmaceutical supply chain. Simulation modeling will be used to create models for running experiments and collecting performance data. Comparative study of the presented conceptual model will be given. The work will outline the main advantages and disadvantages of implementing unmanned aerial vehicles in delivery services as a supplementary distribution channel along the supply chain.

Keywords: business process, delivery drones, logistics, simulation modelling, unmanned aerial vehicles

Procedia PDF Downloads 397
2487 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail

Authors: Arunkumar Balamurugan, G. Soundharya Lakshmi, V. Thenmozhi, M. Jegannath, V. R. Sanal Kumar

Abstract:

Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings.

Keywords: aerodynamics of insects, MAV, swallowtail butterfly, twin tail MAV design

Procedia PDF Downloads 397
2486 The Evaluation of a Mobile Proximity Payment Application through Its Legitimacy and Social Acceptability

Authors: Intissar Abbes, Yousra Hallem, Jean-michel Sahut

Abstract:

The purpose of this research is to explore the legitimacy of a proximity mobile payment (PMP) system by taking into account the social aspects related to its use (social acceptability). We have chosen to focus on the acceptability process of a PMP application (‘Flashplay’) from the first testing to the adoption in a service context. This PMP solution is a pilot program developed as part of a global strategy of disintermediation in various sectors (retail, catering, and entertainment). This case is particularly interesting for two reasons: the context and environment are suitable to the adoption of innovation in payment like other African countries and the possibility to study different stages of the social acceptability process of that PMP system. The neo-institutional theory is mobilized to identify the three pillars of legitimacy: cognitive, normative and regulatory. A longitudinal qualitative study was conducted with 27 customers using the PMP service. Results highlighted the importance of the consumption system and the service provider as institutions. Recommendations are thus proposed to PMP service providers in order to rethink the design and implementation strategies of their PMP system to ensure their adoption and promote the institutionalization of this type of consumption practice.

Keywords: legitimacy, payment, acceptability, mobility

Procedia PDF Downloads 186
2485 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 136
2484 Psychosocial Predictors of Brand Loyalty in Pakistani Consumers

Authors: Muhammad Sulman, Tabinda Khurshid, Afsheen Masood

Abstract:

The current research focused on determining the factors that determine the brand loyalty in consumers. It was hypothesized that there are certain demographical features that lead the consumers to adhere more towards certain brands. Cross-sectional research design was used. The sample for the current research comprised of participants (N=500) from age group 16 to 55 years. The data was collected through self-constructed demographic questionnaire as well as from a self-constructed Brand Loyalty Questionnaire. Brand Loyalty Questionnaire was adapted after taking permission from researchers. A pilot study was conducted to chalk out all the ambiguities of the questionnaire. The final version was administered on 250 participants. The descriptive and inferential analyses were carried on through SPSS version 24.00 to explore the factors that determine Brand Loyalty. The findings revealed that there is a relationship between brand loyalty and brand loyalty demographics and certain factors emerged as significant predictors of brand loyalty in young and middle aged consumers. The research findings carry strong implications for organizational and consumer psychologists in particular and for professionals in marketing and policy making in general.

Keywords: consumers, consumer psychologists, marketing, organizational, policy making

Procedia PDF Downloads 273
2483 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 135
2482 A User Interface for Easiest Way Image Encryption with Chaos

Authors: D. López-Mancilla, J. M. Roblero-Villa

Abstract:

Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.

Keywords: image encryption, chaos, secure communications, user interface

Procedia PDF Downloads 496
2481 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings

Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy

Abstract:

Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.

Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization

Procedia PDF Downloads 417
2480 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 24
2479 Density Determination by Dilution for Extra Heavy Oil Residues Obtained Using Molecular Distillation and Supercritical Fluid Extraction as Upgrading and Refining Process

Authors: Oscar Corredor, Alexander Guzman, Adan Leon

Abstract:

Density is a bulk physical property that indicates the quality of a petroleum fraction. It is also a useful property to estimate various physicochemical properties of fraction and petroleum fluids; however, the determination of density of extra heavy residual (EHR) fractions by standard methodologies, (ASTM D70) shows limitations for samples with higher densities than 1.0879 g/cm3. For this reason, a dilution methodology was developed in order to determinate density for those particular fractions, 87 (EHR) fractions were obtained as products of the fractionation of Colombian typical Vacuum Distillation Residual Fractions using molecular distillation (MD) and extraction with Solvent N-hexane in Supercritical Conditions (SFEF) pilot plants. The proposed methodology showed reliable results that can be demonstrated with the standard deviation of repeatability and reproducibility values of 0.0031 and 0.0061 g/ml respectively. In the same way, it was possible to determine densities in fractions EHR up to 1.1647g/cm3 and °API values obtained were ten times less than the water reference value.

Keywords: API, density, vacuum residual, molecular distillation, supercritical fluid extraction

Procedia PDF Downloads 269
2478 Quality by Design in the Optimization of a Fast HPLC Method for Quantification of Hydroxychloroquine Sulfate

Authors: Pedro J. Rolim-Neto, Leslie R. M. Ferraz, Fabiana L. A. Santos, Pablo A. Ferreira, Ricardo T. L. Maia-Jr., Magaly A. M. Lyra, Danilo A F. Fonte, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim

Abstract:

Initially developed as an antimalarial agent, hydroxychloroquine (HCQ) sulfate is often used as a slow-acting antirheumatic drug in the treatment of disorders of connective tissue. The United States Pharmacopeia (USP) 37 provides a reversed-phase HPLC method for quantification of HCQ. However, this method was not reproducible, producing asymmetric peaks in a long analysis time. The asymmetry of the peak may cause an incorrect calculation of the concentration of the sample. Furthermore, the analysis time is unacceptable, especially regarding the routine of a pharmaceutical industry. The aiming of this study was to develop a fast, easy and efficient method for quantification of HCQ sulfate by High Performance Liquid Chromatography (HPLC) based on the Quality by Design (QbD) methodology. This method was optimized in terms of peak symmetry using the surface area graphic as the Design of Experiments (DoE) and the tailing factor (TF) as an indicator to the Design Space (DS). The reference method used was that described at USP 37 to the quantification of the drug. For the optimized method, was proposed a 33 factorial design, based on the QbD concepts. The DS was created with the TF (in a range between 0.98 and 1.2) in order to demonstrate the ideal analytical conditions. Changes were made in the composition of the USP mobile-phase (USP-MP): USP-MP: Methanol (90:10 v/v, 80:20 v/v and 70:30 v/v), in the flow (0.8, 1.0 and 1.2 mL) and in the oven temperature (30, 35, and 40ºC). The USP method allowed the quantification of drug in a long time (40-50 minutes). In addition, the method uses a high flow rate (1,5 mL.min-1) which increases the consumption of expensive solvents HPLC grade. The main problem observed was the TF value (1,8) that would be accepted if the drug was not a racemic mixture, since the co-elution of the isomers can become an unreliable peak integration. Therefore, the optimization was suggested in order to reduce the analysis time, aiming a better peak resolution and TF. For the optimization method, by the analysis of the surface-response plot it was possible to confirm the ideal setting analytical condition: 45 °C, 0,8 mL.min-1 and 80:20 USP-MP: Methanol. The optimized HPLC method enabled the quantification of HCQ sulfate, with a peak of high resolution, showing a TF value of 1,17. This promotes good co-elution of isomers of the HCQ, ensuring an accurate quantification of the raw material as racemic mixture. This method also proved to be 18 times faster, approximately, compared to the reference method, using a lower flow rate, reducing even more the consumption of the solvents and, consequently, the analysis cost. Thus, an analytical method for the quantification of HCQ sulfate was optimized using QbD methodology. This method proved to be faster and more efficient than the USP method, regarding the retention time and, especially, the peak resolution. The higher resolution in the chromatogram peaks supports the implementation of the method for quantification of the drug as racemic mixture, not requiring the separation of isomers.

Keywords: analytical method, hydroxychloroquine sulfate, quality by design, surface area graphic

Procedia PDF Downloads 643
2477 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 208