Search results for: ArcGIS data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42046

Search results for: ArcGIS data analysis

40456 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 146
40455 Adoption of Big Data by Global Chemical Industries

Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta

Abstract:

The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.

Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science

Procedia PDF Downloads 84
40454 Students’ Speech Anxiety in Blended Learning

Authors: Mary Jane B. Suarez

Abstract:

Public speaking anxiety (PSA), also known as speech anxiety, is innumerably persistent in any traditional communication classes, especially for students who learn English as a second language. The speech anxiety intensifies when communication skills assessments have taken their toll in an online or a remote mode of learning due to the perils of the COVID-19 virus. Both teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn speaking skills amidst the pandemic. Communication skills assessments like public speaking, oral presentations, and student reporting have defined their new meaning using Google Meet, Zoom, and other online platforms. Though using such technologies has paved for more creative ways for students to acquire and develop communication skills, the effectiveness of using such assessment tools stands in question. This mixed method study aimed to determine the factors that affected the public speaking skills of students in a communication class, to probe on the assessment gaps in assessing speaking skills of students attending online classes vis-à-vis the implementation of remote and blended modalities of learning, and to recommend ways on how to address the public speaking anxieties of students in performing a speaking task online and to bridge the assessment gaps based on the outcome of the study in order to achieve a smooth segue from online to on-ground instructions maneuvering towards a much better post-pandemic academic milieu. Using a convergent parallel design, both quantitative and qualitative data were reconciled by probing on the public speaking anxiety of students and the potential assessment gaps encountered in an online English communication class under remote and blended learning. There were four phases in applying the convergent parallel design. The first phase was the data collection, where both quantitative and qualitative data were collected using document reviews and focus group discussions. The second phase was data analysis, where quantitative data was treated using statistical testing, particularly frequency, percentage, and mean by using Microsoft Excel application and IBM Statistical Package for Social Sciences (SPSS) version 19, and qualitative data was examined using thematic analysis. The third phase was the merging of data analysis results to amalgamate varying comparisons between desired learning competencies versus the actual learning competencies of students. Finally, the fourth phase was the interpretation of merged data that led to the findings that there was a significantly high percentage of students' public speaking anxiety whenever students would deliver speaking tasks online. There were also assessment gaps identified by comparing the desired learning competencies of the formative and alternative assessments implemented and the actual speaking performances of students that showed evidence that public speaking anxiety of students was not properly identified and processed.

Keywords: blended learning, communication skills assessment, public speaking anxiety, speech anxiety

Procedia PDF Downloads 102
40453 Depth to Basement Determination Sculpting of a Magnetic Mineral Using Magnetic Survey

Authors: A. Ikusika, O. I. Poppola

Abstract:

This study was carried out to delineate possible structures that may favour the accumulation of tantalite, a magnetic mineral. A ground based technique was employed using proton precision magnetometer G-856 AX. A total of ten geophysical traverses were established in the study area. The acquired magnetic field data were corrected for drift. The trend analysis was adopted to remove the regional gradient from the observed data and the resulting results were presented as profiles. Quantitative interpretation only was adopted to obtain the depth to basement using Peter half slope method. From the geological setting of the area and the information obtained from the magnetic survey, a conclusion can be made that the study area is underlain by a rock unit of accumulated minerals. It is therefore suspected that the overburden is relatively thin within the study area and the metallic minerals are in disseminated quantity and at a shallow depth.

Keywords: basement, drift, magnetic field data, tantalite, traverses

Procedia PDF Downloads 474
40452 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 138
40451 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai

Authors: Sukovatov K.Yu., Bezuglova N.N.

Abstract:

Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.

Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence

Procedia PDF Downloads 188
40450 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 69
40449 Communicating Meaning through Translanguaging: The Case of Multilingual Interactions of Algerians on Facebook

Authors: F. Abdelhamid

Abstract:

Algeria is a multilingual speech community where individuals constantly mix between codes in spoken discourse. Code is used as a cover term to refer to the existing languages and language varieties which include, among others, the mother tongue of the majority Algerian Arabic, the official language Modern Standard Arabic and the foreign languages French and English. The present study explores whether Algerians mix between these codes in online communication as well. Facebook is the selected platform from which data is collected because it is the preferred social media site for most Algerians and it is the most used one. Adopting the notion of translanguaging, this study attempts explaining how users of Facebook use multilingual messages to communicate meaning. Accordingly, multilingual interactions are not approached from a pejorative perspective but rather as a creative linguistic behavior that multilingual utilize to achieve intended meanings. The study is intended as a contribution to the research on multilingualism online because although an extensive literature has investigated multilingualism in spoken discourse, limited research investigated it in the online one. Its aim is two-fold. First, it aims at ensuring that the selected platform for analysis, namely Facebook, could be a source for multilingual data to enable the qualitative analysis. This is done by measuring frequency rates of multilingual instances. Second, when enough multilingual instances are encountered, it aims at describing and interpreting some selected ones. 120 posts and 16335 comments were collected from two Facebook pages. Analysis revealed that third of the collected data are multilingual messages. Users of Facebook mixed between the four mentioned codes in writing their messages. The most frequent cases are mixing between Algerian Arabic and French and between Algerian Arabic and Modern Standard Arabic. A focused qualitative analysis followed where some examples are interpreted and explained. It seems that Algerians mix between codes when communicating online despite the fact that it is a conscious type of communication. This suggests that such behavior is not a random and corrupted way of communicating but rather an intentional and natural one.

Keywords: Algerian speech community, computer mediated communication, languages in contact, multilingualism, translanguaging

Procedia PDF Downloads 130
40448 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria

Authors: Jamila Garba Audu, Shehu Usman Hassan

Abstract:

The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.

Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance

Procedia PDF Downloads 243
40447 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data

Procedia PDF Downloads 410
40446 A Tool for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: digital information management, file format, endangerment analysis, fuzzy models

Procedia PDF Downloads 402
40445 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries

Authors: Mousouris Spiridon, Kavakli Evangelia

Abstract:

This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.

Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM

Procedia PDF Downloads 107
40444 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining

Authors: Teklu Urgessa, Joong Seek Lee

Abstract:

Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.

Keywords: human rights, Olympics, social media, network analysis, social network ming

Procedia PDF Downloads 256
40443 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University

Authors: Islam Elsayed Hussein

Abstract:

The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.

Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt

Procedia PDF Downloads 520
40442 Exchange Rate Forecasting by Econometric Models

Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir

Abstract:

The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.

Keywords: exchange rate, ARIMA, GARCH, PAK/USD

Procedia PDF Downloads 558
40441 Investigation of Compressive Strength of Fly Ash-Based Geopolymer Bricks with Hierarchical Bayesian Path Analysis

Authors: Ersin Sener, Ibrahim Demir, Hasan Aykut Karaboga, Kadir Kilinc

Abstract:

Bayesian methods, which have very wide range of applications, are implemented to the data obtained from the production of F class fly ash-based geopolymer bricks’ experimental design. In this study, dependent variable is compressive strength, independent variables are treatment type (oven and steam), treatment time, molding time, temperature, water absorbtion ratio and density. The effect of independent variables on compressive strength is investigated. There is no difference among treatment types, but there is a correlation between independent variables. Therefore, hierarchical Bayesian path analysis is applied. In consequence of analysis we specified that treatment time, temperature and density effects on compressive strength is higher, molding time, and water absorbtion ratio is relatively low.

Keywords: experimental design, F class fly ash, geopolymer bricks, hierarchical Bayesian path analysis

Procedia PDF Downloads 384
40440 Improving Taint Analysis of Android Applications Using Finite State Machines

Authors: Assad Maalouf, Lunjin Lu, James Lynott

Abstract:

We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.

Keywords: android, static analysis, string analysis, taint analysis

Procedia PDF Downloads 177
40439 Personal Characteristics Related to Hasty Behaviour in Korea

Authors: Sun Jin Park, Kyung-Ja Cho

Abstract:

This study focused on characteristics related to hasty behaviour. To investigate the relation between personal characteristics and hasty behaviour, 601 data were collected, 335 males and 256 females answered their own 'social avoidance and distress’, ‘anxiety’, ‘sensation seeking', 'hope', and ' hasty behaviour. And then 591 data were used for the analysis. The factor analysis resulted hasty behaviour consisted of 5 factors, time pressure, isolation, uncomfortable situation, boring condition, and expectation of reward. The result showed anxiety, sensation seeking, and hope related to hasty behaviour. Specifically, anxiety was involved in every hasty behaviour. This result means that psychological tension and worry are related to hasty behaviour in common. 'Social avoidance and distress', 'sensation seeking' and 'hope' influenced on hasty behaviour under time pressure, in isolation, in expectation of rewards respectively. This means that each factor of hasty behaviour has anxiety as its basis, expressed through a varied nature.

Keywords: hasty behaviour, social avoidance and distress, anxiety, sensation seeking, hope

Procedia PDF Downloads 327
40438 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence

Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi

Abstract:

Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.

Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements

Procedia PDF Downloads 308
40437 Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools

Authors: Liying Li, Han Guo

Abstract:

Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries.

Keywords: decision support tool, life-cycle analysis, LCA tools and data, sustainable building design

Procedia PDF Downloads 120
40436 Need for Privacy in the Technological Era: An Analysis in the Indian Perspective

Authors: Amrashaa Singh

Abstract:

In the digital age and the large cyberspace, Data Protection and Privacy have become major issues in this technological era. There was a time when social media and online shopping websites were treated as a blessing for the people. But now the tables have turned, and the people have started to look at them with suspicion. They are getting aware of the privacy implications, and they do not feel as safe as they used to initially. When Edward Snowden informed the world about the snooping United States Security Agencies had been doing, that is when the picture became clear for the people. After the Cambridge Analytica case where the data of Facebook users were stored without their consent, the doubts arose in the minds of people about how safe they actually are. In India, the case of spyware Pegasus also raised a lot of concerns. It was used to snoop on a lot of human right activists and lawyers and the company which invented the spyware claims that it only sells it to the government. The paper will be dealing with the privacy concerns in the Indian perspective with an analytical methodology. The Supreme Court here had recently declared a right to privacy a Fundamental Right under Article 21 of the Constitution of India. Further, the Government is also working on the Data Protection Bill. The point to note is that India is still a developing country, and with the bill, the government aims at data localization. But there are doubts in the minds of many people that the Government would actually be snooping on the data of the individuals. It looks more like an attempt to curb dissenters ‘lawfully’. The focus of the paper would be on these issues in India in light of the European Union (EU) General Data Protection Regulation (GDPR). The Indian Data Protection Bill is also said to be loosely based on EU GDPR. But how helpful would these laws actually be is another concern since the economic and social conditions in both countries are very different? The paper aims at discussing these concerns, how good or bad is the intention of the government behind the bill, and how the nations can act together and draft common regulations so that there is some uniformity in the laws and their application.

Keywords: Article 21, data protection, dissent, fundamental right, India, privacy

Procedia PDF Downloads 113
40435 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 126
40434 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks

Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher

Abstract:

Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.

Keywords: neural networks, rainfall, prediction, climatic variables

Procedia PDF Downloads 487
40433 Analysis of Possible Causes of Fukushima Disaster

Authors: Abid Hossain Khan, Syam Hasan, M. A. R. Sarkar

Abstract:

Fukushima disaster is one of the most publicly exposed accidents in a nuclear facility which has changed the outlook of people towards nuclear power. Some have used it as an example to establish nuclear energy as an unsafe source, while others have tried to find the real reasons behind this accident. Many papers have tried to shed light on the possible causes, some of which are purely based on assumptions while others rely on rigorous data analysis. To our best knowledge, none of the works can say with absolute certainty that there is a single prominent reason that has paved the way to this unexpected incident. This paper attempts to compile all the apparent reasons behind Fukushima disaster and tries to analyze and identify the most likely one.

Keywords: fuel meltdown, Fukushima disaster, Manmade calamity, nuclear facility, tsunami

Procedia PDF Downloads 264
40432 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 313
40431 The Effect of per Pupil Expenditure on Student Academic Achievement: A Meta-Analysis of Correlation Research

Authors: Ting Shen

Abstract:

Whether resource matters to school has been a topic of intense debate since 1960s. Educational researchers and policy makers have been particularly interested in knowing the return or payoff of Per-Pupil Expenditure (PPE) on improving students’ achievement. However, the evidence on the effect of PPE has been mixed and the size of the effect is also unknown. With regard to the methods, it is well-known that meta-analysis study is superior to individual study and it is also preferred to vote counting method in terms of scientifically weighting the evidence by the sample size. This meta-analysis study aims to provide a synthesized evidence on the correlation between PPE and student academic achievement using recent study data from 1990s to 2010s. Meta-analytical approach of fixed- and random-effects models will be utilized in addition to a meta regression with predictors of year, location, region and school type. A preliminary result indicates that by and large there is no statistically significant relationship between per pupil expenditure and student achievement, but location seems to have a mediating effect.

Keywords: per pupil expenditure, student academic achievement, multilevel model, meta-analysis

Procedia PDF Downloads 237
40430 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 124
40429 The Real Estate Market Sustainability Concept and Its Implementation in Management of Real Estate Companies

Authors: Linda Kauškale, Ineta Geipele

Abstract:

Due to the rapidly changing external environment, portfolio management strategies became closely interconnected with real estate industry development and macroeconomic development tendencies. The aim of the research is to analyze sustainable real estate market development influencing factors, with particular focus on its economic and management aspects that influences real estate investment decisions as well. Scientific literature and article analysis, data analysis, expert evaluation, and other quantitative and qualitative research methods were used in the research. Developed real estate market sustainability model and index analysis approach can be applied by investors and real estate companies in real estate asset management and can help in risk minimization activities in international entrepreneurship. Future research directions have been identified in the research as well.

Keywords: indexes, investment decisions, real estate market, sustainability

Procedia PDF Downloads 357
40428 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence

Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei

Abstract:

With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.

Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence

Procedia PDF Downloads 449
40427 Assessment of the Road Safety Performance in National Scale

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country.

Keywords: factor analysis, Multi-criteria analysis, road safety assessment, safe system indicator

Procedia PDF Downloads 267