Search results for: fluorobased polymer coatings
244 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland
Authors: Maryam Salehi, Gholamreza Bonyadinejad
Abstract:
The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.Keywords: soil health, plastic pollution, sustainability, photodegradation
Procedia PDF Downloads 221243 U Slot Loaded Wearable Textile Antenna
Authors: Varsha Kheradiya, Ganga Prasad Pandey
Abstract:
The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network
Procedia PDF Downloads 90242 Hydrophobically Modified Glycol Chitosan Nanoparticles as a Carrier for Etoposide
Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Javaid Irfan, Andreas G. Schätzlein, Ijeoma F Uchegbeu
Abstract:
Development of efficient delivery system for hydrophobic drugs remains a major concern in chemotherapy. The objective of the current study was to develop polymeric drug-delivery system for etoposide from amphiphilic derivatives of glycol chitosan, capable to improve the pharmacokinetics and to reduce the adverse effects of etoposide due to various organic solvents used in commercial formulations for solubilisation of etoposide. As a promising carrier, amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxy succinimide and quaternisation to glycol chitosan backbone. To this end a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternisation into 13 kDa. Nano sized micelles prepared from this amphiphilic polymer had the capability to encapsulate up to 3 mg/ml etoposide. The pharmacokinetic results indicated that GCPQ based etoposide formulation transformed the biodistribution pattern. AUC 0.5-24 hr showed statistically significant difference in ETP-GCPQ vs. commercial preparation in liver (25 vs 70, p<0.001), spleen (27 vs. 36, P<0.05), lungs (42 vs. 136, p<0.001), kidneys (25 vs. 30, p<0.05) and brain (19 vs. 9,p<0.001). Using the hydrophobic fluorescent dye Nile red, we showed that micelles efficiently delivered their payload to MCF7 and A2780 cancer cells in-vitro and to A431 xenograft tumor in-vivo, suggesting these systems could deliver hydrophobic anti- cancer drugs such as etoposide to tumors. The pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drug after intravenous administration. GCPQ based formulations not only reduced side effects associated with current available formulations but also increased their transport through the biological barriers, thus making it a good delivery system.Keywords: glycol chitosan, Nile red, micelles, etoposide, A431 xenografts
Procedia PDF Downloads 311241 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution
Authors: Hasan Türe, Kader Terzioglu, Evren Tunca
Abstract:
Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).Keywords: alginate, adsorption, beads, perlite
Procedia PDF Downloads 290240 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae
Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres
Abstract:
Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays
Procedia PDF Downloads 134239 Magnetic Chloromethylated Polymer Nanocomposite for Selective Pollutant Removal
Authors: Fabio T. Costa, Sergio E. Moya, Marcelo H. Sousa
Abstract:
Nanocomposites designed by embedding magnetic nanoparticles into a polymeric matrix stand out as ideal magnetic-hybrid and magneto-responsive materials as sorbents for removal of pollutants in environmental applications. Covalent coupling is often desired for the immobilization of species on these nanocomposites, in order to keep them permanently bounded, not desorbing or leaching over time. Moreover, unwanted adsorbates can be separated by successive washes/magnetic separations, and it is also possible to recover the adsorbate covalently bound to the nanocomposite surface through detaching/cleavage protocols. Thus, in this work, we describe the preparation and characterization of highly-magnetizable chloromethylated polystyrene-based nanocomposite beads for selective covalent coupling in environmental applications. For synthesis optimization, acid resistant core-shelled maghemite (γ-Fe₂O₃) nanoparticles were coated with oleate molecules and directly incorporated into the organic medium during a suspension polymerization process. Moreover, the cross-linking agent ethylene glycol dimethacrylate (EGDMA) was utilized for co-polymerization with the 4-vinyl benzyl chloride (VBC) to increase the resistance of microbeads against leaching. After characterizing samples with XRD, ICP-OES, TGA, optical, SEM and TEM microscopes, a magnetic composite consisting of ~500 nm-sized cross-linked polymeric microspheres embedding ~8 nm γ-Fe₂O₃ nanoparticles was verified. This nanocomposite showed large room temperature magnetization (~24 emu/g) due to the high content in maghemite (~45 wt%) and resistance against leaching even in acidic media. Moreover, the presence of superficial chloromethyl groups, probed by FTIR and XPS spectroscopies and confirmed by an amination test can selectively adsorb molecules through the covalent coupling and be used in molecular separations as shown for the selective removal of 4-aminobenzoic acid from a mixture with benzoic acid.Keywords: nanocomposite, magnetic nanoparticle, covalent separation, pollutant removal
Procedia PDF Downloads 111238 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications
Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel
Abstract:
The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index
Procedia PDF Downloads 89237 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications
Authors: Syed Kamran Sami, Saqib Siddiqui
Abstract:
In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor
Procedia PDF Downloads 281236 Formulation and Evaluation of Metformin Hydrochloride Microparticles via BÜCHI Nano-Spray Dryer B-90
Authors: Tamer Shehata
Abstract:
Recently, nanotechnology acquired a great interest in the field of pharmaceutical production. Several pharmaceutical equipment were introduced into the research field for production of nanoparticles, among them, BÜCHI’ fourth generation nano-spray dryer B-90. B-90 is specialized with single step of production and drying of nano and microparticles. Currently, our research group is investigating several pharmaceutical formulations utilizing BÜCHI Nano-Spray Dryer B-90 technology. One of our projects is the formulation and evaluation of metformin hydrochloride mucoadhesive microparticles for treatment of type 2-diabetis. Several polymers were investigated, among them, gelatin and sodium alginate. The previous polymers are natural polymers with mucoadhesive properties. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension were performed. Postformulation characters such as particle size, flowability, surface scan and dissolution profile were evaluated. Finally, the pharmacological activity of certain selected formula was evaluated in streptozotocin-induced diabetic rats. B-90’spray head was 7 µm hole heated to 120 with air flow rate 3.5 mL/min. The viscosity of the solution was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Successfully, discrete, non-aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and Sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, mucoadhesive metformin hydrochloride microparticles obtained from B-90 could offer a convenient dosage form with enhanced hypoglycemic activity.Keywords: mucoadhesive, microparticles, metformin hydrochloride, nano-spray dryer
Procedia PDF Downloads 311235 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 496234 Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25
Authors: Rashida Rahmat Zohra, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides.Keywords: Bacillus licheniformis, dextranase, gel permeation chromatograpy, enzyme purification, enzyme kinetics
Procedia PDF Downloads 440233 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery
Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi
Abstract:
Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor
Procedia PDF Downloads 123232 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 266231 Drivers and Barriers of Asphalt Rubber in Sweden
Authors: Raheb Mirzanamadi, João Patrício
Abstract:
Asphalt rubber (AR) was initially developed in Sweden in the 1960s by replacing crumb rubber (CR) as aggregates in asphalt pavement. The AR produced by this method had better mechanical properties than conventional asphalt pavement but was very expensive. Since then, different technologies and methods have been developed to use CR in asphalt pavements, including blending CR with bitumen at a high temperature in the mixture, called the wet method, and blending CR with bitumen in the refinery, called the terminal blending method. In 2006, the wet method was imported from the USA to Sweden to evaluate the potential of using AR on Swedish roads. 154 km AR roads were constructed by the wet method in Sweden. The evaluation showed that the AR had, in most cases, better mechanical performance than conventional asphalt pavements. However, the terrible smoke and smell led the Swedish Transport Administration (STA) to stop using AR in Sweden. Today, there are few focuses on AR, despite its good mechanical properties and environmental aspects. Hence, there is a need to study the drives and barriers of using AR mixture in Sweden. The aims of this paper are: (i) to study drivers and barriers of using AR pavements in Sweden and (ii) to discover knowledge gaps for further research in this area. The study was done using a literature review and completed by interviews with experts, including three researchers from Swedish National Road and Transport Research Institute (VTI) and two experts from STA. The results showed that AR can be an alternative not only for conventional asphalt pavement but also for polymer modified asphalt (PMA) due to the same mechanical properties but the lower cost for production. New technologies such as terminal blending and using warm mix asphalt (WMA) methods can lead to reducing the energy and temperature during production processes. From this study, it is found that there is not enough experience and knowledge about AR in Sweden, and more research is needed, including the lifespan of AR, mechanical properties of AR using new technologies, and the impact of AR on spreading and leaching substances into nature. More studies can lead to standardization of using AR in Sweden, a potential solution for the use of end-of-life tyres, with better mechanical properties and lower costs, in comparison with conventional asphalt pavements and PMA.Keywords: asphalt rubber, crumb rubber, terminal blending method, wet method
Procedia PDF Downloads 82230 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 231229 The Effects of the Waste Plastic Modification of the Asphalt Mixture on the Permanent Deformation
Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili
Abstract:
The application of plastic waste for asphalt modification is a sustainable strategy to deal with the enormous plastic waste generated each year and enhance the properties of asphalt. The modification is either practiced by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture, and in the wet process, they are mixed and digested into bitumen. In this article, the effects of plastic inclusion in asphalt mixture, through the dry process, on the permanent deformation of the asphalt are investigated. The main waste plastics that are usually used in asphalt modification are taken into account, which is linear, low-density polyethylene, low-density polyethylene, high-density polyethylene, and polypropylene. Also, to simulate a plastic waste stream, different grades of each virgin plastic are mixed and used. For instance, four different grades of polypropylene are mixed and used as representative of polypropylene. A precisely designed mixing condition is considered to dry-mix the plastics into the mixture such that the polymer was melted and modified by the later introduced binder. In this mixing process, plastics are first added to the hot aggregates and mixed three times in different time intervals, then bitumen is introduced, and the whole mixture is mixed three times in fifteen minutes intervals. Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the effects of modification on the permanent deformation of the asphalt mixture. Dynamic creep is a common repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded, the cumulative, permanent strain is determined and reported as a function of the number of cycles. The results of this study showed that the dry inclusion of the waste plastics is very effective in enhancing the resistance against permanent deformation of the mixture. However, the mixing process must be precisely engineered to melt the plastics, and a homogenous mixture is achieved.Keywords: permanent deformation, waste plastics, low-density polyethene, high-density polyethene, polypropylene, linear low-density polyethene, dry process
Procedia PDF Downloads 88228 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings
Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi
Abstract:
In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel
Procedia PDF Downloads 236227 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation
Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um
Abstract:
In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube
Procedia PDF Downloads 201226 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites
Authors: Sarra Haouala, Issam Doghri
Abstract:
In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization
Procedia PDF Downloads 369225 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan
Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon
Abstract:
In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.Keywords: edible film, collagen, myofibril, carrageenan
Procedia PDF Downloads 429224 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing
Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati
Abstract:
The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.Keywords: drug release, hydrogel, tetracycline, wound healing
Procedia PDF Downloads 80223 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores
Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra
Abstract:
Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission
Procedia PDF Downloads 480222 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor
Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga
Abstract:
Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC
Procedia PDF Downloads 257221 Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior
Authors: Adel Dalilottojari, Bahman Delalat, Frances J. Harding, Michaelia P. Cockshell, Claudine S. Bonder, Nicolas H. Voelcker
Abstract:
Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.Keywords: biomolecules, cell microarray platform, cell therapy, endothelial progenitor cells, high throughput screening
Procedia PDF Downloads 291220 Smart and Active Package Integrating Printed Electronics
Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares
Abstract:
In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic
Procedia PDF Downloads 110219 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X
Authors: Natasha Botha, Gary Corderely, Helen M. Inglis
Abstract:
With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage
Procedia PDF Downloads 247218 Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation
Authors: Sutapa Som Chaudhury, Chitrangada Das Mukhopadhyay
Abstract:
Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease.Keywords: Alzheimer’s disease, alternative medication, amyloid beta, PEGylated peptide
Procedia PDF Downloads 209217 A Multi-Family Offline SPE LC-MS/MS Analytical Method for Anionic, Cationic and Non-ionic Surfactants in Surface Water
Authors: Laure Wiest, Barbara Giroud, Azziz Assoumani, Francois Lestremau, Emmanuelle Vulliet
Abstract:
Due to their production at high tonnages and their extensive use, surfactants are contaminants among those determined at the highest concentrations in wastewater. However, analytical methods and data regarding their occurrence in river water are scarce and concern only a few families, mainly anionic surfactants. The objective of this study was to develop an analytical method to extract and analyze a wide variety of surfactants in a minimum of steps, with a sensitivity compatible with the detection of ultra-traces in surface waters. 27 substances, from 12 families of surfactants, anionic, cationic and non-ionic were selected for method optimization. Different retention mechanisms for the extraction by solid phase extraction (SPE) were tested and compared in order to improve their detection by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The best results were finally obtained with a C18 grafted silica LC column and a polymer cartridge with hydrophilic lipophilic balance (HLB), and the method developed allows the extraction of the three types of surfactants with satisfactory recoveries. The final analytical method comprised only one extraction and two LC injections. It was validated and applied for the quantification of surfactants in 36 river samples. The method's limits of quantification (LQ), intra- and inter-day precision and accuracy were evaluated, and good performances were obtained for the 27 substances. As these compounds have many areas of application, contaminations of instrument and method blanks were observed and considered for the determination of LQ. Nevertheless, with LQ between 15 and 485 ng/L, and accuracy of over 80%, this method was suitable for monitoring surfactants in surface waters. Application on French river samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations ranging from 24 ng/L for octylphenol ethoxylates (OPEO) to 4.6 µg/L for linear alkylbenzenesulfonates (LAS). The analytical method developed in this work will therefore be useful for future monitoring of surfactants in waters. Moreover, this method, which shows good performances for anionic, non-ionic and cationic surfactants, may be easily adapted to other surfactants.Keywords: anionic surfactant, cationic surfactant, LC-MS/MS, non-ionic surfactant, SPE, surface water
Procedia PDF Downloads 145216 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide
Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama
Abstract:
The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.Keywords: carbon sphere, graphene oxide, reduction, layer by layer
Procedia PDF Downloads 141215 Resveratrol-Phospholipid Complex for Sustained Delivery of Resveratrol via the Skin for the Treatment of Inflammatory Diseases
Authors: Malay K. Das, Bhupen Kalita
Abstract:
The poor oral bioavailability of resveratrol (RSV) due to presystemic metabolism can be avoided via dermal route of administration. The hydrophilic-lipophilic nature of resveratrol-phospholipid complex (RSVPs) favors the delivery of resveratrol via the skin. The RSVPs embedded polymeric patch with moderate adhesiveness was developed for dermal application for sustained anti-inflammatory effect. The prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. The dermal flux of the optimized patch formulation was found to be at 4.28 ± 0.48 mg/cm2/24 h. The analysis of skin extract after permeation study revealed the presence of resveratrol, which confirmed the localization of RSVPs in the skin. The stability of RSVPs in the polymeric patch and the physiologic environment was confirmed by FE-SEM studies on the patches after drug release and skin permeation studies. The RSVPs particles released from the polymer matrix maintaining the structural integrity and permeate the keratinized horney layer of skin. The optimized patch formulation showed sustained anti-inflammatory effect (84.10% inhibition of inflammation at 24 h) in carrageenan-induced rat paw edema model compared to marketed diclofenac sodium gel (39.58% inhibition of inflammation at 24 h). The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained anti-inflammatory effect. Histological studies with phase contrast trinocular microscope suggested no alteration of skin integrity and no evidence of the presence of inflammatory cells after exposure to the permeants. The patch was found to be safe for skin application as evaluated by Draize method for skin irritation scoring in a rabbit model. These results suggest the therapeutic efficacy of the developed patch in both acute and chronic inflammatory diseases.Keywords: resveratrol-phospholipid complex, skin delivery, sustained anti-inflammatory effect, inflammatory diseases, dermal patch
Procedia PDF Downloads 230