Search results for: relative age effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16568

Search results for: relative age effect

668 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 341
667 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines

Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul

Abstract:

Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.

Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing

Procedia PDF Downloads 115
666 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles

Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng

Abstract:

Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.

Keywords: antibiotics, biomechanical properties, bone cement, sustained release

Procedia PDF Downloads 257
665 Polarimetric Study of System Gelatin / Carboxymethylcellulose in the Food Field

Authors: Sihem Bazid, Meriem El Kolli, Aicha Medjahed

Abstract:

Proteins and polysaccharides are the two types of biopolymers most frequently used in the food industry to control the mechanical properties and structural stability and organoleptic properties of the products. The textural and structural properties of these two types of blend polymers depend on their interaction and their ability to form organized structures. From an industrial point of view, a better understanding of mixtures protein / polysaccharide is an important issue since they are already heavily involved in processed food. It is in this context that we have chosen to work on a model system composed of a fibrous protein mixture (gelatin)/anionic polysaccharide (sodium carboxymethylcellulose). Gelatin, one of the most popular biopolymers, is widely used in food, pharmaceutical, cosmetic and photographic applications, because of its unique functional and technological properties. Sodium Carboxymethylcellulose (NaCMC) is an anionic linear polysaccharide derived from cellulose. It is an important industrial polymer with a wide range of applications. The functional properties of this anionic polysaccharide can be modified by the presence of proteins with which it might interact. Another factor may also manage the interaction of protein-polysaccharide mixtures is the triple helix of the gelatin. Its complex synthesis method results in an extracellular assembly containing several levels. Collagen can be in a soluble state or associate into fibrils, which can associate in fiber. Each level corresponds to an organization recognized by the cellular and metabolic system. Gelatin allows this approach, the formation of gelatin gel has triple helical folding of denatured collagen chains, this gel has been the subject of numerous studies, and it is now known that the properties depend only on the rate of triple helices forming the network. Chemical modification of this system is quite controlled. Observe the dynamics of the triple helix may be relevant in understanding the interactions involved in protein-polysaccharides mixtures. Gelatin is central to any industrial process, understand and analyze the molecular dynamics induced by the triple helix in the transitions gelatin, can have great economic importance in all fields and especially the food. The goal is to understand the possible mechanisms involved depending on the nature of the mixtures obtained. From a fundamental point of view, it is clear that the protective effect of NaCMC on gelatin and conformational changes of the α helix are strongly influenced by the nature of the medium. Our goal is to minimize the maximum the α helix structure changes to maintain more stable gelatin and protect against denaturation that occurs during such conversion processes in the food industry. In order to study the nature of interactions and assess the properties of mixtures, polarimetry was used to monitor the optical parameters and to assess the rate of helicity gelatin.

Keywords: gelatin, sodium carboxymethylcellulose, interaction gelatin-NaCMC, the rate of helicity, polarimetry

Procedia PDF Downloads 313
664 Analysis of Shrinkage Effect during Mercerization on Himalayan Nettle, Cotton and Cotton/Nettle Yarn Blends

Authors: Reena Aggarwal, Neha Kestwal

Abstract:

The Himalayan Nettle (Girardinia diversifolia) has been used for centuries as fibre and food source by Himalayan communities. Himalayan Nettle is a natural cellulosic fibre that can be handled in the same way as other cellulosic fibres. The Uttarakhand Bamboo and Fibre Development Board based in Uttarakhand, India is working extensively with the nettle fibre to explore the potential of nettle for textile production in the region. The fiber is a potential resource for rural enterprise development for some high altitude pockets of the state and traditionally the plant fibre is used for making domestic products like ropes and sacks. Himalayan Nettle is an unconventional natural fiber with functional characteristics of shrink resistance, degree of pathogen and fire resistance and can blend nicely with other fibres. Most importantly, they generate mainly organic wastes and leave residues that are 100% biodegradable. The fabrics may potentially be reused or re-manufactured and can also be used as a source of cellulose feedstock for regenerated cellulosic products. Being naturally bio- degradable, the fibre can be composted if required. Though a lot of research activities and training are directed towards fibre extraction and processing techniques in different craft clusters villagers of different clusters of Uttarkashi, Chamoli and Bageshwar of Uttarakhand like retting and Degumming process, very little is been done to analyse the crucial properties of nettle fiber like shrinkage and wash fastness. These properties are very crucial to obtain desired quality of fibre for further processing of yarn making and weaving and in developing these fibers into fine saleable products. This research therefore is focused towards various on-field experiments which were focused on shrinkage properties conducted on cotton, nettle and cotton/nettle blended yarn samples. The objective of the study was to analyze the scope of the blended fiber for developing into wearable fabrics. For the study, after conducting the initial fiber length and fineness testing, cotton and nettle fibers were mixed in 60:40 ratio and five varieties of yarns were spun in open end spinning mill having yarn count of 3s, 5s, 6s, 7s and 8s. Samples of 100% Nettle 100% cotton fibers in 8s count were also developed for the study. All the six varieties of yarns were tested with shrinkage test and results were critically analyzed as per ASTM method D2259. It was observed that 100% Nettle has a least shrinkage of 3.36% while pure cotton has shrinkage approx. 13.6%. Yarns made of 100% Cotton exhibits four times more shrinkage than 100% Nettle. The results also show that cotton and Nettle blended yarn exhibit lower shrinkage than 100% cotton yarn. It was thus concluded that as the ratio of nettle increases in the samples, the shrinkage decreases in the samples. These results are very crucial for Uttarakhand people who want to commercially exploit the abundant nettle fiber for generating sustainable employment.

Keywords: Himalayan nettle, sustainable, shrinkage, blending

Procedia PDF Downloads 242
663 Rt-Pcr Negative COVID-19 Infection in a Bodybuilding Competitor Using Anabolic Steroids: A Case Report

Authors: Mariana Branco, Nahida Sobrino, Cristina Neves, Márcia Santos, Afonso Granja, João Rosa Oliveira, Joana Costa, Luísa Castro Leite

Abstract:

This case reports a COVID-19 infection in an unvaccinated adult man with no history of COVID-19 and no relevant clinical history besides anabolic steroid use, undergoing weaning with tamoxifen after a bodybuilding competition. The patient presented a 4cm cervical mass 3 weeks after COVID-19 infection in his cohabitants. He was otherwise asymptomatic and tested negative to multiple RT-PCR tests. Nevertheless, the IgG COVID-19 antibody was positive, suggesting the previous infection. This report raises a potential link between anabolic steroid use and atypical COVID-19 onset. Objectives: The goals of this paper are to raise a potential link between anabolic steroid use and atypical COVID-19 onset but also to report an uncommon case of COVID-19 infection with consecutive negative gold standard tests. Methodology: The authors used CARE guidelines for case report writing. Introduction: This case reports a COVID-19 infection case in an unvaccinated adult man, with multiple serial negative reverse transcription polymerase chain reaction (RT-PCR) test results, presenting with single cervical lymphadenopathy. Although the association between COVID-19 and lymphadenopathy is well established, there are no cases with this presentation, and consistently negative RT-PCR tests have been reported. Methodologies: The authors used CARE guidelines for case report writing. Case presentation: This case reports a 28-year-old Caucasian man with no previous history of COVID-19 infection or vaccination and no relevant clinical history besides anabolic steroid use undergoing weaning with tamoxifendue to participation in a bodybuilding competition. He visits his primary care physician because of a large (4 cm) cervical lump, present for 3 days prior to the consultation. There was a positive family history for COVID-19 infection 3 weeks prior to the visit, during which the patient cohabited with the infected family members. The patient never had any previous clinical manifestation of COVID-19 infection and, despite multiple consecutive RT-PCR testing, never tested positive. The patient was treated with an NSAID and a broad-spectrum antibiotic, with little to no effect. Imagiological testing was performed via a cervical ultrasound, followed by a needle biopsy for histologic analysis. Serologic testing for COVID-19 immunity was conducted, revealing a positive Anti-SARS-CoV-2 IgG (Spike S1) antibody, suggesting the previous infection, given the unvaccinated status of our patient Conclusion: In patients with a positive epidemiologic context and cervical lymphadenopathy, physicians should still consider COVID-19 infection as a differential diagnosis, despite negative PCR testing. This case also raises a potential link between anabolic steroid use and atypical COVID-19 onset, never before reported in scientific literature.

Keywords: COVID-19, cervical lymphadenopathy, anabolic steroids, primary care

Procedia PDF Downloads 118
662 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 329
661 The Effect of Regulation and Investment in Sustainable Practices on Environmental Performance and Consumer Trust: a Time Series Analysis of the Dominant Companies within the Energy Sector

Authors: Sempiga Olivier, Dominika Latusek-Jurczak

Abstract:

Climate change has allegedly been attributed to a high consumption of fossil fuels, leading to severe environmental problems. The energy sector has been among the most polluting sectors for many decades. Consequently, there is a lack of trust in several energy firms, especially those in fossil fuels and nuclear energy. A robust regulatory framework is needed, and more investment in renewable energy sources is paramount for a better environmental outcome. Given the significant environmental impact of energy production and consumption in the energy sector, sustainable marketing practices have become increasingly important. Although the latter has had the lion’s share in polluting the environment, much effort has been made recently to move away from fossil fuels and privilege renewable energy sources. How this shift would help rebuild trust in the energy industry is unclear. For the shift to have lasting effects, it may be essential that regulatory agencies examine how energy firms engage in sustainable investment. There is little empirical evidence on whether adopting regulating marketing practices and investment initiatives can help different organizations reduce their environmental impact and promote sustainable development. Little is known about how and whether the environmental value in firms goes beyond rhetoric, greenwashing and publicity to translate into economic gains and environmental performance. The study investigates how regulatory agencies can help energy firms invest sustainably and take sustainable initiatives even amid the energy crisis caused by the Russia-Ukraine conflict and how these sustainable practices relate to renewed consumer trust. Using data from Corporate Knights, the study, through time series, analyses the relationship between sustainable regulation, sustainable practices of energy firms from around the world and their relation to consumer trust and environmental performance over the past 20 years. It examines how their sustainable investment, energy, and carbon productivity relate to environmental sustainability and consumer trust. This longitudinal study provides empirical evidence of the interplay between regulation, trust and environmental performance. The research is grounded in institutional trust theory, which emphasizes the role of regulatory frameworks and organizational practices in shaping public perceptions of fairness, transparency, and legitimacy. Results show that organizations in the energy sector, supported by robust regulatory tools, can overcome the negative image of polluters and compete with other companies in the fight against climate change and global warming. However, to do so, energy firms should consider investing more in renewable energy sources and implementing sustainable strategies and practices that go beyond greenwashing to improve their environmental performance, thereby rebuilding consumer trust in the energy sector. Results allow regulatory regimes and organizations to learn why it is crucial for energy firms to invest in renewable energy sources and engage in various sustainable initiatives and practices to contribute to better environmental outcomes and higher levels of trust.

Keywords: consumer trust, energy, environmental performance, regulation, renewable energy sources, sustainable practices

Procedia PDF Downloads 12
660 Physicochemical Properties and Toxicity Studies on a Lectin from the Bulb of Dioscorea bulbifera

Authors: Uchenna Nkiruka Umeononihu, Adenike Kuku, Oludele Odekanyin, Olubunmi Babalola, Femi Agboola, Rapheal Okonji

Abstract:

In this study, a lectin from the bulb of Dioscorea bulbifera was purified, characterised, and its acute and sub-acute toxicity was investigated with a view to evaluate its toxic effects in mice. The protein from the bulb was extracted by homogenising 50 g of the bulb in 500 ml of phosphate buffered saline (0.025 M) of pH 7.2, stirred for 3 hr, and centrifuged at the speed of 3000 rpm. Blood group and sugar specificity assays of the crude extract were determined. The lectin was purified in a two-step procedure- gel filtration on Sephadex G-75 and affinity chromatography on Sepharose 4-B arabinose. The degree of purity of the purified lectin was ascertained by SDS-polyacrylamide gel electrophoresis. Detection of covalently bound carbohydrate was carried out with Periodic Acid-Schiffs (PAS) reagent staining technique. Effects of temperature, pH, and EDTA on the lectin were carried out using standard methods. This was followed by acute toxicity studies via oral and subcutaneous routes using mice. The animals were monitored for mortality and signs of toxicity. The sub-acute toxicity studies were carried out using rats. Different concentrations of the lectin were administered twice daily for 5 days via the subcutaneous route. The animals were sacrificed on the sixth day; blood samples and liver tissues were collected. Biochemical assays (determination of total protein, direct bilirubin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), catalase (CAT), and superoxide dismutase (SOD)) were carried out on the serum and liver homogenates. The collected organs (heart, liver, kidney, and spleen) were subjected to histopathological analysis. The results showed that lectin from the bulbs of Dioscorea bulbifera agglutinated non-specifically the erythrocytes of the human ABO system as well as rabbit erythrocytes. The haemagglutinating activity was strongly inhibited by arabinose and dulcitol with minimum inhibitory concentrations of 0.781 and 6.25, respectively. The lectin was purified to homogeneity with native and subunit molecular weights of 56,273 and 29,373 Daltons, respectively. The lectin was thermostable up to 30 0C and lost 25 %, 33.3 %, and 100 % of its heamagglutinating activity at 40°C, 50°C, and 60°C, respectively. The lectin was maximally active at pH 4 and 5 but lost its total activity at pH eight, while EDTA (10 mM) had no effect on its haemagglutinating activity. PAS reagent staining showed that the lectin was not a glycoprotein. The sub-acute studies on rats showed elevated levels of ALT, AST, serum bilirubin, total protein in serum and liver homogenates suggesting damage to liver and spleen. The study concluded that the aerial bulb of D. bulbifera lectin was non-specific in its heamagglutinating activity and dimeric in its structure. The lectin shared some physicochemical characteristics with lectins from other Dioscorecea species and was moderately toxic to the liver and spleen of treated animals.

Keywords: Dioscorea bulbifera, heamagglutinin, lectin, toxicity

Procedia PDF Downloads 131
659 Radioprotective Efficacy of Costus afer against the Radiation-Induced Hematology and Histopathology Damage in Mice

Authors: Idowu R. Akomolafe, Naven Chetty

Abstract:

Background: The widespread medical application of ionizing radiation has raised public concern about radiation exposure and, thus, associated cancer risk. The production of reactive oxygen species and free radicals as a result of radiation exposure can cause severe damage to deoxyribonucleic acid (DNA) of cells, thus leading to biological effect. Radiotherapy is an excellent modality in the treatment of cancerous cells, comes with a few challenges. A significant challenge is the exposure of healthy cells surrounding the tumour to radiation. The last few decades have witnessed lots of attention shifted to plants, herbs, and natural product as an alternative to synthetic compound for radioprotection. Thus, the study investigated the radioprotective efficacy of Costus afer against whole-body radiation-induced haematological, histopathological disorder in mice. Materials and Method: Fifty-four mice were randomly divided into nine groups. Animals were pretreated with the extract of Costus afer by oral gavage for six days before irradiation. Control: 6 mice received feed and water only; 6 mice received feed, water, and 3Gy; 6 mice received feed, water, and 6Gy; experimental: 6 mice received 250 mg/kg extract; 6 mice received 500 mg/kg extract; 6 mice received 250 mg/kg extract and 3Gy; 6 mice received 500 mg/kg extract and 3Gy; 6 mice received 250 mg/kg extract and 6Gy; 6 mice received 500 mg/kg extract and 6Gy in addition to feeding and water. The irradiation was done at the Radiotherapy and Oncology Department of Grey's Hospital using linear accelerator (LINAC). Thirty-six mice were sacrificed by cervical dislocation 48 hours after irradiation, and blood was collected for haematology tests. Also, the liver and kidney of the sacrificed mice were surgically removed for histopathology tests. The remaining eighteen (18) mice were used for mortality and survival studies. Data were analysed by one-way ANOVA, followed by Tukey's multiple comparison test. Results: Prior administration of Costus afer extract decreased the symptoms of radiation sickness and caused a significant delay in the mortality as demonstrated in the experimental mice. The first mortality was recorded on day-5 post irradiation, and this happened to the group E- that is, mice that received 6Gy but no extract. There was significant protection in the experimental mice, as demonstrated in the blood counts against hematopoietic and gastrointestinal damage when compared with the control. The protection was seen in the increase in blood counts of experimental animals and the number of survivor. The protection offered by Costus afer may be due to its ability to scavenge free radicals and restore gastrointestinal and bone marrow damage produced by radiation. Conclusions: The study has demonstrated that exposure of mice to radiation could cause modifications in the haematological and histopathological parameters of irradiated mice. However, the changes were relieved by the methanol extract of Costus afer, probably through its free radical scavenging and antioxidant properties.

Keywords: costus afer, hematological, mortality, radioprotection, radiotherapy

Procedia PDF Downloads 142
658 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts

Authors: Xinyue Jiao, Yu-Ren Lin

Abstract:

Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.

Keywords: argumentation, collaborative learning, scientific concepts, web-based learning

Procedia PDF Downloads 105
657 Unification of Lactic Acid Bacteria and Aloe Vera for Healthy Gut

Authors: Pavitra Sharma, Anuradha Singh, Nupur Mathur

Abstract:

There exist more than 100 trillion bacteria in the digestive system of human-beings. Such bacteria are referred to as gut microbiota. Gut microbiota comprises around 75% of our immune system. The bacteria that comprise the gut microbiota are unique to every individual and their composition keeps changing with time owing to factors such as the host’s age, diet, genes, environment, and external medication. Of these factors, the variable easiest to control is one’s diet. By modulating one’s diet, one can ensure an optimal composition of the gut microbiota yielding several health benefits. Prebiotics and probiotics are two compounds that have been considered as viable options to modulate the host’s diet. Prebiotics are basically plant products that support the growth of good bacteria in the host’s gut. Examples include garden asparagus, aloe vera etc. Probiotics are living microorganisms that exist in our intestines and play an integral role in promoting digestive health and supporting our immune system in general. Examples include yogurt, kimchi, kombucha etc. In the context of modulating the host’s diet, the key attribute of prebiotics is that they support the growth of probiotics. By developing the right combination of prebiotics and probiotics, food products or supplements can be created to enhance the host’s health. An effective combination of prebiotics and probiotics that yields health benefits to the host is referred to as synbiotics. Synbiotics comprise of an optimal proportion of prebiotics and probiotics, their application benefits the host’s health more than the application of prebiotics and probiotics used in isolation. When applied to food supplements, synbiotics preserve the beneficial probiotic bacteria during storage period and during the bacteria’s passage through the intestinal tract. When applied to the gastrointestinal tract, the composition of the synbiotics assumes paramount importance. Reason being that for synbiotics to be effective in the gastrointestinal tract, the chosen probiotic must be able to survive in the stomach’s acidic environment and manifest tolerance towards bile and pancreatic secretions. Further, not every prebiotic stimulates the growth of a particular probiotic. The prebiotic chosen should be one that not only maintains 2 balance in the host’s digestive system, but also provides the required nutrition to probiotics. Hence in each application of synbiotics, the prebiotic-probiotic combination needs to be carefully selected. Once the combination is finalized, the exact proportion of prebiotics and probiotics to be used needs to be considered. When determining this proportion, only that amount of a prebiotic should be used that activates metabolism of the required number of probiotics. It was observed that while probiotics are active is both the small and large intestine, the effect of prebiotics is observed primarily in the large intestine. Hence in the host’s small intestine, synbiotics are likely to have the maximum efficacy. In small intestine, prebiotics not only assist in the growth of probiotics, but they also enable probiotics to exhibit a higher tolerance to pH levels, oxygenation, and intestinal temperature

Keywords: microbiota, probiotics, prebiotics, synbiotics

Procedia PDF Downloads 136
656 The Effects of the New Silk Road Initiatives and the Eurasian Union to the East-Central-Europe’s East Opening Policies

Authors: Tamas Dani

Abstract:

The author’s research explores the geo-economical role and importance of some small and medium sized states, reviews their adaption strategies in foreign trade and also in foreign affairs in the course of changing into a multipolar world, uses international background. With these, the paper analyses the recent years and the future of ‘Opening towards Eastern foreign economic policies’ from East-Central Europe and parallel with that the ‘Western foreign economy policies’ from Asia, as the Chinese One Belt One Road new silk route plans (so far its huge part is an infrastructural development plan to reach international trade and investment aims). It can be today’s question whether these ideas will reshape the global trade or not. How does the new silk road initiatives and the Eurasian Union reflect the effect of globalization? It is worth to analyse that how did Central and Eastern European countries open to Asia; why does China have the focus of the opening policies in many countries and why could China be seen as the ‘winner’ of the world economic crisis after 2008. The research is based on the following methodologies: national and international literature, policy documents and related design documents, complemented by processing of international databases, statistics and live interviews with leaders from East-Central European countries’ companies and public administration, diplomats and international traders. The results also illustrated by mapping and graphs. The research will find out as major findings whether the state decision-makers have enough margin for manoeuvres to strengthen foreign economic relations. This work has a hypothesis that countries in East-Central Europe have real chance to diversify their relations in foreign trade, focus beyond their traditional partners. This essay focuses on the opportunities of East-Central-European countries in diversification of foreign trade relations towards China and Russia in terms of ‘Eastern Openings’. The effects of the new silk road initiatives and the Eurasian Union to Hungary’s economy with a comparing outlook on East-Central European countries and exploring common regional cooperation opportunities in this area. The essay concentrate on the changing trade relations between East-Central-Europe and China as well as Russia, try to analyse the effects of the new silk road initiatives and the Eurasian Union also. In the conclusion part, it shows how the cooperation is necessary for the East-Central European countries if they want to have a non-asymmetric trade with Russia, China or some Chinese regions (Pearl River Delta, Hainan, …). The form of the cooperation for the East-Central European nations can be Visegrad 4 Cooperation (V4), Central and Eastern European Countries (CEEC16), 3 SEAS Cooperation (or BABS – Baltic, Adriatic, Black Seas Initiative).

Keywords: China, East-Central Europe, foreign trade relations, geoeconomics, geopolitics, Russia

Procedia PDF Downloads 183
655 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 300
654 Efficacy of CAM Methods for Pain Reduction in Acute Non-specific Lower Back Pain

Authors: John Gaber

Abstract:

Objectives: Complementary and alternative medicine (CAM) is a medicine or health practice that is used alongside conventional practice. Nowadays, CAM is commonly used in North America and other countries, and there is a need for more scientific study to understand its efficacy in different clinical cases. This retrospective study explores the effectiveness and recovery time of CAMs such as cupping, acupuncture, and sotai to treat cases of non-specific low back pain (ANLBP). Methods: We assessed the effectiveness of acupuncture, cupping, and sotai methods on pain and for the treatment of ANLBP. We have compared the magnitude of pain relief using a pain scale assessment method to compare the efficacy of each treatment. The Face Pain Scale assessment was conducted before and 24 hours post-treatment. This retrospective study analyzed 40 patients and categorized them according to the treatment they received. The study included the control group, and the three intervention groups, each with ten patients. Each of the three intervention groups received one of the intervention methods. The first group received the cupping treatment, where cups were placed on the lower back of both sides on points: BL23, BL25, BL26, BL54, BL37, BL40, and BL57. After vacuuming, the cups will stay for 10-15 minutes under infrared light (IR) heating. IR heating is applied by an infrared heat lamp. The second group received the acupuncture treatment, placing needles on points: BL23, BL25, BL26, BL52BL54, GB30, BL37, BL40, BL57, BL59, BL60, and KI3. The needles will be simulated with IR light. The final group received the sotai treatment, a Japanese form of structural realignment that relieves pain, balance, and mobility -moving the body naturally and spontaneously towards a comfortable direction by focusing on the inner feeling and synchronizing with the patient’s breathing. The SPSS statistical software was used to analyze the data using repeated-measures ANOVA. The data collected demonstrates the change in the FPS assessment method value over the course of treatment. p<0.05 was considered statistically significant. Results: In the cupping, acupuncture, and sotai therapy groups, the mean of the FPS value reduced from 8.7±1.2, 8.8±1.2, 9.0±0.8 before the intervention to 3.5±1.4, 4.3±1.4, 3.3±1.3, 24 hours after the intervention, respectively. The data collected shows that the CAM methods included in this study all show improvements in pain relief 24 hours after treatment. Conclusion: Complementary and alternative medicine were developed to treat injuries and illnesses with the whole body in mind, designed to be used in addition to standard treatments. The data above shows that the use of these treatments can have a pain-relieving effect, but more research should be done on the matter, as finding CAM methods that are efficacious is crucial in the landscape of health sciences.

Keywords: acupuncture, cupping, alternative medicine, rehabilitation, acute injury

Procedia PDF Downloads 56
653 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing

Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang

Abstract:

Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.

Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment

Procedia PDF Downloads 170
652 Efficiency of Virtual Reality Exercises with Nintendo Wii System on Balance and Independence in Motor Functions in Hemiparetic Patients: A Randomized Controlled Study

Authors: Ayça Utkan Karasu, Elif Balevi Batur, Gülçin Kaymak Karataş

Abstract:

The aim of this study was to examine the efficiency of virtual reality exercises with Nintendo Wii system on balance and independence in motor functions. This randomized controlled assessor-blinded study included 23 stroke inpatients with hemiparesis all within 12 months poststroke. Patients were randomly assigned to control group (n=11) or experimental group (n=12) via block randomization method. Control group participated in a conventional balance rehabilitation programme. Study group received a four-week balance training programme five times per week with a session duration of 20 minutes in addition to the conventional balance rehabilitation programme. Balance was assessed by the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index. Also, displacement of centre of pressure sway and centre of pressure displacement during weight shifting was calculated by Emed-SX system. Independence in motor functions was assessed by The Functional Independence Measure (FIM) ambulation and FIM transfer subscales. The outcome measures were evaluated at baseline, 4th week (posttreatment), 8th week (follow-up). Repeated measures analysis of variance was performed for each of the outcome measure. Significant group time interaction was detected in the scores of the Berg’s balance scale, the functional reach test, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed anteroposterior center of pressure sway distance, center of pressure displacement during weight shifting to effected side, unaffected side and total centre of pressure displacement during weight shifting (p < 0.05). Time effect was statistically significant in the scores of the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed mediolateral center of pressure sway distance, the center of pressure displacement during weight shifting to effected side, the functional independence measure ambulation and transfer scores (p < 0.05). Virtual reality exercises with Nintendo Wii system combined with a conventional balance rehabilitation programme enhances balance performance and independence in motor functions in stroke patients.

Keywords: balance, hemiplegia, stroke rehabilitation, virtual reality

Procedia PDF Downloads 221
651 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption

Authors: Binyam Teferi

Abstract:

Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.

Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation

Procedia PDF Downloads 129
650 The Gaps of Environmental Criminal Liability in Armed Conflicts and Its Consequences: An Analysis under Stockholm, Geneva and Rome

Authors: Vivian Caroline Koerbel Dombrowski

Abstract:

Armed conflicts have always meant the ultimate expression of power and at the same time, lack of understanding among nations. Cities were destroyed, people were killed, assets were devastated. But these are not only the loss of a war: the environmental damage comes to be considered immeasurable losses in the short, medium and long term. And this is because no nation wants to bear that cost. They invest in military equipment, training, technical equipment but the environmental account yet finds gaps in international law. Considering such a generalization in rights protection, many nations are at imminent danger in a conflict if the water will be used as a mass weapon, especially if we consider important rivers such as Jordan, Euphrates and Nile. The top three international documents were analyzed on the subject: the Stockholm Convention (1972), Additional Protocol I to the Geneva Convention (1977) and the Rome Statute (1998). Indeed, some references are researched in doctrine, especially scientific articles, to substantiate with consistent data about the extent of the damage, historical factors and decisions which have been successful. However, due to the lack of literature about this subject, the research tends to be exhaustive. From the study of the indicated material, it was noted that international law - humanitarian and environmental - calls in some of its instruments the environmental protection in war conflicts, but they are generic and vague rules that do not define exactly what is the environmental damage , nor sets standards for measure them. Taking into account the mains conflicts of the century XX: World War II, the Vietnam War and the Gulf War, one must realize that the environmental consequences were of great rides - never deactivated landmines, buried nuclear weapons, armaments and munitions destroyed in the soil, chemical weapons, not to mention the effects of some weapons when used (uranium, agent Orange, etc). Extending the search for more recent conflicts such as Afghanistan, it is proven that the effects on health of the civilian population were catastrophic: cancer, birth defects, and deformities in newborns. There are few reports of nations that, somehow, repaired the damage caused to the environment as a result of the conflict. In the pitch of contemporary conflicts, many nations fear that water resources are used as weapons of mass destruction, because once contaminated - directly or indirectly - can become a means of disguised genocide side effect of military objective. In conclusion, it appears that the main international treaties governing the subject mention the concern for environmental protection, however leave the normative specifications vacancies necessary to effectively there is a prevention of environmental damage in armed conflict and, should they occur, the repair of the same. Still, it appears that there is no protection mechanism to safeguard natural resources and avoid them to become a mass destruction weapon.

Keywords: armed conflicts, criminal liability, environmental damages, humanitarian law, mass weapon

Procedia PDF Downloads 420
649 Prolactin and Its Abnormalities: Its Implications on the Male Reproductive Tract and Male Factor Infertility

Authors: Rizvi Hasan

Abstract:

Male factor infertility due to abnormalities in prolactin levels is encountered in a significant proportion. This was a case-control study carried out to determine the effects of prolactin abnormalities in normal males with infertility, recruiting 297 male infertile patients with informed written consent. All underwent a Basic Seminal Fluid Analysis (BSA) and endocrine profiles of FSH, LH, testosterone and prolactin (PRL) hormones using the random access chemiluminescent immunoassay method (normal range 2.5-17ng/ml). Age, weight, and height matched voluntary controls were recruited for comparison. None of the cases had anatomical, medical or surgical disorders related to infertility. Among the controls; mean age 33.2yrs ± 5.2, BMI 21.04 ± 1.39kgm-2, BSA 34×106, a number of children fathered 2±1, PRL 6.78 ± 2.92ng/ml. Of the 297 patients, 28 were hyperprolactinaemic while one was hypoprolactinaemic. All the hyperprolactinaemic patients had oligoasthenospermia, abnormal morphology and decreased viability. The serum testosterone levels were markedly lowered in 26 (92.86%) of the hyperprolactinaemic subjects. In the other 2 hyperprolactinaemic subjects and the single hypoprolactinaemic subject, the serum testosterone levels were normal. FSH and LH were normal in all patients. The 29 male patients with abnormalities in their serum PRL profiles were followed up for 12 months. The 28 patients suffering from hyperprolactinaemia were treated with oral bromocriptine in a dose of 2.5 mg twice daily. The hypoprolactinaemic patient defaulted treatment. From the follow-up, it was evident that 19 (67.86%) of the treated patients responded after 3 months of therapy while 4 (14.29%) showed improvement after approximately 6 months of bromocriptine therapy. One patient responded after 1 year of therapy while 2 patients showed improvements although not up to normal levels within the same period. Response to treatment was assessed by improvement in their BSA parameters. Prolactin abnormalities affect the male reproductive system and semen parameters necessitating further studies to ascertain the exact role of prolactin on the male reproductive tract. A parallel study was carried out incorporating 200 male white rats that were grouped and subjected to variations in their serum PRL levels. At the end of 100 days of treatment, these rats were subjected to morphological studies of their male reproductive tracts.Varying morphological changes depending on the levels of PRL changes induced were evident. Notable changes were arrest of spermatogenesis at the spermatid stage, a reduced testicular cellularity, a reduction in microvilli of the pseudostratified epithelial lining of the epididymis, while measurement of the tubular diameter showed a 30% reduction compared to normal tissue. There were no changes in the vas deferens, seminal vesicles, and the prostate. It is evident that both hyperprolactinaemia and hypoprolactinaemia have a direct effect on the morphology and function of the male reproductive tract. The morphological studies carried out on the groups of rats who were subjected to variations in their PRL levels could be the basis for infertility in male human beings.

Keywords: male factor infertility, morphological studies, prolactin, seminal fluid analysis

Procedia PDF Downloads 345
648 The Mitigation of Quercetin on Lead-Induced Neuroinflammation in a Rat Model: Changes in Neuroinflammatory Markers and Memory

Authors: Iliyasu Musa Omoyine, Musa Sunday Abraham, Oladele Sunday Blessing, Iliya Ibrahim Abdullahi, Ibegbu Augustine Oseloka, Nuhu Nana-Hawau, Animoku Abdulrazaq Amoto, Yusuf Abdullateef Onoruoiza, Sambo Sohnap James, Akpulu Steven Peter, Ajayi Abayomi

Abstract:

The neuroprotective role of inflammation from detrimental intrinsic and extrinsic factors has been reported. However, the overactivation of astrocytes and microglia due to lead toxicity produce excessive pro-inflammatory cytokines, mediating neurodegenerative diseases. The present study investigated the mitigatory effects of quercetin on neuroinflammation, correlating with memory function in lead-exposed rats. In this study, Wistar rats were administered orally with Quercetin (Q: 60 mg/kg) and Succimer as a standard drug (S: 10 mg/kg) for 21 days after lead exposure (Pb: 125 mg/kg) of 21 days or in combination with Pb, once daily for 42 days. Working and reference memory was assessed using an Eight-arm radial water maze (8-ARWM). The changes in brain lead level, the neuronal nitric oxide synthase (nNOS) activity, and the level of neuroinflammatory markers such as tumour necrosis factor-alpha (TNF-α) and Interleukin 1 Beta (IL-1β) were determined. Immunohistochemically, astrocyte expression was evaluated. The results showed that the brain level of lead was increased significantly in lead-exposed rats. The expression of astrocytes increased in the CA3 and CA1 regions of the hippocampus, and the levels of brain TNF-α and IL-1β increased in lead-exposed rats. Lead impaired reference and working memory by increasing reference memory errors and working memory incorrect errors in lead-exposed rats. However, quercetin treatment effectively improved memory and inhibited neuroinflammation by reducing astrocytes’ expression and the levels of TNF-α and IL-1β. The expression of astrocytes and the levels of TNF-α and IL-1β correlated with memory function. The possible explanation for quercetin’s anti-neuroinflammatory effect is that it modulates the activity of cellular proteins involved in the inflammatory response; inhibits the transcription factor of nuclear factor-kappa B (NF-κB), which regulates the expression of proinflammatory molecules; inhibits kinases required for the synthesis of Glial fibrillary acidic protein (GFAP) and modifies the phosphorylation of some proteins, which affect the structure and function of intermediate filament proteins; and, lastly, induces Cyclic-AMP Response Element Binding (CREB) activation and neurogenesis as a compensatory mechanism for memory deficits and neuronal cell death. In conclusion, the levels of neuroinflammatory markers negatively correlated with memory function. Thus, quercetin may be a promising therapy in neuroinflammation and memory dysfunction in populations prone to lead exposure.

Keywords: lead, quercetin, neuroinflammation, memory

Procedia PDF Downloads 55
647 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India

Authors: Priyanka Mondal, Santosh K. Sarkar

Abstract:

The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.

Keywords: pollution assessment, sediment contamination, sediment quality, trace elements

Procedia PDF Downloads 257
646 Inconsistent Effects of Landscape Heterogeneity on Animal Diversity in an Agricultural Mosaic: A Multi-Scale and Multi-Taxon Investigation

Authors: Chevonne Reynolds, Robert J. Fletcher, Jr, Celine M. Carneiro, Nicole Jennings, Alison Ke, Michael C. LaScaleia, Mbhekeni B. Lukhele, Mnqobi L. Mamba, Muzi D. Sibiya, James D. Austin, Cebisile N. Magagula, Themba’alilahlwa Mahlaba, Ara Monadjem, Samantha M. Wisely, Robert A. McCleery

Abstract:

A key challenge for the developing world is reconciling biodiversity conservation with the growing demand for food. In these regions, agriculture is typically interspersed among other land-uses creating heterogeneous landscapes. A primary hypothesis for promoting biodiversity in agricultural landscapes is the habitat heterogeneity hypothesis. While there is evidence that landscape heterogeneity positively influences biodiversity, the application of this hypothesis is hindered by a need to determine which components of landscape heterogeneity drive these effects and at what spatial scale(s). Additionally, whether diverse taxonomic groups are similarly affected is central for determining the applicability of this hypothesis as a general conservation strategy in agricultural mosaics. Two major components of landscape heterogeneity are compositional and configurational heterogeneity. Disentangling the roles of each component is important for biodiversity conservation because each represents different mechanisms underpinning variation in biodiversity. We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an extensive agricultural mosaic in north-eastern Swaziland. We then tested how bird, dung beetle, ant and meso-carnivore diversity responded to compositional and configurational heterogeneity across six different spatial scales. To determine if a general trend could be observed across multiple taxa, we also tested which component and spatial scale was most influential across all taxonomic groups combined, Compositional, not configurational, heterogeneity explained diversity in each taxonomic group, with the exception of meso-carnivores. Bird and ant diversity was positively correlated with compositional heterogeneity at fine spatial scales < 1000 m, whilst dung beetle diversity was negatively correlated to compositional heterogeneity at broader spatial scales > 1500 m. Importantly, because of these contrasting effects across taxa, there was no effect of either component of heterogeneity on the combined taxonomic diversity at any spatial scale. The contrasting responses across taxonomic groups exemplify the difficulty in implementing effective conservation strategies that meet the requirements of diverse taxa. To promote diverse communities across a range of taxa, conservation strategies must be multi-scaled and may involve different strategies at varying scales to offset the contrasting influences of compositional heterogeneity. A diversity of strategies are likely key to conserving biodiversity in agricultural mosaics, and we have demonstrated that a landscape management strategy that only manages for heterogeneity at one particular scale will likely fall short of management objectives.

Keywords: agriculture, biodiversity, composition, configuration, heterogeneity

Procedia PDF Downloads 263
645 Role of Lipid-Lowering Treatment in the Monocyte Phenotype and Chemokine Receptor Levels after Acute Myocardial Infarction

Authors: Carolina N. França, Jônatas B. do Amaral, Maria C.O. Izar, Ighor L. Teixeira, Francisco A. Fonseca

Abstract:

Introduction: Atherosclerosis is a progressive disease, characterized by lipid and fibrotic element deposition in large-caliber arteries. Conditions related to the development of atherosclerosis, as dyslipidemia, hypertension, diabetes, and smoking are associated with endothelial dysfunction. There is a frequent recurrence of cardiovascular outcomes after acute myocardial infarction and, at this sense, cycles of mobilization of monocyte subtypes (classical, intermediate and nonclassical) secondary to myocardial infarction may determine the colonization of atherosclerotic plaques in different stages of the development, contributing to early recurrence of ischemic events. The recruitment of different monocyte subsets during inflammatory process requires the expression of chemokine receptors CCR2, CCR5, and CX3CR1, to promote the migration of monocytes to the inflammatory site. The aim of this study was to evaluate the effect of lipid-lowering treatment by six months in the monocyte phenotype and chemokine receptor levels of patients after Acute Myocardial Infarction (AMI). Methods: This is a PROBE (prospective, randomized, open-label trial with blinded endpoints) study (ClinicalTrials.gov Identifier: NCT02428374). Adult patients (n=147) of both genders, ageing 18-75 years, were randomized in a 2x2 factorial design for treatment with rosuvastatin 20 mg/day or simvastatin 40 mg/day plus ezetimibe 10 mg/day as well as ticagrelor 90 mg 2x/day and clopidogrel 75 mg, in addition to conventional AMI therapy. Blood samples were collected at baseline, after one month and six months of treatment. Monocyte subtypes (classical - inflammatory, intermediate - phagocytic and nonclassical – anti-inflammatory) were identified, quantified and characterized by flow cytometry, as well as the expressions of the chemokine receptors (CCR2, CCR5 and CX3CR1) were also evaluated in the mononuclear cells. Results: After six months of treatment, there was an increase in the percentage of classical monocytes and reduction in the nonclassical monocytes (p=0.038 and p < 0.0001 Friedman Test), without differences for intermediate monocytes. Besides, classical monocytes had higher expressions of CCR5 and CX3CR1 after treatment, without differences related to CCR2 (p < 0.0001 for CCR5 and CX3CR1; p=0.175 for CCR2). Intermediate monocytes had higher expressions of CCR5 and CX3CR1 and lower expression of CCR2 (p = 0.003; p < 0.0001 and p = 0.011, respectively). Nonclassical monocytes had lower expressions of CCR2 and CCR5, without differences for CX3CR1 (p < 0.0001; p = 0.009 and p = 0.138, respectively). There were no differences after the comparison between the four treatment arms. Conclusion: The data suggest a time-dependent modulation of classical and nonclassical monocytes and chemokine receptor levels. The higher percentage of classical monocytes (inflammatory cells) suggest a residual inflammatory risk, even under preconized treatments to AMI. Indeed, these changes do not seem to be affected by choice of the lipid-lowering strategy.

Keywords: acute myocardial infarction, chemokine receptors, lipid-lowering treatment, monocyte subtypes

Procedia PDF Downloads 121
644 A New Perspective in Cervical Dystonia: Neurocognitive Impairment

Authors: Yesim Sucullu Karadag, Pinar Kurt, Sule Bilen, Nese Subutay Oztekin, Fikri Ak

Abstract:

Background: Primary cervical dystonia is thought to be a purely motor disorder. But recent studies revealed that patients with dystonia had additional non-motor features. Sensory and psychiatric disturbances could be included into the non-motor spectrum of dystonia. The Basal Ganglia receive inputs from all cortical areas and throughout the thalamus project to several cortical areas, thus participating to circuits that have been linked to motor as well as sensory, emotional and cognitive functions. However, there are limited studies indicating cognitive impairment in patients with cervical dystonia. More evidence is required regarding neurocognitive functioning in these patients. Objective: This study is aimed to investigate neurocognitive profile of cervical dystonia patients in comparison to healthy controls (HC) by employing a detailed set of neuropsychological tests in addition to self-reported instruments. Methods: Totally 29 (M/F: 7/22) cervical dystonia patients and 30 HC (M/F: 10/20) were included into the study. Exclusion criteria were depression and not given informed consent. Standard demographic, educational data and clinical reports (disease duration, disability index) were recorded for all patients. After a careful neurological evaluation, all subjects were given a comprehensive battery of neuropsychological tests: Self report of neuropsychological condition (by visual analogue scale-VAS, 0-100), RAVLT, STROOP, PASAT, TMT, SDMT, JLOT, DST, COWAT, ACTT, and FST. Patients and HC were compared regarding demographic, clinical features and neurocognitive tests. Also correlation between disease duration, disability index and self report -VAS were assessed. Results: There was no difference between patients and HCs regarding socio-demographic variables such as age, gender and years of education (p levels were 0.36, 0.436, 0.869; respectively). All of the patients were assessed at the peak of botulinum toxine effect and they were not taking an anticholinergic agent or benzodiazepine. Dystonia patients had significantly impaired verbal learning and memory (RAVLT, p<0.001), divided attention and working memory (ACTT, p<0.001), attention speed (TMT-A and B, p=0.008, 0.050), executive functions (PASAT, p<0.001; SDMT, p= 0.001; FST, p<0.001), verbal attention (DST, p=0.001), verbal fluency (COWAT, p<0.001), visio-spatial processing (JLOT, p<0.001) in comparison to healthy controls. But focused attention (STROOP-spontaneous correction) was not different between two groups (p>0.05). No relationship was found regarding disease duration and disability index with any neurocognitive tests. Conclusions: Our study showed that neurocognitive functions of dystonia patients were worse than control group with the similar age, sex, and education independently clinical expression like disease duration and disability index. This situation may be the result of possible cortical and subcortical changes in dystonia patients. Advanced neuroimaging techniques might be helpful to explain these changes in cervical dystonia patients.

Keywords: cervical dystonia, neurocognitive impairment, neuropsychological test, dystonia disability index

Procedia PDF Downloads 420
643 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization

Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries

Abstract:

Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.

Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning

Procedia PDF Downloads 267
642 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 182
641 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 308
640 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 118
639 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health

Authors: Sukran Karatas

Abstract:

Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.

Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology

Procedia PDF Downloads 347