Search results for: recycled polymer
266 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising
Authors: Mokhlisur Rahman
Abstract:
Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer
Procedia PDF Downloads 65265 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification
Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi
Abstract:
Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.Keywords: chitosan, gelatin, superabsorbent, water absorbency
Procedia PDF Downloads 463264 Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating
Authors: Artemova Anastasiia, Shen Zexiang, Savilov Serguei
Abstract:
The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation.Keywords: corrosion, coating, carbon nanotubes, degradation
Procedia PDF Downloads 158263 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications
Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer
Abstract:
Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors
Procedia PDF Downloads 83262 Investigation of Doping of CdSe QDs in Organic Semiconductor for Solar Cell Applications
Authors: Ganesh R. Bhand, N. B. Chaure
Abstract:
Cadmium selenide (CdSe) quantum dots (QDs) were prepared by solvothermal route. Subsequently a inorganic QDs-organic semiconductor (copper phthalocyanine) nanocomposite (i.e CuPc:CdSe nanocomposites) were produced by different concentration of QDs varied in CuPc. The nanocomposite thin films have been prepared by means of spin coating technique. The optical, structural and morphological properties of nanocomposite films have been investigated. The transmission electron microscopy (TEM) confirmed the formation of QDs having average size of 4 nm. The X-ray diffraction pattern exhibits cubic crystal structure of CdSe with reflection to (111), (220) and (311) at 25.4ᵒ, 42.2ᵒ and 49.6ᵒ respectively. The additional peak observed at lower angle at 6.9ᵒ in nanocomposite thin films are associated to CuPc. The field emission scanning electron microscopy (FESEM) observed that surface morphology varied in increasing concentration of CdSe QDs. The obtained nanocomposite show significant improvement in the thermal stability as compared to the pure CuPc indicated by thermo-gravimetric analysis (TGA) in thermograph. The effect in the Raman spectra of composites samples gives a confirm evidence of homogenous dispersion of CdSe in the CuPc matrix and their strong interaction between them to promotes charge transfer property. The success of reaction between composite was confirmed by Fourier transform infrared spectroscopy (FTIR). The photo physical properties were studied using UV - visible spectroscopy. The enhancement of the optical absorption in visible region for nanocomposite layer was observed with increasing the concentration of CdSe in CuPc. This composite may obtain the maximized interface between QDs and polymer for efficient charge separation and enhance the charge transport. Such nanocomposite films for potential application in fabrication of hybrid solar cell with improved power conversion efficiency.Keywords: CdSe QDs, cupper phthalocyanine, FTIR, optical absorption
Procedia PDF Downloads 198261 Coagulation-flocculation Process with Metal Salts, Synthetic Polymers and Biopolymers for the Removal of Trace Metals (Cu, Pb, Ni, Zn) from Wastewater
Authors: Andrew Hargreaves, Peter Vale, Jonathan Whelan, Carlos Constantino, Gabriela Dotro, Pablo Campo
Abstract:
As a consequence of their potential to cause harm, there are strong regulatory drivers that require metals to be removed as part of the wastewater treatment process. Bioavailability-based standards have recently been specified for copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) and are expected to reduce acceptable metal concentrations. In order to comply with these standards, wastewater treatment works may require new treatment types to enhance metal removal and it is, therefore, important to examine potential treatment options. A substantial proportion of Cu, Pb, Ni and Zn in effluent is adsorbed to and/or complexed with macromolecules (eg. proteins, polysaccharides, aminosugars etc.) that are present in the colloidal size fraction. Therefore, technologies such as coagulation-flocculation (CF) that are capable of removing colloidal particles have good potential to enhance metals removal from wastewater. The present study investigated the effectiveness of CF at removing trace metals from humus effluent using the following coagulants; ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI), and the biopolymers chitosan and Tanfloc. Effluent samples were collected from a trickling filter treatment works operating in the UK. Using jar tests, the influence of coagulant dosage and the velocity and time of the slow mixing stage were studied. Chitosan and PEI had a limited effect on the removal of trace metals (<35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the recommended dose of 0.10 mg/L. At the recommended dose of 0.25 mg/L Tanfloc removed 77% Cu, 68% Pb, 18% Ni and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation) whereas, for Tanfloc, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and Tanfloc were found to be most effective at removing trace metals from wastewater.Keywords: coagulation-flocculation, jar test, trace metals, wastewater
Procedia PDF Downloads 238260 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland
Authors: Maryam Salehi, Gholamreza Bonyadinejad
Abstract:
The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.Keywords: soil health, plastic pollution, sustainability, photodegradation
Procedia PDF Downloads 219259 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants
Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi
Abstract:
The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment
Procedia PDF Downloads 265258 U Slot Loaded Wearable Textile Antenna
Authors: Varsha Kheradiya, Ganga Prasad Pandey
Abstract:
The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network
Procedia PDF Downloads 89257 Hydrophobically Modified Glycol Chitosan Nanoparticles as a Carrier for Etoposide
Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Javaid Irfan, Andreas G. Schätzlein, Ijeoma F Uchegbeu
Abstract:
Development of efficient delivery system for hydrophobic drugs remains a major concern in chemotherapy. The objective of the current study was to develop polymeric drug-delivery system for etoposide from amphiphilic derivatives of glycol chitosan, capable to improve the pharmacokinetics and to reduce the adverse effects of etoposide due to various organic solvents used in commercial formulations for solubilisation of etoposide. As a promising carrier, amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxy succinimide and quaternisation to glycol chitosan backbone. To this end a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternisation into 13 kDa. Nano sized micelles prepared from this amphiphilic polymer had the capability to encapsulate up to 3 mg/ml etoposide. The pharmacokinetic results indicated that GCPQ based etoposide formulation transformed the biodistribution pattern. AUC 0.5-24 hr showed statistically significant difference in ETP-GCPQ vs. commercial preparation in liver (25 vs 70, p<0.001), spleen (27 vs. 36, P<0.05), lungs (42 vs. 136, p<0.001), kidneys (25 vs. 30, p<0.05) and brain (19 vs. 9,p<0.001). Using the hydrophobic fluorescent dye Nile red, we showed that micelles efficiently delivered their payload to MCF7 and A2780 cancer cells in-vitro and to A431 xenograft tumor in-vivo, suggesting these systems could deliver hydrophobic anti- cancer drugs such as etoposide to tumors. The pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drug after intravenous administration. GCPQ based formulations not only reduced side effects associated with current available formulations but also increased their transport through the biological barriers, thus making it a good delivery system.Keywords: glycol chitosan, Nile red, micelles, etoposide, A431 xenografts
Procedia PDF Downloads 308256 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution
Authors: Hasan Türe, Kader Terzioglu, Evren Tunca
Abstract:
Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).Keywords: alginate, adsorption, beads, perlite
Procedia PDF Downloads 287255 Magnetic Chloromethylated Polymer Nanocomposite for Selective Pollutant Removal
Authors: Fabio T. Costa, Sergio E. Moya, Marcelo H. Sousa
Abstract:
Nanocomposites designed by embedding magnetic nanoparticles into a polymeric matrix stand out as ideal magnetic-hybrid and magneto-responsive materials as sorbents for removal of pollutants in environmental applications. Covalent coupling is often desired for the immobilization of species on these nanocomposites, in order to keep them permanently bounded, not desorbing or leaching over time. Moreover, unwanted adsorbates can be separated by successive washes/magnetic separations, and it is also possible to recover the adsorbate covalently bound to the nanocomposite surface through detaching/cleavage protocols. Thus, in this work, we describe the preparation and characterization of highly-magnetizable chloromethylated polystyrene-based nanocomposite beads for selective covalent coupling in environmental applications. For synthesis optimization, acid resistant core-shelled maghemite (γ-Fe₂O₃) nanoparticles were coated with oleate molecules and directly incorporated into the organic medium during a suspension polymerization process. Moreover, the cross-linking agent ethylene glycol dimethacrylate (EGDMA) was utilized for co-polymerization with the 4-vinyl benzyl chloride (VBC) to increase the resistance of microbeads against leaching. After characterizing samples with XRD, ICP-OES, TGA, optical, SEM and TEM microscopes, a magnetic composite consisting of ~500 nm-sized cross-linked polymeric microspheres embedding ~8 nm γ-Fe₂O₃ nanoparticles was verified. This nanocomposite showed large room temperature magnetization (~24 emu/g) due to the high content in maghemite (~45 wt%) and resistance against leaching even in acidic media. Moreover, the presence of superficial chloromethyl groups, probed by FTIR and XPS spectroscopies and confirmed by an amination test can selectively adsorb molecules through the covalent coupling and be used in molecular separations as shown for the selective removal of 4-aminobenzoic acid from a mixture with benzoic acid.Keywords: nanocomposite, magnetic nanoparticle, covalent separation, pollutant removal
Procedia PDF Downloads 109254 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications
Authors: Syed Kamran Sami, Saqib Siddiqui
Abstract:
In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor
Procedia PDF Downloads 279253 Interdisciplinary Method Development - A Way to Realize the Full Potential of Textile Resources
Authors: Nynne Nørup, Julie Helles Eriksen, Rikke M. Moalem, Else Skjold
Abstract:
Despite a growing focus on the high environmental impact of textiles, textile waste is only recently considered as part of the waste field. Consequently, there is a general lack of knowledge and data within this field. Particularly the lack of a common perception of textiles generates several problems e.g., to recognize the full material potential the fraction contains, which is cruel if the textile must enter the circular economy. This study aims to qualify a method to make the resources in textile waste visible in a way that makes it possible to move them as high up in the waste hierarchy as possible. Textiles are complex and cover many different types of products, fibers and combinations of fibers and production methods. In garments alone, there is a great variety, even when narrowing it to only undergarments. However, textile waste is often reduced to one fraction, assessed solely by quantity, and compared to quantities of other waste fractions. Disregarding the complexity and reducing textiles to a single fraction that covers everything made of textiles increase the risk of neglecting the value of the materials, both with regards to their properties and economical. Instead of trying to fit textile waste into the current primarily linear waste system where volume is a key part of the business models, this study focused on integrating textile waste as a resource in the design and production phase. The study combined interdisciplinary methods for determining replacement rates used in Life Cycle Assessments and Mass Flow Analysis methods with the designer’s toolbox to hereby activate the properties of textile waste in a way that can unleash its potential optimally. It was hypothesized that by activating Denmark's tradition for design and high level of craftsmanship, it is possible to find solutions that can be used today and create circular resource models that reduce the use of virgin fibers. Through waste samples, case studies, and testing of various design approaches, this study explored how to functionalize the method so that the product after the end-use is kept as a material and only then processed at fiber level to obtain the best environmental utilization. The study showed that the designers' ability to decode the properties of the materials and understanding of craftsmanship were decisive for how well the materials could be utilized today. The later in the life cycle the textiles appeared as waste, the more demanding the description of the materials to be sufficient, especially if to achieve the best possible use of the resources and thus a higher replacement rate. In addition, it also required adaptation in relation to the current production because the materials often varied more. The study found good indications that part of the solution is to use geodata i.e., where in the life cycle the materials were discarded. An important conclusion is that a fully developed method can help support better utilization of textile resources. However, it stills requires a better understanding of materials by the designers, as well as structural changes in business and society.Keywords: circular economy, development of sustainable processes, environmental impacts, environmental management of textiles, environmental sustainability through textile recycling, interdisciplinary method development, resource optimization, recycled textile materials and the evaluation of recycling, sustainability and recycling opportunities in the textile and apparel sector
Procedia PDF Downloads 95252 Formulation and Evaluation of Metformin Hydrochloride Microparticles via BÜCHI Nano-Spray Dryer B-90
Authors: Tamer Shehata
Abstract:
Recently, nanotechnology acquired a great interest in the field of pharmaceutical production. Several pharmaceutical equipment were introduced into the research field for production of nanoparticles, among them, BÜCHI’ fourth generation nano-spray dryer B-90. B-90 is specialized with single step of production and drying of nano and microparticles. Currently, our research group is investigating several pharmaceutical formulations utilizing BÜCHI Nano-Spray Dryer B-90 technology. One of our projects is the formulation and evaluation of metformin hydrochloride mucoadhesive microparticles for treatment of type 2-diabetis. Several polymers were investigated, among them, gelatin and sodium alginate. The previous polymers are natural polymers with mucoadhesive properties. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension were performed. Postformulation characters such as particle size, flowability, surface scan and dissolution profile were evaluated. Finally, the pharmacological activity of certain selected formula was evaluated in streptozotocin-induced diabetic rats. B-90’spray head was 7 µm hole heated to 120 with air flow rate 3.5 mL/min. The viscosity of the solution was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Successfully, discrete, non-aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and Sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, mucoadhesive metformin hydrochloride microparticles obtained from B-90 could offer a convenient dosage form with enhanced hypoglycemic activity.Keywords: mucoadhesive, microparticles, metformin hydrochloride, nano-spray dryer
Procedia PDF Downloads 309251 Disposal Behavior of Extreme Poor People Living in Guatemala at the Base of the Pyramid
Authors: Katharina Raab, Ralf Wagner
Abstract:
With the decrease of poverty, the focus on the solid waste challenge shifts away from affluent, mostly Westernized consumers to the base of the pyramid. The relevance of considering the disposal behavior of impoverished people arises from improved welfare, leading to an increase in consumption opportunities and, consequently, of waste production. In combination with the world’s growing population the relevance of the topic increases, because solid waste management has global impacts on consumers’ welfare. The current annual municipal solid waste generation is estimated to 1.9 billion tonnes, 30% remains uncollected. As for the collected 70% is landfilling and dumping, 19% is recycled or recovered, 11% is led to energy recovery facilities. Therefore, aim is to contribute by adding first insights about poor people's disposal behaviors, including the framing of their rationalities, emotions and cognitions. The study provides novel empirical results obtained from qualitative semi-structured in-depth interviews near Guatemala City. In the study’s framework consumers have to choose from three options when deciding what to do with their obsolete possessions: Keeping the product: The main reason for this is the respondent´s emotional attachment to a product. Further, there is a willingness to use the same product under a different scope when it loses its functionality–they recycle their belongings in a customized and sustainable way. Permanently disposing of the product: The study reveals two dominant disposal methods: burning in front of their homes and throwing away in the physical environment. Respondents clearly recognized the disadvantages of burning toxic durables, like electronics. Giving a product away as a gift supports the integration of individuals in their peer networks of family and friends. Temporarily disposing of the product: Was not mentioned–to be specific, rent or lend a product to someone else was out of question. Contrasting the background to which extend poor people are aware of the consequences of their disposal decisions and how they feel about and rationalize their actions were quite unexpected. Respondents reported that they are worried about future consequences with impacts they cannot anticipate now–they are aware that their behaviors harm their health and the environment. Additionally, they expressed concern about the impact this disposal behavior would have on others’ well-being and are therefore sensitive to the waste that surrounds them. Concluding, the BoP-framed life and Westernized consumption, both fit in a circular economy pattern, but the nature of how to recycle and dispose separates these two societal groups. Both systems own a solid waste management system, but people living in slum-type districts and rural areas of poor countries are less interested in connecting to the system–they are primarily afraid of the costs. Further, it can be said that a consumer’s perceived effectiveness is distinct from environmental concerns, but contributes to forecasting certain pro-ecological behaviors. Considering the rationales underlying disposal decisions, thoughtfulness is a well-established determinant of disposition behavior. The precipitating events, emotions and decisions associated with the act of disposing of products are important because these decisions can trigger different results for the disposal process.Keywords: base of the pyramid, disposal behavior, poor consumers, solid waste
Procedia PDF Downloads 171250 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 494249 Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25
Authors: Rashida Rahmat Zohra, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides.Keywords: Bacillus licheniformis, dextranase, gel permeation chromatograpy, enzyme purification, enzyme kinetics
Procedia PDF Downloads 439248 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery
Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi
Abstract:
Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor
Procedia PDF Downloads 120247 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 266246 Drivers and Barriers of Asphalt Rubber in Sweden
Authors: Raheb Mirzanamadi, João Patrício
Abstract:
Asphalt rubber (AR) was initially developed in Sweden in the 1960s by replacing crumb rubber (CR) as aggregates in asphalt pavement. The AR produced by this method had better mechanical properties than conventional asphalt pavement but was very expensive. Since then, different technologies and methods have been developed to use CR in asphalt pavements, including blending CR with bitumen at a high temperature in the mixture, called the wet method, and blending CR with bitumen in the refinery, called the terminal blending method. In 2006, the wet method was imported from the USA to Sweden to evaluate the potential of using AR on Swedish roads. 154 km AR roads were constructed by the wet method in Sweden. The evaluation showed that the AR had, in most cases, better mechanical performance than conventional asphalt pavements. However, the terrible smoke and smell led the Swedish Transport Administration (STA) to stop using AR in Sweden. Today, there are few focuses on AR, despite its good mechanical properties and environmental aspects. Hence, there is a need to study the drives and barriers of using AR mixture in Sweden. The aims of this paper are: (i) to study drivers and barriers of using AR pavements in Sweden and (ii) to discover knowledge gaps for further research in this area. The study was done using a literature review and completed by interviews with experts, including three researchers from Swedish National Road and Transport Research Institute (VTI) and two experts from STA. The results showed that AR can be an alternative not only for conventional asphalt pavement but also for polymer modified asphalt (PMA) due to the same mechanical properties but the lower cost for production. New technologies such as terminal blending and using warm mix asphalt (WMA) methods can lead to reducing the energy and temperature during production processes. From this study, it is found that there is not enough experience and knowledge about AR in Sweden, and more research is needed, including the lifespan of AR, mechanical properties of AR using new technologies, and the impact of AR on spreading and leaching substances into nature. More studies can lead to standardization of using AR in Sweden, a potential solution for the use of end-of-life tyres, with better mechanical properties and lower costs, in comparison with conventional asphalt pavements and PMA.Keywords: asphalt rubber, crumb rubber, terminal blending method, wet method
Procedia PDF Downloads 78245 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 323244 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 229243 The Effects of the Waste Plastic Modification of the Asphalt Mixture on the Permanent Deformation
Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili
Abstract:
The application of plastic waste for asphalt modification is a sustainable strategy to deal with the enormous plastic waste generated each year and enhance the properties of asphalt. The modification is either practiced by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture, and in the wet process, they are mixed and digested into bitumen. In this article, the effects of plastic inclusion in asphalt mixture, through the dry process, on the permanent deformation of the asphalt are investigated. The main waste plastics that are usually used in asphalt modification are taken into account, which is linear, low-density polyethylene, low-density polyethylene, high-density polyethylene, and polypropylene. Also, to simulate a plastic waste stream, different grades of each virgin plastic are mixed and used. For instance, four different grades of polypropylene are mixed and used as representative of polypropylene. A precisely designed mixing condition is considered to dry-mix the plastics into the mixture such that the polymer was melted and modified by the later introduced binder. In this mixing process, plastics are first added to the hot aggregates and mixed three times in different time intervals, then bitumen is introduced, and the whole mixture is mixed three times in fifteen minutes intervals. Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the effects of modification on the permanent deformation of the asphalt mixture. Dynamic creep is a common repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded, the cumulative, permanent strain is determined and reported as a function of the number of cycles. The results of this study showed that the dry inclusion of the waste plastics is very effective in enhancing the resistance against permanent deformation of the mixture. However, the mixing process must be precisely engineered to melt the plastics, and a homogenous mixture is achieved.Keywords: permanent deformation, waste plastics, low-density polyethene, high-density polyethene, polypropylene, linear low-density polyethene, dry process
Procedia PDF Downloads 85242 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings
Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi
Abstract:
In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel
Procedia PDF Downloads 235241 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation
Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um
Abstract:
In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube
Procedia PDF Downloads 198240 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites
Authors: Sarra Haouala, Issam Doghri
Abstract:
In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization
Procedia PDF Downloads 368239 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan
Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon
Abstract:
In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.Keywords: edible film, collagen, myofibril, carrageenan
Procedia PDF Downloads 428238 Eco-Friendly Cultivation
Authors: Shah Rucksana Akhter Urme
Abstract:
Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming
Procedia PDF Downloads 58237 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing
Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati
Abstract:
The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.Keywords: drug release, hydrogel, tetracycline, wound healing
Procedia PDF Downloads 78