Search results for: solidified floating organic drop microextraction
1804 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment
Authors: Temitayo Tosin Alawiye
Abstract:
Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.Keywords: agricultural waste, climate change, green energy, soil borne plant disease
Procedia PDF Downloads 2691803 A Randomized Controlled Trial Study on the Effect of Adding Dexmedetomidine to Bupivacaine in Supraclavicular Block Using Ultrasound Guidance
Authors: Nazia Nazir
Abstract:
Background: The benefits of regional anesthetic techniques are well established. Use of additives to local anesthetics can prolong these benefits. The aim of this study was to observe the effect of adding dexmedetomidine to bupivacaine for the supraclavicular block. Methods (Design): In this randomized, double-blind study, seventy ASA I & II patients of either sex undergoing elective surgeries on the upper limb were given supraclavicular block under ultrasound guidance. Group C (n=35), received 38 mL 0.25% bupivacaine + 2mL normal saline and group D received 38 mL 0.25% bupivacaine + 1 µg/kg dexmedetomidine (2mL). Patients were observed for onset, duration of motor and sensory block, duration of analgesia, sedation score, hemodynamic changes and any adverse events. Results: In group D the onset was faster (P < 0.001), duration of sensory and motor block, as well as duration of analgesia, was prolonged as compared to group C (P < 0.0001). There was significant drop in heart rate (HR) from the baseline in group D (P < 0.05) at 30, 60, 90 and 120 min, however, none of the patients dropped HR below 50/min. Mean arterial Pressure (MAP) remained unaffected. The patients in group D were effectively sedated than those in group C (P < 0.05). No adverse event was reported in either group. Conclusion: Dexmedetomidine as adjuvant to bupivacaine in supraclavicular block resulted in faster action, prolonged motor and sensory block, prolonged analgesia with hemodynamic stability and adequate sedation.Keywords: Analgesia, bupivacaine, dexmedetomidine, supraclavicular block
Procedia PDF Downloads 1911802 Phytoremediation of Zn-Contaminated Soils by Malva Sylvestris
Authors: Abdelouahab Diafat, Meribai Abdelmalek, Ahmed Bahloul
Abstract:
phytoremediation is the use of plants to remove or degrade organic or inorganic contaminants from soil and water this work aims to study the potential effect of malva sylvestris for the phytoremediation of soils contaminated by Zn. plants were grown in pots containing soil artificially contaminated with Zn at concentrations of 100, 200, and 300 mg/kg. the results obtained show that the Zn concentrations used have a negative effect on the growth of this plant the search for the metal carried out by the technique of atomic absorption spectrometry shows that this plant accumulates a small quantity of this metal. it can be concluded that the malva sylvestris plant tolerates Zn contaminated soils but it is not considered as a zinc hyperaccumulator plantKeywords: phytoremidiation, Zn-contaminated soils, Malva Sylvestris, phytoextraction
Procedia PDF Downloads 881801 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater
Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen
Abstract:
Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity
Procedia PDF Downloads 2361800 Evaluation of Molasses and Sucrose as Cabohydrate Sources for Biofloc System on Nile Tilapia (Oreochromis niloticus) Performances
Authors: A. M. Nour, M. A. Zaki, E. A. Omer, Nourhan Mohamed
Abstract:
Performances of mixed-sex Nile tilapia (Oreochromis niloticus) fingerlings (11.33 ± 1.78 g /fish) reared under biofloc system developed by molasses and sucrose as carbon sources in indoor fiberglass tanks were evaluated. Six indoor fiberglass tanks (1m 3 each filled with 1000 l of underground fresh water), each was stocked with 2kg fish were used for 14 weeks experimental period. Three experimental groups were designed (each group 2 tanks) as following: 1-control: 20% daily without biofloc, 2-zero water exchange rate with biofloc (molasses as C source) and 3-zero water exchange rate with biofloc (sucrose as C source). Fish in all aquariums were fed on floating feed pellets (30% crude protein, 3 mm in diameter) at a rate of 3% of the actual live fish body, 3 times daily and 6 days a week. Carbohydrate supplementations were applied daily to each tank two hrs, after feeding to maintain the carbon: nitrogen ratio (C: N) ratio 20:1. Fish were reared under continuous aeration by pumping air into the water in the tank bottom using two sandy diffusers and constant temperature between 27.0-28.0 ºC by using electrical heaters for 10 weeks. Criteria's for assessment of water quality parameters, biofloc production and fish growth performances were collected and evaluated. The results showed that total ammonia nitrogen in control group was higher than biofloc groups. The biofloc volumes were 19.13 mg/l and 13.96 mg/l for sucrose and molasses, respectively. Biofloc protein (%), ether extract (%) and gross energy (kcal/100g DM), they were higher in biofloc molasses group than biofloc sucrose group. Tilapia growth performances were significantly higher (P < 0.05) with molasses group than in sucrose and control groups, respectively. The highest feed and nutrient utilization values for protein efficiency ratio (PER), protein productive (PPV%) and energy utilization (EU, %) were higher in molasses group followed by sucrose group and control group respectively.Keywords: biofloc, Nile tilapia, cabohydrates, performances
Procedia PDF Downloads 1921799 Harmonic Analysis to Improve Power Quality
Authors: Rumana Ali
Abstract:
The presence of nonlinear and power electronic switching devices produce distorted output and harmonics into the system. This paper presents a technique to analyze harmonics using digital series oscilloscope (DSO). In power distribution system further measurements are done by DSO, and the waveforms are analyzed using FFT program. The results of this proposed work are helpful for the investigator to install an appropriate compensating device to mitigate the harmonics, in turn, improve the power quality. This case study is carried out at AIT Chikmagalur. It is done as a starting step towards the improvement of energy efficiency at AIT Chikmagalur, and with an overall aim of reducing the electricity bill with a complete energy audit of the institution. Strategies were put forth to reach the above objective: The following strategies were proposed to be implemented to analyze the power quality in EEE department of the institution. Strategy 1: The power factor has to be measured using the energy meter. Power factor improvement may reduce the voltage drop in lines. This brings the voltages at the socket in the labs closer to the nominal voltage of 230V, and thus power quality improves. Strategy 2: The harmonics at the power inlet has to be measured by means of a DSO. The DSO waveform is analyzed using FFT to know the percentage harmonic up to the 13th harmonics of 50Hz. Reduction in the harmonics in the inlet of the EEE department may reduce line losses and therefore reduces energy bill to the institution.Keywords: harmonic analysis, energy bill, power quality, electronic switching devices
Procedia PDF Downloads 3091798 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv
Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman
Abstract:
Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals
Procedia PDF Downloads 4331797 Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions
Authors: Yalçın Kılıç, İbrahim Kani
Abstract:
The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated.Keywords: metal complex, OSSO-type ligand, catalysis, oxidation
Procedia PDF Downloads 1001796 A Universal Hybrid Adsorbent Based on Chitosan for Water Treatment
Authors: Sandrine Delpeux-Ouldriane, Min Cai, Laurent Duclaux, Laurence Reinert, Fabrice Muller
Abstract:
A novel hybrid adsorbent, based on chitosan biopolymer, clays and activated carbon was prepared. Hybrid chitosan beads containing dispersed clays and activated carbons were prepared by precipitation in basic medium. Such a composite material is still very porous and presents a wide adsorption spectrum. The obtained composite adsorbent is able to handle all the pollution types including heavy metals, polar and hydrophobic organic molecules and nitrates. It could find a place of choice in tertiary water treatment processes or for an ‘at source’ treatment concerning chemical or pharmaceutical industries.Keywords: adsorption, chitosan, clay mineral, activated carbon
Procedia PDF Downloads 4001795 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks
Authors: A. Khan, H. Mahmood
Abstract:
In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.Keywords: energy holes, interference, routing, underwater
Procedia PDF Downloads 4091794 Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China
Authors: Xin Li, Zhenxue Jiang, Zhuo Li
Abstract:
Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics.Keywords: marine shale, lower Cambrian, lower Silurian, om isolation, pore properties, om-hosted pore
Procedia PDF Downloads 1341793 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites
Authors: Saziye Ugur
Abstract:
In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission
Procedia PDF Downloads 2551792 Assessment of Bisphenol A and 17 α-Ethinyl Estradiol Bioavailability in Soils Treated with Biosolids
Authors: I. Ahumada, L. Ascar, C. Pedraza, J. Montecino
Abstract:
It has been found that the addition of biosolids to soil is beneficial to soil health, enriching soil with essential nutrient elements. Although this sludge has properties that allow for the improvement of the physical features and productivity of agricultural and forest soils and the recovery of degraded soils, they also contain trace elements, organic trace and pathogens that can cause damage to the environment. The application of these biosolids to land without the total reclamation and the treated wastewater can transfer these compounds into terrestrial and aquatic environments, giving rise to potential accumulation in plants. The general aim of this study was to evaluate the bioavailability of bisphenol A (BPA), and 17 α-ethynyl estradiol (EE2) in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it is a reliable surrogate for this bioassay. Two soils were obtained from the central region of Chile (Lo Prado and Chicauma). Biosolids were obtained from a regional wastewater treatment plant. The soils were amended with biosolids at 90 Mg ha-1. Soils treated with biosolids, spiked with 10 mgkg-1 of the EE2 and 15 mgkg-1 and 30 mgkg-1of BPA were also included. The BPA, and EE2 concentration were determined in biosolids, soils and plant samples through ultrasound assisted extraction, solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry determination (GC/MS). The bioavailable fraction found of each one of soils cultivated with wheat plants was compared with results obtained through a cyclodextrin biosimulator method. The total concentration found in biosolid from a treatment plant was 0.150 ± 0.064 mgkg-1 and 12.8±2.9 mgkg-1 of EE2 and BPA respectively. BPA and EE2 bioavailability is affected by the organic matter content and the physical and chemical properties of the soil. The bioavailability response of both compounds in the two soils varied with the EE2 and BPA concentration. It was observed in the case of EE2, the bioavailability in wheat plant crops contained higher concentrations in the roots than in the shoots. The concentration of EE2 increased with increasing biosolids rate. On the other hand, for BPA, a higher concentration was found in the shoot than the roots of the plants. The predictive capability the HPCD extraction was assessed using a simple linear correlation test, for both compounds in wheat plants. The correlation coefficients for the EE2 obtained from the HPCD extraction with those obtained from the wheat plants were r= 0.99 and p-value ≤ 0.05. On the other hand, in the case of BPA a correlation was not found. Therefore, the methodology was validated with respect to wheat plants bioassays, only in the EE2 case. Acknowledgments: The authors thank FONDECYT 1150502.Keywords: emerging compounds, bioavailability, biosolids, endocrine disruptors
Procedia PDF Downloads 1461791 Hybrid Reusable Launch Vehicle for Space Application A Naval Approach
Authors: Rajasekar Elangopandian, Anand Shanmugam
Abstract:
In order to reduce the cost of launching satellite and payloads to the orbit this project envisages some immense combined technology. This new technology in space odyssey contains literally four concepts. The first mode in this innovation is flight mission characteristics which, says how the mission will induct. The conventional technique of magnetic levitation will help us to produce the initial thrust. The name states reusable launch vehicle shows its viability of reuseness. The flight consists miniature rocket which produces the required thrust and the two JATO (jet assisted takeoff) boosters which gives the initial boost for the vehicle. The vehicle ostensibly looks like an airplane design and will be located on the super conducting rail track. When the high power electric current given to the rail track, the vehicle starts floating as per the principle of magnetic levitation. If the flight reaches the particular takeoff distance the two boosters gets starts and will give the 48KN thrust each. Obviously it`ll follow the vertical path up to the atmosphere end/start to space. As soon as it gets its speed the two boosters will cutoff. Once it reaches the space the inbuilt spacecraft keep the satellite in the desired orbit. When the work finishes, the apogee motors gives the initial kick to the vehicle to come in to the earth’s atmosphere with 22N thrust and automatically comes to the ground by following the free fall, the help of gravitational force. After the flying region it makes the spiral flight mode then gets landing where the super conducting levitated rail track located. It will catch up the vehicle and keep it by changing the poles of magnets and varying the current. Initial cost for making this vehicle might be high but for the frequent usage this will reduce the launch cost exactly half than the now-a-days technology. The incorporation of such a mechanism gives `hybrid` and the reusability gives `reusable launch vehicle` and ultimately Hybrid reusable launch vehicle.Keywords: the two JATO (jet assisted takeoff) boosters, magnetic levitation, 48KN thrust each, 22N thrust and automatically comes to the ground
Procedia PDF Downloads 4281790 Titanium Nitride Nanoparticles for Biological Applications
Authors: Nicole Nazario Bayon, Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh
Abstract:
Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well.Keywords: biocompatibility, characterization, cytotoxicity, nanoparticles, synthesis, titanium nitride
Procedia PDF Downloads 1781789 Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers
Authors: So-Jeong Kim, Nak-Kwan Chung, Jintae Kim, Juyoung Yun
Abstract:
The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates.Keywords: efficiency enhancement, nanoplate, OLED, surface plasmon resonance
Procedia PDF Downloads 3431788 Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue
Authors: Cahya Wimar Wicaksono, Reynara Davin Chen, Alvian Kristianto Santoso
Abstract:
Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating.Keywords: combustible, corrosive, heavy sulphide zone, pyrite ± pyrrhotite
Procedia PDF Downloads 3261787 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe
Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya
Abstract:
Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow
Procedia PDF Downloads 771786 Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim
Authors: Fatima Mehmood, Khalid Farooq
Abstract:
After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slopeKeywords: geotechnical investigation, landslide, reservoir drawdown, shear strength, slope stability
Procedia PDF Downloads 1621785 Managing Subretinal Bleeds with Intravitreal Aflibercept
Authors: Prachi Abhishek Dave, Abhishek Dave
Abstract:
Purpose: The purpose of this study is to elucidate the role of intravitreal injection Aflibercept in managing complex cases of Wet Age Related Macular Degeneration (ARMD) and the gratifying visual recovery experienced with a minimally invasive procedure. Methods: A 73-year-old gentleman presented with a drop in vision in the left eye for 25 days. On examination, his best corrected visual acuity (BCVA) in the Right eye (OD) was 6/60, and finger counting close to face in the Left eye (OS). On multimodal imaging, he was diagnosed to have a scarred Wet ARMD in OD and an active Wet ARMD with a large subretinal bleed secondary to Wet ARMD in OS. Treatment management options included monotherapy with an Injection Aflibercept or an intravitreal gas injection with tPA followed by Injection Aflibercept. Considering his one-eyed status, the patient decided to go for Aflibercept monotherapy. Results: After 3 monthly injections of injection Aflibercept, the subretinal bleed reduced, the subretinal fluid resolved, and his vision in OS improved to 6/9. He is on a regular follow-up and has not needed any further injections in OS and he maintains 6/9 vision. Conclusions: Conventional treatment guidelines for a large subretinal bleed dictate the use of gas followed by intravitreal Injection Aflibercept. However, gas has its own limitations of causing a rise in intraocular pressure and a transient loss of vision, which is particularly troublesome in one-eyed patients. Injection Aflibercept offers a much safer, less invasive, and elegant treatment option for such patients with equally good or even better visual outcomes.Keywords: wet ARMD, subretinal bleed, intravitreal injections, aflibercept, EYELEA, intravitreal gas
Procedia PDF Downloads 421784 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 3011783 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds
Authors: Hassan Mohammadi Khujin
Abstract:
Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis
Procedia PDF Downloads 761782 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies
Authors: Adeiza Matthew, Oluwamishola Abubakar
Abstract:
In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.Keywords: calorific, BTU, wood moisture content, density of wood
Procedia PDF Downloads 1071781 Spectrophotometric Determination of 5-Aminosalicylic Acid in Pharmaceutical Samples
Authors: Chand Pasha
Abstract:
A Simple, accurate and precise spectrophotometric method for the quantitative analysis of determination of 5-aminosalicylic acid is described. This method is based on the reaction of 5-aminosalicylic acid with nitrite in acid medium to form diazonium ion, which is coupled with acetylacetone in basic medium to form azo dyes, which shows absorption maxima at 470 nm. The method obeys Beer’s law in the concentration range of 0.5-11.2 gml-1 of 5-aminosalicylic acid with acetylacetone. The molar absorptivity and Sandell’s sensitivity of 5-aminosalicylic acid -acetylacetone azo dye is 2.672 ×104 lmol-1cm-1, 5.731 × 10-3 gcm-2 respectively. The dye formed is stable for 10 hrs. The optimum reaction conditions and other analytical parameters are evaluated. Interference due to foreign organic compounds have been investigated. The method has been successfully applied to the determination of 5-aminosalicylic acid in pharmaceutical samples.Keywords: spectrophotometry, diazotization, mesalazine, nitrite, acetylacetone
Procedia PDF Downloads 1891780 Fast Fashion Parallel to Sustainable Fashion in India
Authors: Saurav Sharma, Deepshikha Sharma, Pratibha Sharma
Abstract:
This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability.Keywords: fast fashion, sustainable fashion, sustainability, India
Procedia PDF Downloads 7711779 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds
Authors: N. Stevulova, I. Schwarzova
Abstract:
The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties
Procedia PDF Downloads 3491778 Ayurvastra: A Study on the Ancient Indian Textile for Healing
Authors: Reena Aggarwal
Abstract:
The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable
Procedia PDF Downloads 1301777 Local Farmer’s Perception on the Role of Room for the River in Livelihoods: Case Study in An Phu District, An Giang Province, Vietnam
Authors: Hoang Vo Thi Minh, Duyen Nguyen Thi Phuong, Gerardo Van Halsema
Abstract:
As one of the deltas which is extremely vulnerable to climate change, the Mekong Delta, Vietnam is facing many challenges that need to be addressed in strategic and holistic ways. In this study scope, a strategic delta planning is recently considered as a new vision of Adaptive Delta Management for the Mekong Delta. In Adaptive Delta Management, Room for the Rivers (RftR) has been formulated as a typical innovation, which is currently in need of careful consideration for implementing in the Mekong Delta’s planning process. This study then attempts to investigate the roles and analyze sociological aspects of the RftR as potential strategic 'soft' measure, in upstream of Hau River in An Phu district, An Giang province, especially in terms of its so-called multifunctions. The study applied social science approach embedded with a few qualitative methods including in-depth interviews and questionnaire distribution and conjoint analysis as a quantitative approach. The former mainly aims at gaining the local community’s perceptions about the RftR solution. The latter tries to gain farmers’ willingness to accept (WTA) with regard to their level of preference towards the three selected solutions which are considered as strategic plans for sustainably developing the MD. Qualitative data analysis shows that, farmers perceive RftR as very useful for their livelihoods due to its multifunctions as well as in terms of water management. The quantitative results illustrated that respondents expressed their WTAs on RftR as 84. 240 thousand VND / year. Amongst the three solutions that are analysed within this study (Floating rice for upper delta, Room for the Rivers for the Middle, and Shrimp-Mangrove integration for the coastal delta), RfrR was ranked as second preference from respondents. This result is not exactly reflecting the real values of these three mentioned solutions but showing a tendency that can be seen as a reference for the decision-makers in delta planning processes.Keywords: strategic delta planning, room for the River, farmers’ perception, willingness-to-accept, local livelihoods
Procedia PDF Downloads 2281776 Comparison of Volume of Fluid Model: Experimental and Empirical Results for Flows over Stacked Drop Manholes
Authors: Ramin Mansouri
Abstract:
The manhole is one of the types of structures that are installed at the site of change direction or change in the pipe diameter or sewage pipes as well as in step slope areas to reduce the flow velocity. In this study, the flow characteristics of hydraulic structures in a manhole structure have been investigated with a numerical model. In this research, the types of computational grid coarse, medium, and fines have been used for simulation. In order to simulate flow, k-ε model (standard, RNG, Realizable) and k-w model (standard SST) are used. Also, in order to find the best wall conditions, two types of standard and non-equilibrium wall functions were investigated. The turbulent model k-ε has the highest correlation with experimental results or all models. In terms of boundary conditions, constant speed is set for the flow input boundary, the output pressure is set in the boundaries which are in contact with the air, and the standard wall function is used for the effect of the wall function. In the numerical model, the depth at the output of the second manhole is estimated to be less than that of the laboratory and the output jet from the span. In the second regime, the jet flow collides with the manhole wall and divides into two parts, so hydraulic characteristics are the same as large vertical shaft hydraulic characteristics. In this situation, the turbulence is in a high range since it can be seen more energy loss in it. According to the results, energy loss in numerical is estimated at 9.359%, which is more than experimental data.Keywords: manhole, energy, depreciation, turbulence model, wall function, flow
Procedia PDF Downloads 821775 Assessment of the Economic Factors and Motivations towards De-Dollarization since the Early 2000s and Their Implications
Authors: Laila Algalal, Chen Xi
Abstract:
The US dollar has long served as the world's primary reserve currency. However, this dominance faces growing challenges from internal US economic pressures and the rise of alternative currencies. Internally, issues like high debt, inflation, reduced competitiveness, and economic instability due to inequality in economic policies threaten the dollar's position. Externally, more countries are establishing alternative currencies, payment systems, and regional financial institutions to reduce dollar dependence. These drivers have contributed to a decline in the dollar's share of global foreign exchange reserves from 71% in 2001 to an estimated 58% in 2022. While this 13-percentage point drop took two decades, recent initiatives suggest de-dollarization could accelerate in the coming few decades. Efforts to establish non-dollar trade deals and alternative financial systems show more substantial progress compared to initiatives in the early 2000s. As the nature of the world system is anarchic, states make either individual or group efforts to guarantee their economic security and achieve their interests. Based on neoclassical realism, this paper analyzes both internal and external US economic factors driving current and future de-dollarization and the implications on the international monetary system, in addition to examining the motivation for such moves.Keywords: de-dollarization, US dollar, monetary system, economic security, economic policies.
Procedia PDF Downloads 92