Search results for: random fields
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4321

Search results for: random fields

2761 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks

Authors: Elias Nemer, Greg Vines

Abstract:

Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.

Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()

Procedia PDF Downloads 237
2760 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data

Procedia PDF Downloads 323
2759 Total Quality Management and Competitive Advantage in Companies

Authors: Malki Fatima Zahra Nadia, Kellal Cheiimaa, Brahimi Houria

Abstract:

Total Quality Management (TQM) is one of the most important modern management systems in marketing, that help organizations to survive and remain competitive in the dynamic market with frequent changes. It assists them in gaining a competitive advantage, growth, and excellence compared to their competitors. To understand the impact of TQM on competitive advantage in economic companies, a study was conducted in Ooredoo Telecommunications Company. A questionnaire was designed and distributed to OOredoo' 75 employees in each of the departments of leadership, quality assurance, quality control, research and development, production, customer service, Similarly, resulting in the retrieval of 72 questionnaires. To analyze the descriptive results of the study, the SPSS software version 25 was used. Additionally, Structural Equation Modeling (SEM) with the help of Smart Pls4 software was utilized to test the study's hypotheses. The study concluded that there is an impact between total quality management and competitive advantage in Ooredoo company to different degrees. On this basis, the study recommended the need to implement the total quality management system at the level of all organizations and in various fields.

Keywords: total quality management, ISO system, competitive advantage, competitive strategies

Procedia PDF Downloads 75
2758 Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand

Authors: Mohamedou El Boukhary, Farba Bouyagui Tamboura, A. Hamady Barry, T. Moussa Seck, Mohamed L. Gaye

Abstract:

Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds.

Keywords: synthene, acyl-hydrazone, 3D transition metal complex, application

Procedia PDF Downloads 57
2757 Extending the Theory of Planned Behaviour to Predict Intention to Commute by Bicycle: Case Study of Mexico City

Authors: Magda Cepeda, Frances Hodgson, Ann Jopson

Abstract:

There are different barriers people face when choosing to cycle for commuting purposes. This study examined the role of psycho-social factors predicting the intention to cycle to commute in Mexico City. An extended version of the theory of planned behaviour was developed and utilized with a simple random sample of 401 road users. We applied exploratory and confirmatory factor analysis and after identifying five factors, a structural equation model was estimated to find the relationships among the variables. The results indicated that cycling attributes, attitudes to cycling, social comparison and social image and prestige were the most important factors influencing intention to cycle. Although the results from this study are specific to Mexico City, they indicate areas of interest to transportation planners in other regions especially in those cities where intention to cycle its linked to its perceived image and there is political ambition to instigate positive cycling cultures. Moreover, this study contributes to the current literature developing applications of the Theory of Planned Behaviour.

Keywords: cycling, latent variable model, perception, theory of planned behaviour

Procedia PDF Downloads 354
2756 Electronic Properties Study of Ni/MgO Nanoparticles by X-Ray Photoemission Spectroscopy (XPS)

Authors: Ouafek Nora, Keghouche Nassira, Dehdouh Heider, Untidt Carlos

Abstract:

A lot of knowledge has been accumulated on the metal clusters supported on oxide surfaces because of their multiple applications in microelectronics, heterogeneous catalysis, and magnetic devices. In this work, the surface state of Ni / MgO has been studied by XPS (X-ray Photoemission Spectroscopy). The samples were prepared by impregnation with ion exchange Ni²⁺ / MgO, followed by either a thermal treatment in air (T = 100 -350 ° C) or a gamma irradiation (dose 100 kGy, 25 kGy dose rate h -1). The obtained samples are named after impregnation NMI, NMR after irradiation, and finally NMC(T) after calcination at the temperature T (T = 100-600 °C). A structural study by XRD and HRTEM reveals the presence of nanoscaled Ni-Mg intermetallic phases (Mg₂Ni, MgNi₂, and Mg₆Ni) and magnesium hydroxide. Mg(OH)₂ in nanometric range (2- 4 nm). Mg-Ni compounds are of great interest in energy fields (hydrogen storage…). XPS spectra show two Ni2p peaks at energies of about 856.1 and 861.9 eV, indicating that the nickel is primarily in an oxidized state on the surface. The shift of the main peak relative to the pure NiO (856.1 instead of 854.0 eV) suggests that in addition to oxygen, nickel is engaged in another link with magnesium. This is in agreement with the O1s spectra which present an overlap of peaks corresponds to NiO and MgO, at a calcination temperature T ≤ 300 °C.

Keywords: XPS, XRD, nanoparticules, Ni-MgO

Procedia PDF Downloads 212
2755 Residents' Satisfaction with Infrastructural Facilities in the Peri-Urban Area of Ibadan, Southwest of Nigeria

Authors: Simon Ayorinde Okanlawon

Abstract:

This study examines residents’ assessment of with infrastructural facilities in the urban fringe of Ibadan, Nigeria. Random sampling technique was used in selecting four Local Government Areas out of the six suburban LGAs of the city. Google earth and ground trotting were used in capturing and selecting seven hundred and forty-two new houses. The questionnaires administered on house owners were harvested on the spot. The information collected includes socio-economic and demographic characteristics of residents as well as characteristics of infrastructural facilities. The study utilised both descriptive and inferential statistical analyses; Facility Availability Index (FAI) Facility Functionality Index (FFI) and Residents’ Satisfactions Index (RSI) were used to compare respectively residents’ perceived levels of availability of, the functionality of, and satisfaction with facilities across Local Government Areas. The study shows that levels of both availability of, and satisfaction with infrastructural facilities are low with respective overall FAI (0.8) and RSI (0.05), while the functionality of the facilities is generally very poor IFFI = - 0.58). Strategies were proposed to enhance the good, livable, and healthy environment.

Keywords: infrastructural facilities, infrastructural perception index, residents’ satisfaction, urban fringe of Ibadan

Procedia PDF Downloads 225
2754 Validity and Reliability of the Iranian Version of the Self-Expansion Questionnaire

Authors: Mehravar Javid, James Sexton, Farzaneh Amani, Kainaz Patravala

Abstract:

Self-expansion is a procedure through which people expand the dimensions of their self-concept by incorporating novel content into their sense and experience of identity. Greater self-expansion predicts positive consequences for individuals and romantic relationships. The self-expansion questionnaire (SEQ) originally developed by Lewandowski & Aron (2002) assumes that self-expansion is constituted of key components from the self-expansion model. This study aimed to confirm the factor structure of SEQ and adapt the questions of the scale to the Iranian culture. The sample included 190 participants who responded to 14 items and were selected by simple random sampling. Using Amos-21 and SPSS-21, descriptive statistics, Pearson correlation and Confirmatory Factor Analysis (CFA) were calculated. Cronbach’s alpha coefficient for total SEQ items was 0.92. Results of CFA supported the factor structure SEQ [RMSEA=0.08, GFI=0.88 and CFI=0.92] that showed the model has a good fit and also all the items of SEQ, have a high correlation and have a direct and significant relationship. So, the SEQ demonstrated acceptable psychometric properties in Tehran University students. Looking forward, it would be interesting and exciting to see the implications of the scale as applied to romantic relationships.

Keywords: validity, reliability, confirmatory factor analysis, self-expansion questionnaire

Procedia PDF Downloads 84
2753 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 58
2752 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 354
2751 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 262
2750 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 439
2749 Drying of Agro-Industrial Wastes Using a Cabinet Type Solar Dryer

Authors: N. Metidji, O. Badaoui, A. Djebli, H. Bendjebbas, R. Sellami

Abstract:

The agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipment Development. Direct solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of pepper, by using a direct natural convection solar dryer at 35◦C and 55◦C. The rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely peppers waste.

Keywords: solar energy, solar dryer, energy conversion, pepper drying, forced convection solar dryer

Procedia PDF Downloads 412
2748 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 169
2747 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 332
2746 Association of Geomagnetic Storms with Coronal Mass Ejections during 1997-2012

Authors: O. P. Tripathi, P. L. Verma

Abstract:

Coronal Mass Ejections (CMEs) are mostly reached on Earth from 1 to 5 days from the Sun. As a consequence, slow CMEs are accelerated toward the speed of solar wind and fast CMEs are decelerated toward the speed of the solar wind. Coronal mass ejections (CMEs) are bursts of solar material i.e. clouds of plasma and magnetic fields that shoot off the sun’s surface. Other solar events include solar wind streams that come from the coronal holes on the Sun and solar energetic particles that are primarily released by CMEs. We have studied geomagnetic storms (DST ≤ - 80nT) during 1997-2012 with halo and partial halo coronal mass ejections and found that 73.28% CMEs (halo and partial halo coronal mass ejections) are associated with geomagnetic storms. The association rate of halo and partial halo coronal mass ejections are found 67.06% and 32.94% with geomagnetic storms respectively. We have also determined positive co-relation between magnitude of geomagnetic storms and speed of coronal mass ejection with correlation co-efficient 0.23.

Keywords: geomagnetic storms, coronal mass ejections (CMEs), disturbance storm time (Dst), interplanetary magnetic field (IMF)

Procedia PDF Downloads 506
2745 A Randomized, Controlled Trial To Test Behavior Change Techniques (BCTS) To Improve Low Intensity Physical Activity In Older Adults

Authors: Ciaran Friel, Jerry Suls, Patrick Robles, Frank Vicari, Joan Duer-Hefele, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant response. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit Charge 4 fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7, but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by the Fitbit for two weeks. Participants then engaged with a clinical research coordinator to review comprehension of the text message content and required actions for each of the BCTs to be tested. Participants then selected a consistent daily time in which they would receive their text message prompt. In the 8 week intervention phase of the study, participants received each of the four BCTs, in random order, for a two week period. Text message prompts were delivered daily at a time selected by the participant. All prompts required an interactive response from participants and may have included recording their detailed plan for walking or daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves with peers (self-monitoring, feedback). At the end of each two week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. Analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design, and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, 5 days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 131
2744 The Links between Cardiovascular Risk and Psychological Wellbeing in Elderly

Authors: Laura Sapranaviciute-Zabazlajeva, Abdonas Tamosiunas, Dalia Luksiene, Dalia Virviciute

Abstract:

The cardiovascular diseases (CVD) is the leading cause of death in the EU, especially in the middle aged and elderly population. Psychological wellbeing (PWB) has been linked with better cardiovascular health and survival in the elderly. The aim of the study is to evaluate associations between CVD risk and PWB in middle-aged and elderly population. 10,940 middle aged and older Lithuanians of age 45-74 years, were invited to participate in the study. A study sample was a random and stratified by gender and age. In 2006-2008 7,087 responders participated in the survey, so the response rate was 64.8%. A follow-up study was conducted from 2006 till 2015. New CVD cases and deaths from CVD were evaluated using the Kaunas population-based CVD register and death register of Kaunas. Study results revealed that good PWB predicts longer life in female participants (Log Rank = 13.7, p < 0.001). In the fully adjusted model for socio-demographic, social and CVD risk factors, hazard ratio for CVD mortality risk was lower amongst women with good PWB (HR = 0.28, 95% CI 0.11-0.72), but not significantly for men. Our study concludes, that lower CVD mortality rates is being associated with better PWB in female aged 45-74 years.

Keywords: psychological well-being, cardiovascular disease, elderly, survival

Procedia PDF Downloads 363
2743 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 263
2742 The Comparison of Depression Level of Male Athlete Students with Non-Athlete Students

Authors: Seyed Hossein Alavi, Farshad Ghazalian, Soghra Jamshidi

Abstract:

The present study was done with the purpose of considering mental health and general purpose of describing and comparing depression level of athlete and non-athlete male students educational year of 2012 Research method in this study in proportion to the selective title, descriptive method is causative – comparative. Research samples were selected randomly from B.A students of different fields including 500 students. Average mean of research samples was between 20 to 25 years. Data collection tool is questionnaire of depression measurement of Aroun Beck (B.D.I) that analyzes and measures 21 aspects of depression in 6 ranges. Operation related to analysis of statistical data to extraction of results was done by SPSS software. To extraction of research obtained by comparison of depression level mean, show that the hypothesis of the research (H_1) based on the existence of the significance scientific difference was supported and showed that there’s a significance difference between depression level of athlete male students in comparison with depression level of non-athlete male students. Thus, depression level of athlete male students was lower in comparison with depression level of non-athlete male students.

Keywords: depression, athlete students, non-athlete students

Procedia PDF Downloads 481
2741 Language and Study Skill Needs: A Case Study of ESP Learners at the Language Centre of Sultan Qaboos University, Oman

Authors: Ahmed Mohamed Al-Abdali

Abstract:

Providing English for Specific Purposes (ESP) courses that are more closely geared to the learners’ needs and requirements in their fields of study undoubtedly enhance learners’ interest and success in a highly academic environment. While needs analysis is crucial to the success of ESP courses, it has not received sufficient attention from researchers in the Arab world. Oman is no exception from the Arab countries as this fact is realised in the ESP practices in the Omani higher educational context. This presentation, however, discusses the perceptions of the Language Centre (LC) students at Sultan Qaboos University (SQU), Oman, in relation to the requirements of their science colleges. The discussion of the presentation will be based on a mixed-method-approach study, which included semi-structured interviews, questionnaires and document analyses. These mixed methods have allowed for closer investigation of the participants' views, backgrounds and experiences. It is hoped that the findings of this study will be used to recommend changes to the ESP curriculum in the LC of SQU so that it better meets the needs of its students and requirements of the science colleges.

Keywords: curriculum, ESP, ELT, needs analysis, college requirements

Procedia PDF Downloads 324
2740 Retrospective Casenote Audit of Venous Thromboembolism Prophylaxis in Maxillofacial Patients

Authors: Joshua Abraham, Craig Wales

Abstract:

Abstract—SIGN Guideline 122 recommends that all patients who are admitted to hospital are assessed for venous thromboembolism risk within 24 hours of admission. NHS Greater Glasgow and Clyde provide guidance on this in the form of a proforma. Patients are then subsequently prescribed either thrombo-embolic-deterrent stockings (TEDS)/low molecular weight heparin (LMWH) for the prevention of VTE based on their score. A retrospective casenote audit of a random sample of fifty oncology and trauma inpatients at the QEUH in December 2019 was performed. 90% of patients had a risk assessment conducted as evidenced by a completed proforma. In 78% of these patients, the proforma fully completed. Overall 94% of patients had some for of thromboprophylaxis prescribed in the form of TEDS or LMWH. A lack of 100% compliance against the given standards highlighted potential implications for patient safety, but also medico-legal ramifications for staff. Clinical judgement can only be relied upon if there is written documentation as evidence. Further staff education and the suggestion of a written prompt to the clerk-in documentation will hopefully improve compliance, whilst a repeat audit should demonstrate any improvement.

Keywords: Maxillofacial , Thromboembolism, Thromboprophylaxis , Prescription

Procedia PDF Downloads 160
2739 Factors Related to Protective Behavior on Indoor Pollution among Pregnant Women in Nakhon Pathom Province, Thailand

Authors: Yuri Teraoka, Cheerawit Rattanapan, Aroonsri Mongkolchati

Abstract:

This cross sectional analytic study was carried out to determine factors related to protective behavior on indoor pollution among pregnant women in Nakhon Pathom province, Thailand. A total of 319 pregnant women were enrolled at three antenatal care clinics in community hospital. Data were collected using simple random sampling from April 2015 to May 2015 using a structured self-administration questionnaire by well-trained research assistants. The result showed that around 73% pregnant women showed low level of low protective behavior on indoor pollution. Chi-square and multiple logistic regression were used to examine the factors and protective behavior on indoor pollution. After adjusting for confounding factors, this study found that tobacco smoking before pregnancy (AOR=2.15, 95% CI: 0.78-5.95) and low environmental health hazard (AOR=1.94, 95% CI: 1.09-3.49) were significant factors related to protective behavior on indoor pollution among pregnant women (p-value < 0.05). In conclusion, this study suggested that environmental health education campaign and environmental implementation program among pregnant woman are needed.

Keywords: Thailand, environmental health, protective behavior, pregnant women

Procedia PDF Downloads 367
2738 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images

Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim

Abstract:

In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.

Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles

Procedia PDF Downloads 261
2737 Inadequacy of Macronutrient and Micronutrient Intake in Children Aged 12-23 Months Old: An Urban Study in Central Jakarta, Indonesia

Authors: Dewi Fatmaningrum, Ade Wiradnyani

Abstract:

Background: Optimal feeding, include optimal micronutrient intake, becomes one of the ways to overcome the long-term consequences of undernutrition. Macronutrient and micronutrient intake were important for rapid growth and development of the children. Objectives: To assess macro and micronutrient intake of children aged 12-23 months old and nutrients inadequacy from intake of children aged 12-23 months old. Methods: This survey was a cross-sectional study, simple random sampling was performed to select respondents. Total sample of this study was 83 children aged 12-23 months old in Paseban Village, Senen Sub-district, Central Jakarta. The data was collected via interview and hemoglobin measurement of children. Results: The highest prevalence of inadequacy was iron intake (52.4%) compared to other micronutrients, 11.98% children had inadequate energy intake. There were 62.6% anemic children in the study area in which divided into anemic (37.3%) and severe anemic (25.3%). Conclusion: Micronutrient inadequacy occurred more frequently than macronutrient inadequacy in the study area. The higher the percentage of iron inadequacy gets, the higher the percentage of anemia among children is observed.

Keywords: micronutrient, macronutrient, children under five, urban setting

Procedia PDF Downloads 340
2736 Virulence Genes of Salmonella typhimurium and Salmonella enteritidis Isolated from Milk and Dairy Products

Authors: E. Rahimi, S. Shaigannia

Abstract:

Salmonella typhimurium and Salmonella enteritidis are important infectious agents causing food poisoning and food-borne gastrointestinal diseases. This study was carried out in order to investigate the distribution of virulence genes and antimicrobial resistance properties of S. typhimurium and S. enteritidis isolated from ruminant milk and dairy products in Iran. Overall 360 raw and pasteurized milk and traditional and commercial dairy products were purchased from random selected supermarkets and retail stories of Isfahan province, Iran. Samples were cultured immediately and those found positive for Salmonella were analyzed for the presence of S. typhimurium, S. enteritidis and several putative genes using PCR. Totally, 13 (3.61%), 8 (2.22%), 1 (0.27%) and 4 (1.11%) samples were found to be contaminated with Salmonella spp., S. typhimurium, S. enteritidis and other species of Salmonella, respectively. PCR results showed that invA, rfbJ, fliC and spv were the detected virulence genes in S. typhimurium and S. enteritidis positive samples. To the authors’ knowledge, the present study is the first prevalence report of virulence genes of S. typhimurium and S. enteritidis isolated from ruminant milk and traditional and commercial dairy products in Iran.

Keywords: Salmonella typhimurium, Salmonella enteritidis, virulence genes, ruminant milk, dairy products

Procedia PDF Downloads 649
2735 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 469
2734 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 389
2733 Clinical Training Simulation Experience of Medical Sector Students

Authors: Tahsien Mohamed Okasha

Abstract:

Simulation is one of the emerging educational strategies that depend on the creation of scenarios to imitate what could happen in real life. At the time of COVID, we faced big obstacles in medical education, specially the clinical part and how we could apply it, the simulation was the golden key. Simulation is a very important tool of education for medical sector students, through creating a safe, changeable, quiet environment with less anxiety level for students to practice and to have repeated trials on their competencies. That impacts the level of practice, achievement, and the way of acting in real situations and experiences. A blind Random sample of students from different specialties and colleges who came and finished their training in an integrated environment was collected and tested, and the responses were graded from (1-5). The results revealed that 77% of the studied subjects agreed that dealing and interacting with different medical sector candidates in the same place was beneficial. 77% of the studied subjects agreed that simulations were challenging in thinking and decision-making skills .75% agreed that using high-fidelity manikins was helpful. 75% agree .76% agreed that working in a safe, prepared environment is helpful for realistic situations.

Keywords: simulation, clinical training, education, medical sector students

Procedia PDF Downloads 33
2732 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 94