Search results for: precision feed
508 When Your Change The Business Model ~ You Change The World
Authors: H. E. Amb. Terry Earthwind Nichols
Abstract:
Over the years Ambassador Nichols observed that successful companies all have one thing in common - belief in people. His observations of people in many companies, industries, and countries have also concluded one thing - groups of achievers far exceed the expectations and timelines of their superiors. His experience with achieving this has brought forth a model for the 21st century that will not only exceed expectations of companies, but it will also set visions for the future of business globally. It is time for real discussion around the future of work and the business model that will set the example for the world. Methodologies: In-person observations over 40 years – Ambassador Nichols present during the observations. Audio-visual observations – TV, Cinema, social media (YouTube, etc.), various news outlet Reading the autobiography of some of successful leaders over the last 75 years that lead their companies from a distinct perspective your people are your commodity. Major findings: People who believe in the leader’s vision for the company so much so that they remain excited about the future of the company and want to do anything in their power to ethically achieve that vision. People who are achieving regularly in groups, division, companies, etcetera: Live more healthfully lowering both sick time off and on-the-job accidents. Cannot wait to physically get to work as much as they can to feed off the high energy present in these companies. They are fully respected and supported resulting in near zero attrition. Simply put – they do not “Burn Out”. Conclusion: To the author’s best knowledge, 20th century practices in business are no longer valid and people are not going to work in those environments any longer. The average worker in the post-covid world is better educated than 50 years ago and most importantly, they have real-time information about any subject and can stream injustices as they happen. The Consortium Model is just the model for the evolution of both humankind and business in the 21st century.Keywords: business model, future of work, people, paradigm shift, business management
Procedia PDF Downloads 78507 The Impact of Intelligent Control Systems on Biomedical Engineering and Research
Authors: Melkamu Tadesse Getachew
Abstract:
Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling
Procedia PDF Downloads 42506 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia
Authors: Yu-Jen Shih, Juan-Zhang Lou
Abstract:
Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate
Procedia PDF Downloads 59505 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy
Authors: Priya Patel, Paresh Patel, Mihir Raval
Abstract:
Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability
Procedia PDF Downloads 423504 Effect of Dietary Graded Levels of L-Theanine on Growth Performance, Carcass Traits, Meat Quality, and Immune Response of Broilers
Authors: Muhammad Saeed, Sun Chao
Abstract:
L-theanine is water soluble non-proteinous amino acid found in green tea leaves. Despite the availability of abundant literature on green tea, studies on the use of L-theanine as an additive in animals especially broilers are scanty. The objective of this study was to evaluate the effectiveness of different dietary levels of L-theanine on growth performance, meat quality, growth, immune response and blood chemistry in broilers. A total of 400 day-old chicks were randomly divided into four treatment groups (A, B, C, and D) using a complete randomized design. Treatments were as follows: A; control (basal diet), B; basal diet+100 mg L-theanine / kg diet, C; basal diet+ 200 mg L-theanine / kg diet, and D; basal diet+ 300 mg L-theanine / kg diet. Results revealed that intermediate level of L-theanine (200 mg/ kg diet, group C) showed better results in terms of BWG, FC, and FCR compared with control and other L-theanine levels. The live weight eviscerated weight and gizzard weight was higher in all L-theanine levels as compared to that of the control group. The heaviest (P > 0.05) spleen and bursa were found in group C (200 mg L-theanine / kg diet). Analysis of meat colors according to yellowness (b*), redness (a*), and lightness (L*) showed significantly higher values of a* and b* in L-theanine groups. Supplementing broiler diet with L-theanine minimized (P=0.02) total cholesterol contents in serum. Further analysis revealed , lower mRNA expression of TNF-α and IL-6 in thymus and IFN- γ and IL-2 in spleen was observed in L-theanine group It is concluded that supplementation of L-theanine at 200mg/kg diet showed better results in terms of performance and it could be utilized as a natural feed additive alternative to antibiotics to improve overall performance of broilers. Increasing the levels up to 300 mg L-theanine /kg diet may has deleterious effects on performance and other health aspects.Keywords: blood chemistry, broilers growth, L-theanine, meat quality
Procedia PDF Downloads 251503 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor
Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu
Abstract:
Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress
Procedia PDF Downloads 287502 Comparing the Educational Effectiveness of eHealth to Deliver Health Knowledge between Higher Literacy Users and Lower Literacy Users
Authors: Yah-Ling Hung
Abstract:
eHealth is undoubtedly emerging as a promising vehicle to provide information for individual self-care management. However, the accessing ability, reading strategies and navigating behavior between higher literacy users and lower literacy users are significantly different. Yet, ways to tailor audiences’ health literacy and develop appropriate eHealth to feed their need become a big challenge. The purpose of this study is to compare the educational effectiveness of eHealth to deliver health knowledge between higher literacy users and lower literacy users, thus establishing useful design strategies of eHealth for users with different level of health literacy. The study was implemented in four stages, the first of which developed a website as the testing media to introduce health care knowledge relating to children’s allergy. Secondly, a reliability and validity test was conducted to make sure that all of the questions in the questionnaire were good indicators. Thirdly, a pre-post knowledge test was conducted with 66 participants, 33 users with higher literacy and 33 users with lower literacy respectively. Finally, a usability evaluation survey was undertaken to explore the criteria used by users with different levels of health literacy to evaluate eHealth. The results demonstrated that the eHealth Intervention in both groups had a positive outcome. There was no significant difference between the effectiveness of eHealth intervention between users with higher literacy and users with lower literacy. However, the average mean of lower literacy group was marginally higher than the average mean of higher literacy group. The findings also showed that the criteria used to evaluate eHealth could be analyzed in terms of the quality of information, appearance, appeal and interaction, but the users with lower literacy have different evaluation criteria from those with higher literacy. This is an interdisciplinary research which proposes the sequential key steps that incorporate the planning, developing and accessing issues that need to be considered when designing eHealth for patients with varying degrees of health literacy.Keywords: eHealth, health intervention, health literacy, usability evaluation
Procedia PDF Downloads 139501 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese
Abstract:
Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes
Procedia PDF Downloads 242500 An Advanced Approach to Detect and Enumerate Soil-Transmitted Helminth Ova from Wastewater
Authors: Vivek B. Ravindran, Aravind Surapaneni, Rebecca Traub, Sarvesh K. Soni, Andrew S. Ball
Abstract:
Parasitic diseases have a devastating, long-term impact on human health and welfare. More than two billion people are infected with soil-transmitted helminths (STHs), including the roundworms (Ascaris), hookworms (Necator and Ancylostoma) and whipworm (Trichuris) with majority occurring in the tropical and subtropical regions of the world. Despite its low prevalence in developed countries, the removal of STHs from wastewater remains crucial to allow the safe use of sludge or recycled water in agriculture. Conventional methods such as incubation and optical microscopy are cumbersome; consequently, the results drastically vary from person-to-person observing the ova (eggs) under microscope. Although PCR-based methods are an alternative to conventional techniques, it lacks the ability to distinguish between viable and non-viable helminth ova. As a result, wastewater treatment industries are in major need for radically new and innovative tools to detect and quantify STHs eggs with precision, accuracy and being cost-effective. In our study, we focus on the following novel and innovative techniques: -Recombinase polymerase amplification and Surface enhanced Raman spectroscopy (RPA-SERS) based detection of helminth ova. -Use of metal nanoparticles and their relative nanozyme activity. -Colorimetric detection, differentiation and enumeration of genera of helminth ova using hydrolytic enzymes (chitinase and lipase). -Propidium monoazide (PMA)-qPCR to detect viable helminth ova. -Modified assay to recover and enumerate helminth eggs from fresh raw sewage. -Transcriptome analysis of ascaris ova in fresh raw sewage. The aforementioned techniques have the potential to replace current conventional and molecular methods thereby producing a standard protocol for the determination and enumeration of helminth ova in sewage sludge.Keywords: colorimetry, helminth, PMA-QPCR, nanoparticles, RPA, viable
Procedia PDF Downloads 297499 Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2
Authors: Yeidy Sorani Montenegro Camacho, Samir Bensaid, Nunzio Russo, Debora Fino
Abstract:
LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C.Keywords: soot gasification, nanostructured catalyst, reducing environment, syngas
Procedia PDF Downloads 260498 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 155497 Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection
Authors: Thavasimuthu Citarasu, Mariavincent Michaelbabu, Vikram Vakharia
Abstract:
The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.Keywords: antiviral drugs, cyperus rotundus, fenneropenaeus indicus, WSSV
Procedia PDF Downloads 453496 In vitro Evaluation of the Anti-Methanogenic Properties of Australian Native and Some Exotic Plants with a View of Their Potential Role in Management of Ruminant Livestock Emissions
Authors: Philip Vercoe, Ali Hardan
Abstract:
Samples of 29 Australian wild natives and exotic plants were tested in vitro batch rumen culture system for their methanogenic characteristics and potential usage as feed or antimicrobial to enhance sustainable livestock ruminant production system. The plants were tested for their in vitro rumen fermentation end products properties which include: methane production, total gas pressure, concentrations of total volatile fatty acids, ammonia, and acetate to propionate ratio. All of the plants were produced less methane than the positive control (i.e., oaten chaff) in vitro. Nearly 50 % of plants inhibiting methane by over 50% in comparison to the control. Eremophila granitica had the strongest inhibitory effect about 92 % on methane production comparing with oaten chaff. The exotic weed Arctotheca calendula (Capeweed) had the highest concentration of volatile fatty acids production as well as the highest in total gas pressure among all plants and the control. Some of the acacia species have the lowest production of total gas pressure. The majority of the plants produced more ammonia than the oaten chaff control. The plant species that produced the most ammonia was Codonocarpus cotinifolius, producing over 3 times as much methane as oaten chaff control while the lowest was Eremophila galeata. There was strong positive correlation between methane production and total gas production as well as between total gas production and the concentration of VFA produced with R² = 0.74, R² = 0.84, respectively. While there was weak positive correlation between methane production and the acetate to propionate ratio as well as between the concentration of VFA produced and methane production with R² = 0.41, R² = 0.52, respectively.Keywords: in vitro Rumen Fermentation, methane, wild Australian native plants, forages
Procedia PDF Downloads 342495 Electrospun Membrane doped with Gold Nanorods for Surface-Enhanced Raman Sepctroscopy
Authors: Ziwei Wang, Andrea Lucotti, Luigi Brambilla, Matteo Tommasini, Chiara Bertarelli
Abstract:
Surface-enhanced Raman Spectroscopy (SERS) is a highly sensitive detection that provides abundant information on low concentration analytes from various researching areas. Based on localized surface plasmon resonance, metal nanostructures including gold, silver and copper have been investigated as SERS substrate during recent decades. There has been increasing more attention of exploring good performance, homogenous, repeatable SERS substrates. Here, we show that electrospinning, which is an inexpensive technique to fabricate large-scale, self-standing and repeatable membranes, can be effectively used for producing SERS substrates. Nanoparticles and nanorods are added to the feed electrospinning solution to collect functionalized polymer fibrous mats. We report stable electrospun membranes as SERS substrate using gold nanorods (AuNRs) and poly(vinyl alcohol). Particularly, a post-processing crosslinking step using glutaraldehyde under acetone environment was carried out to the electrospun membrane. It allows for using the membrane in any liquid environment, including water, which is of interest both for sensing of contaminant in wastewater, as well as for biosensing. This crosslinked AuNRs/PVA membrane has demonstrated excellent performance as SERS substrate for low concentration 10-6 M Rhodamine 6G (Rh6G) aqueous solution. This post-processing for fabricating SERS substrate is the first time reported and proved through Raman imaging of excellent stability and outstanding performance. Finally, SERS tests have been applied to several analytes, and the application of AuNRs/PVA membrane is broadened by removing the detected analyte by rinsing. Therefore, this crosslinked AuNRs/PVA membrane is re-usable.Keywords: SERS spectroscopy, electrospinning, crosslinking, composite materials
Procedia PDF Downloads 139494 Sustainable Use of Agricultural Waste to Enhance Food Security and Conserve the Environment
Authors: M. M. Tawfik, Ezzat M. Abd El Lateef, B. B. Mekki, Amany A. Bahr, Magda H. Mohamed, Gehan S. Bakhoom
Abstract:
The rapid increase in the world’s population coupled by decrease the arable land per capita has resulted into an increased demand for food which has in turn led to the production of large amounts of agricultural wastes, both at the farmer, municipality and city levels. Agricultural wastes can be a valuable resource for improving food security. Unfortunately, agricultural wastes are likely to cause pollution to the environment or even harm to human health. This calls for increased public awareness on the benefits and potential hazards of agricultural wastes, especially in developing countries. Agricultural wastes (residual stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (manures) are widely available, renewable and virtually free, hence they can be an important resource. They can be converted into heat, steam, charcoal, methanol, ethanol, bio diesel as well as raw materials (animal feed, composting, energy and biogas construction etcetera). agricultural wastes are likely to cause pollution to the environment or even harm to human health, if it is not used in a sustainable manner. Organic wastes could be considered an important source of biofertilizer for enhancing food security in the small holder farming communities that would not afford use of expensive inorganic fertilizers. Moreover, these organic wastes contain high levels of nitrogen, phosphorus, potassium, and organic matter important for improving nutrient status of soils in urban agriculture. Organic compost leading to improved crop yields and its nutritional values as compared with inorganic fertilization. This paper briefly reviews how agricultural wastes can be used to enhance food security and conserve the environment.Keywords: agricultural waste, organic compost, environment, valuable resources
Procedia PDF Downloads 519493 Acute Respiratory Infections in a Rural Area of the Southwestern Region of Bangladesh: Perceptions, Practices and the Role of First-Time Mothers
Authors: Sonia Mannan
Abstract:
A qualitative study was conducted in a rural area of the southwestern region of Bangladesh to identify perceptions, practices, and the role of first-time mothers surrounding acute respiratory infections (ARI) in infants and children aged under four years. The study reveals that all mothers had knowledge of ARI and were able to identify a number of signs and symptoms. They also recognized pneumonia and thought it to be caused by exposure to cold or weather change, supernatural causes, evil influences, mothers’ negligence, and failure to observe ‘purdah’. They were able to identify chest retractions, difficult breathing, and inability to feed as signs of severe disease needing treatment outside the home. In these cases, spiritual healers were sought, and allopathic treatment was delayed or avoided. Home care practices involved massaging the child with oil and avoiding 'cooling' foods, including water. With the presence of fever and breathing difficulty, mothers tended to increase the number and diversity of medicines, although more concern was expressed about fever than about breathing difficulty. Effective medical care was more likely to be delayed for infants than for older children (they often waited 2-5 days after signs of illness appeared); infants were also more likely to be taken to a spiritual healer as the first-choice provider. The reasons for these perceptions and practices and their implications on the ARI of infants and young children are discussed. Community intervention is identified as viable, effective, and practical to address the body of local socio-cultural knowledge about family practices and the role of the mother regarding the mitigation of ARI in infants and young children.Keywords: acute respiratory infections , public health, pneumonia, Bangladesh
Procedia PDF Downloads 112492 Design of an Automatic Bovine Feeding Machine
Authors: Huseyin A. Yavasoglu, Yusuf Ziya Tengiz, Ali Göksenli
Abstract:
In this study, an automatic feeding machine for different type and class of bovine animals is designed. Daily nutrition of a bovine consists of grass, corn, straw, silage, oat, wheat and different vitamins and minerals. The amount and mixture amount of each of the nutrition depends on different parameters of the bovine. These parameters are; age, sex, weight and maternity of the bovine, also outside temperature. The problem in a farm is to constitute the correct mixture and amount of nutrition for each animal. Faulty nutrition will cause an insufficient feeding of the animal concluding in an unhealthy bovine. To solve this problem, a new automatic feeding machine is designed. Travelling of the machine is performed by four tires, which is pulled by a tractor. The carrier consists of eight bins, which each of them carries a nutrition type. Capacity of each unit is 250 kg. At the bottom of each chamber is a sensor measuring the weight of the food inside. A funnel is at the bottom of each chamber by which open/close function is controlled by a valve. Each animal will carry a RFID tag including ID on its ear. A receiver on the feeding machine will read this ID and by given previous information by the operator (veterinarian), the system will detect the amount of each nutrition unit which will be given to the selected animal for feeding. In the system, each bin will open its exit gate by the help of the valve under the control of PLC (Programmable Logic Controller). The amount of each nutrition type will be controlled by measuring the open/close time. The exit canals of the bins are collected in a reservoir. To achieve a homogenous nitration, the collected feed will be mixed by a worm gear. Further the mixture will be transported by a help of a funnel to the feeding unit of the animal. The feeding process can be performed in 100 seconds. After feeding of the animal, the tractor pulls the travelling machine to the next animal. By the help of this system animals can be feeded by right amount and mixture of nutritionKeywords: bovine, feeding, nutrition, transportation, automatic
Procedia PDF Downloads 340491 Feasibility Study on Developing and Enhancing of Flood Forecasting and Warning Systems in Thailand
Authors: Sitarrine Thongpussawal, Dasarath Jayasuriya, Thanaroj Woraratprasert, Sakawtree Prajamwong
Abstract:
Thailand grapples with recurrent floods causing substantial repercussions on its economy, society, and environment. In 2021, the economic toll of these floods amounted to an estimated 53,282 million baht, primarily impacting the agricultural sector. The existing flood monitoring system in Thailand suffers from inaccuracies and insufficient information, resulting in delayed warnings and ineffective communication to the public. The Office of the National Water Resources (OWNR) is tasked with developing and integrating data and information systems for efficient water resources management, yet faces challenges in monitoring accuracy, forecasting, and timely warnings. This study endeavors to evaluate the viability of enhancing Thailand's Flood Forecasting and Warning (FFW) systems. Additionally, it aims to formulate a comprehensive work package grounded in international best practices to enhance the country's FFW systems. Employing qualitative research methodologies, the study conducted in-depth interviews and focus groups with pertinent agencies. Data analysis involved techniques like note-taking and document analysis. The study substantiates the feasibility of developing and enhancing FFW systems in Thailand. Implementation of international best practices can augment the precision of flood forecasting and warning systems, empowering local agencies and residents in high-risk areas to prepare proactively, thereby minimizing the adverse impact of floods on lives and property. This research underscores that Thailand can feasibly advance its FFW systems by adopting international best practices, enhancing accuracy, and improving preparedness. Consequently, the study enriches the theoretical understanding of flood forecasting and warning systems and furnishes valuable recommendations for their enhancement in Thailand.Keywords: flooding, forecasting, warning, monitoring, communication, Thailand
Procedia PDF Downloads 61490 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 186489 Studying the Linguistics of Hungarian Luxurious Brands: Analysing the Sound Effects from a non-Hungarian Consumer’s Perspective
Authors: Syrine Bassi
Abstract:
Sound symbolism has been able to give us an exciting new tool to target consumers’ brand perception. It acts on a subconscious level making them less likely to reject the implicit message delivered by the sound of the brand name. Most of the research conducted in the field was focused on the English language as it is the language used for international branding campaigns and global companies. However, more research is examining the sound symbolism in other languages and comparing it to the English language findings. Besides, researchers have been able to study luxury brand names and spot out the patterns used in them to provoke luxury and sophistication. It stands to a reason to connect the luxury brand names and the local language’s sound effects since a considerable number of these brands are promoting the origin of the Maison, therefore, have names in foreign languages. This study was established around the Hungarian luxury brand names. It aims to spot out the patterns used in these names that connect to the previous findings of luxury sound effects and also the differences. We worked with a non-Hungarian speaking sample who had some basic knowledge of the language just to make sure they were able to correctly pronounce the names. The results have shown both similarities and differences when it comes to perceiving luxury based on the brand name. As the Hungarian language can be qualified as a saturated language, consonant wise, it was easy to feed the luxury feeling only by using designers' names, however, some complicated names were too difficult and repulsive to consider as luxurious. On the other hand, oversimplifying some names did not convey the desired image as it was too simple and easy. Overall, some sounds have been proved to be linked to luxury as the literature suggests, the difficulty of pronunciation has also proved effective since it highlights the distant feeling consumers crave when looking for luxury. These results suggest that sound symbolism can set up an aura of luxury when used properly, leveraging each languages’ convenient assets.Keywords: hungarian language, linguistics, luxury brands, sound symbolism
Procedia PDF Downloads 115488 Multiplying Vulnerability of Child Health Outcome and Food Diversity in India
Authors: Mukesh Ravi Raushan
Abstract:
Despite consideration of obesity as a deadly public health issue contributing 2.6 million deaths worldwide every year developing country like India is facing malnutrition and it is more common than in Sub-Saharan Africa. About one in every three malnourished children in the world lives in India. The paper assess the nutritional health among children using data from total number of 43737 infant and young children aged 0-59 months (µ = 29.54; SD = 17.21) of the selected households by National Family Health Survey, 2005-06. The wasting was measured by a Z-score of standardized weight-for-height according to the WHO child growth standards. The impact of education with place of residence was found to be significantly associated with the complementary food diversity score (CFDS) in India. The education of mother was positively associated with the CFDS but the degree of performance was lower in rural India than their counterpart from urban. The result of binary logistic regression on wasting with WHO seven types of recommended food for children in India suggest that child who consumed the milk product food (OR: 0.87, p<0.0001) were less likely to be malnourished than their counterparts who did not consume, whereas, in case of other food items as the child who consumed food product of seed (OR: 0.75, p<0.0001) were less likely to be malnourished than those who did not. The nutritional status among children were negatively associated with the protein containing complementary food given the child as those child who received pulse in last 24 hour were less likely to be wasted (OR: 0.87, p<0.00001) as compared to the reference categories. The frequency to feed the indexed child increases by 10 per cent the expected change in child health outcome in terms of wasting decreases by 2 per cent in India when place of residence, education, religion, and birth order were controlled. The index gets improved as the risk for malnutrition among children in India decreases.Keywords: CFDS, food diversity index, India, logistic regression
Procedia PDF Downloads 260487 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 389486 Investigating Clarity Ultrasound Transperineal Ultrasound Imaging as a Method of Localising the Prostate, Compared to Cone Beam Computed Tomography with Fiducials
Authors: Harley Stephens
Abstract:
Although fiducial marker insertion is regarded as the ‘gold standard’ in terms of image guided radiotherapy (IGRT), its application must be considered carefully as the procedure can be invasive, time-consuming, and reliant on consultant expertise. Precision of the fiducials is dependent on these markers remaining in the same location and on the prostate not changing shape during the course treatment. To facilitate the acquirement of non-ionising IGRT and intra-fractional prostate tracking, Clarity TPUS was developed as an alternative imaging system. The main benefits of Clarity TPUS are that it is non-invasive, non-ionising and cost-effective. Other studies have compared fiducials to transabdominal ultrasound, which has since been proven to not be as accurate as trans-perineal imaging, as included in this study. CBCT fiducial translations and Clarity TPUS translations for 120 images as part of the PACE-C prostate SABR trial were retrospectively evaluated by three imaging specialists. Differences were analysed using correlation and Bland-Altman plots. Inter-observer matches agreed within 3mm 88.3 % of the time in left/right direction, 86.7 % of the time in in superior/inferior direction, and 91.7% of the time in ant/post direction. They agreed within 5mm more than 98.3 % of the time in all directions. The intra-class correlation co-efficient was calculated for each direction to show agreement between imaging specialist for inter-observer variability. Each was 0.95 or above, with 1 indicating perfect reliability. Agreement between observers was slightly higher for CBCT and fiducials at 98.7% agreement within 5 mm, compared to clarity TPUS where 96.7% agreement was seen within 5mm. Clarity TPUS has the benefit of no additional dose and intra-fractional monitoring, and results show a good correlation between the different modalities. Inter-observer variability is to be considered, and further research with a larger population would be of benefit.Keywords: oncology, prostate radiotherapy, image guided radiotherapy, IGRT
Procedia PDF Downloads 106485 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis
Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar
Abstract:
Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.Keywords: NLP, multilingual, sentiment analysis, texts
Procedia PDF Downloads 99484 Detection of Flood Prone Areas Using Multi Criteria Evaluation, Geographical Information Systems and Fuzzy Logic. The Ardas Basin Case
Authors: Vasileiou Apostolos, Theodosiou Chrysa, Tsitroulis Ioannis, Maris Fotios
Abstract:
The severity of extreme phenomena is due to their ability to cause severe damage in a small amount of time. It has been observed that floods affect the greatest number of people and induce the biggest damage when compared to the total of annual natural disasters. The detection of potential flood-prone areas constitutes one of the fundamental components of the European Natural Disaster Management Policy, directly connected to the European Directive 2007/60. The aim of the present paper is to develop a new methodology that combines geographical information, fuzzy logic and multi-criteria evaluation methods so that the most vulnerable areas are defined. Therefore, ten factors related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin were selected. Afterwards, two models were created to detect the areas pronest to flooding. The first model defined the gravitas of each factor using Analytical Hierarchy Process (AHP) and the final map of possible flood spots were created using GIS and Boolean Algebra. The second model made use of the fuzzy logic and GIS combination and a respective map was created. The application area of the aforementioned methodologies was in Ardas basin due to the frequent and important floods that have taken place these last years. Then, the results were compared to the already observed floods. The result analysis shows that both models can detect with great precision possible flood spots. As the fuzzy logic model is less time-consuming, it is considered the ideal model to apply to other areas. The said results are capable of contributing to the delineation of high risk areas and to the creation of successful management plans dealing with floods.Keywords: analytical hierarchy process, flood prone areas, fuzzy logic, geographic information system
Procedia PDF Downloads 377483 Legal Judgment Prediction through Indictments via Data Visualization in Chinese
Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun
Abstract:
Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization
Procedia PDF Downloads 121482 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity
Procedia PDF Downloads 131481 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 141480 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds
Authors: Carolina Payares-Asprino
Abstract:
Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding
Procedia PDF Downloads 166479 Investigation of User Position Accuracy for Stand-Alone and Hybrid Modes of the Indian Navigation with Indian Constellation Satellite System
Authors: Naveen Kumar Perumalla, Devadas Kuna, Mohammed Akhter Ali
Abstract:
Satellite Navigation System such as the United States Global Positioning System (GPS) plays a significant role in determining the user position. Similar to that of GPS, Indian Regional Navigation Satellite System (IRNSS) is a Satellite Navigation System indigenously developed by Indian Space Research Organization (ISRO), India, to meet the country’s navigation applications. This system is also known as Navigation with Indian Constellation (NavIC). The NavIC system’s main objective, is to offer Positioning, Navigation and Timing (PNT) services to users in its two service areas i.e., covering the Indian landmass and the Indian Ocean. Six NavIC satellites are already deployed in the space and their receivers are in the performance evaluation stage. Four NavIC dual frequency receivers are installed in the ‘Advanced GNSS Research Laboratory’ (AGRL) in the Department of Electronics and Communication Engineering, University College of Engineering, Osmania University, India. The NavIC receivers can be operated in two positioning modes: Stand-alone IRNSS and Hybrid (IRNSS+GPS) modes. In this paper, analysis of various parameters such as Dilution of Precision (DoP), three Dimension (3D) Root Mean Square (RMS) Position Error and Horizontal Position Error with respect to Visibility of Satellites is being carried out using the real-time IRNSS data, obtained by operating the receiver in both positioning modes. Two typical days (6th July 2017 and 7th July 2017) are considered for Hyderabad (Latitude-17°24'28.07’N, Longitude-78°31'4.26’E) station are analyzed. It is found that with respect to the considered parameters, the Hybrid mode operation of NavIC receiver is giving better results than that of the standalone positioning mode. This work finds application in development of NavIC receivers for civilian navigation applications.Keywords: DoP, GPS, IRNSS, GNSS, position error, satellite visibility
Procedia PDF Downloads 210