Search results for: porous particles
797 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens
Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa
Abstract:
Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens
Procedia PDF Downloads 311796 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects
Authors: Okuyade Ighoroje Wilson Ata
Abstract:
Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel
Procedia PDF Downloads 77795 Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions
Authors: M. A. Hasnat, M. Amirul Islam, M. A. Rashed, Jamil. Safwan, M. Mahabubul Alam
Abstract:
Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions.Keywords: membrane, nitrate, electrocatalysis, voltammetry, electrolysis
Procedia PDF Downloads 268794 Characterization of White Spot Lesion Using Focused Ion Beam - Scanning Electron Microscopy
Authors: Malihe Moeinin, Robert Hill, Ferranti Wong
Abstract:
Background: A white spot lesion (WSL) is defined as subsurface enamel porosity from carious demineralisation on the smooth surfaces of the tooth. It appears as a milky white opacity. Lesions shown an apparently intact surface layer, followed underneath by the more porous lesion body. The small pores within the body of the lesion act as diffusion pathway for both acids and minerals, so allowing the demineralisation of enamel to occur at the advancing front of the lesion. Objectives: The objective is to mapthe porosity and its size on WSL with Focused Ion Bean- Scanning Electron Microscopy (FIB-SEM) Method: The basic method used for FIB-SEM consisted of depositing a one micron thick layer of platinum over 25μmx 25μm of the interest region of enamel. Then, making a rough cut (25μmx 5μmx 20μm) with 3nA current and 30Kv was applied with the help of drift suppression (DS), using a standard “cross-sectional” cutting pattern, which ended at the front of the deposited platinum layer. Two adjacent areas (25μmx 5μmx 20μm) on the both sides of the platinum layer were milled under the same conditions. Subsequent, cleaning cross-sections were applied to polish the sub-surface edge of interest running perpendicular to the surface. The "slice and view" was carried out overnight for milling almost 700 slices with 2Kv and 4nA and taking backscattered (BS) images. Then, images were imported into imageJ and analysed. Results: The prism structure is clearly apparent on FIB-SEM slices of WSL with the dissolution of prism boundaries as well as internal porosity within the prism itself. Porosity scales roughly 100-400nm, which is comparable to the light wavelength (500nm). Conclusion: FIB-SEM is useful to characterize the porosity of WSL and it clearly shows the difference between WSL and normal enamel.Keywords: white spot lesion, FIB-SEM, enamel porosity, porosity
Procedia PDF Downloads 94793 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber
Authors: Stanislav Perepechko
Abstract:
Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.Keywords: waste-free air filtration, concrete, basalt fiber, building automation
Procedia PDF Downloads 428792 Preparation and Characterization of Diclofenac Sodium Loaded Solid Lipid Nanoparticle
Authors: Oktavia Eka Puspita
Abstract:
The possibility of using Solid Lipid Nanoparticles (SLN) for topical use is an interesting feature concerning this system has occlusive properties on the skin surface therefore enhance the penetration of drugs through the stratum corneum by increased hydration. This advantage can be used to enhance the drug penetration of topical delivery such as Diclofenac sodium for the relief of signs and symptoms of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. The purpose of this study was focused on the preparation and physical characterization of Diclofenac sodium loaded SLN (D-SLN). D loaded SLN were prepared by hot homogenization followed by ultrasonication technique. Since the occlusion factor of SLN is related to its particle size the formulation of D-SLN in present study two formulations different in its surfactant contents were prepared to investigate the difference of the particle size resulted. Surfactants selected for preparation of formulation A (FA) were lecithin soya and Tween 80 whereas formulation B (FB) were lecithin soya, Tween 80, and Sodium Lauryl Sulphate. D-SLN were characterized for particle size and distribution, polydispersity index (PI), zeta potential using Beckman-Coulter Delsa™ Nano. Overall, the particle size obtained from FA was larger than FB. FA has 90% of the particles were above 1000 nm, while FB has 90% were below 100 nm.Keywords: solid lipid nanoparticles, hot homogenization technique, particle size analysis, topical administration
Procedia PDF Downloads 500791 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry
Authors: Balraju Vadlakonda, Narasimha Mangadoddy
Abstract:
The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy
Procedia PDF Downloads 510790 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix
Authors: Kotchamon Yodkhum, Thawatchai Phaechamud
Abstract:
Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.Keywords: chitosan, aluminum monostearate, dispersion, controlled-release
Procedia PDF Downloads 394789 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon
Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagöz
Abstract:
Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.Keywords: Silver nanoparticles, ligand, activated carbon, adsorption
Procedia PDF Downloads 329788 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation
Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely
Abstract:
Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations
Procedia PDF Downloads 92787 Chromatographic Preparation and Performance on Zinc Ion Imprinted Monolithic Column and Its Adsorption Property
Authors: X. Han, S. Duan, C. Liu, C. Zhou, W. Zhu, L. Kong
Abstract:
The ionic imprinting technique refers to the three-dimensional rigid structure with the fixed pore sizes, which was formed by the binding interactions of ions and functional monomers and used ions as the template, it has a high level of recognition to the ionic template. The preparation of monolithic column by the in-situ polymerization need to put the compound of template, functional monomers, cross-linking agent and initiating agent into the solution, dissolve it and inject to the column tube, and then the compound will have a polymerization reaction at a certain temperature, after the synthetic reaction, we washed out the unread template and solution. The monolithic columns are easy to prepare, low consumption and cost-effective with fast mass transfer, besides, they have many chemical functions. But the monolithic columns have some problems in the practical application, such as low-efficiency, quantitative analysis cannot be performed accurately because of the peak shape is wide and has tailing phenomena; the choice of polymerization systems is limited and the lack of theoretical foundations. Thus the optimization of components and preparation methods is an important research direction. During the preparation of ionic imprinted monolithic columns, pore-forming agent can make the polymer generate the porous structure, which can influence the physical properties of polymer, what’ s more, it can directly decide the stability and selectivity of polymerization reaction. The compounds generated in the pre-polymerization reaction could directly decide the identification and screening capabilities of imprinted polymer; thus the choice of pore-forming agent is quite critical in the preparation of imprinted monolithic columns. This article mainly focuses on the research that when using different pore-forming agents, the impact of zinc ion imprinted monolithic column on the enrichment performance of zinc ion.Keywords: high performance liquid chromatography (HPLC), ionic imprinting, monolithic column, pore-forming agent
Procedia PDF Downloads 214786 Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri
Authors: Doris Fovwe Ogeleka, L. E. Tudararo-Aherobo, F. E. Okieimen
Abstract:
The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters.Keywords: crude oil, PAHs, TPH, oil spillage, water, sediment
Procedia PDF Downloads 287785 Pre-Service Teachers’ Conceptual Representations of Heat and Temperature
Authors: Abdeljalil Métioui
Abstract:
The purpose of this paper is to present the results of research on the conceptual representations of 128 Quebec (Canada) pre-service teachers enrolled in their third year of university in a program to train elementary teachers about heat and temperature. To identify their conceptual representations about heat and temperature, we constructed a multiple-choice questionnaire consisting of five questions. For each question, they had to explain their choice of an answer. At the methodological level, this step is essential to be able to identify the student conceptual representations. It should be noted that the selected questions were based: (1) on the works have done worldwide on primary and secondary students’ misconceptions about heat and temperature; (2) on the notions prescribed in the curriculum related to the physical world and (3) on student’s everyday contexts. As illustrations, the following are the erroneous conceptual representations identified in our analysis of the data collected: (1) The change of state of the matter does not require a constant temperature, (2) The temperature is a measure in degrees to indicate the level of heat of an object or person, (3) The mercury contained in a thermometer expands when it is heated so that the particles which constitute it expand and (4) The sensation of cold (or warm) is related to the difference in temperature. In conclusion, we will see that it is possible to develop situations of conflict, dealing specifically with the limits of the analogy between heat and temperature. These situations must consider the conceptual representations of the pre-service teachers, as well as the relevant scientific understanding of the concept of heat and temperature.Keywords: conceptual representation, heat, temperature, pre-service teachers
Procedia PDF Downloads 132784 Identification of the Microalgae Species in a Wild Mix Culture Acclimated to Landfill Leachate and Ammonia Removal Performances in a Microbubble Assisted Photobioreactor
Authors: Neslihan Ozman Say, Jim Gilmour, Pratik Desai, William Zimmerman
Abstract:
Landfill leachate treatment has been attracting researchers recently for various environmental and economical reasons. Leachate discharge to receiving waterbodies without treatment causes serious detrimental effects including partial oxygen depletion due to high biological oxygen demand (BOD) and chemical oxygen demand (COD) concentrations besides toxicity of heavy metals it contains and high ammonia concentrations. In this study, it is aimed to show microalgal ammonia removal performances of a wild microalgae consortia as an alternative treatment method and determine the dominant leachate tolerant species for this consortia. For the microalgae species identification experiments a microalgal consortium which has been isolated from a local pond in Sheffield inoculated in %5 diluted raw landfill leachate and acclimated to the leachate by batch feeding for a month. In order to determine the most tolerant microalgal consortium, four different untreated landfill leachate samples have been used as diluted in four different ratios as 5%, 10%, 20%, and 40%. Microalgae cell samples have been collected from all experiment sets and have been examined by using 18S rDNA sequencing and specialised gel electrophoresis which are adapted molecular biodiversity methods. The best leachate tolerant algal consortium is being used in order to determine ammonia removal performances of the culture in a microbubble assisted photobioreactor (PBR). A porous microbubble diffuser which is supported by a fluidic oscillator is being used for dosing CO₂ and air mixture in the PBR. It is known that high mass transfer performance of microbubble technology provides a better removal efficiency and a better mixing in the photobioreactor. Ammonia concentrations and microalgal growth are being monitored for PBR currently. It is aimed to present all the results of the study in final paper submission.Keywords: ammonia removal from leachate, landfill leachate treatment, microalgae species identification, microbubble assisted photobioreactors
Procedia PDF Downloads 160783 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement
Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen
Abstract:
Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening
Procedia PDF Downloads 115782 Active Space Debris Removal by Extreme Ultraviolet Radiation
Authors: A. Anandha Selvan, B. Malarvizhi
Abstract:
In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere
Procedia PDF Downloads 462781 Physics of Black Holes. A Closed Cycle of Transformation of Matter in the Universe
Authors: Igor V. Kuzminov
Abstract:
The proposed article is a development of the topics of gravity, the inverse temperature dependence of gravity, the action of the inverse temperature dependence of gravity, and the second law of thermodynamics, dark matter, the identity of gravity, inertial forces, and centrifugal forces. All interaction schemes are built on the basis of Newton's laws of classical mechanics and Rutherford's planetary model of the structure of the atom. The basis of all constructions is the gyroscopic effect of rotation of all particles of the atomic structure. In this case, interatomic and intermolecular bonds are accepted as the static part of the gyroscope, and the rotation of an electron in an atom is accepted as the dynamic part. The structure of the planet Earth is accepted as a model of the structure of the Black Hole. Namely, gravitational and thermodynamic phenomena in the structure of the planet Earth are accepted as a model. Based on this model, assumptions are made about the processes inside the Black Hole. Moreover, a version is put forward, a scheme of a closed cycle of transformation of matter in the Universe.Keywords: black hole, gravity, inverse temperature dependence of gravitational forces, second law of thermodynamics, gyroscopic effect, dark matter
Procedia PDF Downloads 26780 Electron Microscopical Analysis of Arterial Line Filters During Cardiopulmonary Bypass
Authors: Won-Gon Kim
Abstract:
Introduction: The clinical value of arterial line filters is still a controversial issue. Proponents of arterial line filtration argue that filters remove particulate matter and undissolved gas from circulation, while opponents argue the absence of conclusive clinical data. We conducted scanning electron microscope (SEM) studies of arterial line filters used clinically in the CPB circuits during adult cardiac surgery and analyzed the types and characteristics of materials entrapped in the arterial line filters. Material and Methods: Twelve arterial line filters were obtained during routine hypothermic cardiopulmonary bypass in 12 adult cardiac patients. The arterial line filter was a screen type with a pore size of 40 ㎛ (Baxter Health care corporation Bentley division, Irvine, CA, U.S.A.). After opening the housing, the woven polyester strands were examined with SEM. Results and Conclusion: All segments examined(120 segments, each 2.5 X 2.5 cm in size) contained no embolic particles larger in their cross-sectional area than the pore size of the filter(40 ㎛). The origins of embolic particulates were mostly from environmental foreign bodies. This may suggest a possible need for more aggressive filtration of smaller particulates than is generally carried out at the present time.Keywords: arterial line filter, tubing wear, scanning electron microscopy, SEM
Procedia PDF Downloads 448779 High and Low Salinity Polymer in Omani Oil Field
Authors: Intisar Al Busaidi, Rashid Al Maamari, Daowoud Al Mahroqi, Mahvash Karimi
Abstract:
In recent years, some research studies have been performed on the hybrid application of polymer and low salinity water flooding (LSWF). Numerous technical and economic benefits of low salinity polymer flooding (LSPF) have been reported. However, as with any EOR technology, there are various risks involved in using LSPF. Ions exchange between porous media and brine is one of the Crude oil/ brine/ rocks (COBR) reactions that is identified as a potential risk in LSPF. To the best of our knowledge, this conclusion was drawn based on bulk rheology measurements, and no explanation was provided on how water chemistry changed in the presence of polymer. Therefore, this study aimed to understand rock/ brine interactions with high and low salinity brine in the absence and presence of polymer with Omani reservoir core plugs. Many single-core flooding experiments were performed with low and high salinity polymer solutions to investigate the influence of partially hydrolyzed polyacrylic amide with different brine salinities on cation exchange reactions. Ion chromatography (IC), total organic carbon (TOC), rheological, and pH measurements were conducted for produced aqueous phase. A higher increase in pH and lower polymer adsorption was observed in LSPF compared with conventional polymer flooding. In addition, IC measurements showed that all produced fluids in the absence and presence of polymer showed elevated Ca²⁺, Mg²⁺, K+, Cl- and SO₄²⁻ ions compared to the injected fluids. However, the divalent cations levels, mainly Ca²⁺, were the highest and remained elevated for several pore volumes in the presence of LSP. The results are in line with rheological measurements where the highest viscosity reduction was recorded with the highest level of Ca²⁺ production. Despite the viscosity loss due to cation exchange reactions, LSP can be an attractive alternative to conventional polymer flooding in the Marmul field.Keywords: polymer, ions, exchange, recovery, low salinity
Procedia PDF Downloads 114778 Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery
Authors: C. Mendoza Ramírez, M. Gambús Ordaz, R. Mercado Ojeda.
Abstract:
Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m.Keywords: anionic–nonionic surfactants, clay rock, adsorption, 4-region isotherm model, cation exchange capacity, critical micelle concentration, enhanced oil recovery
Procedia PDF Downloads 70777 Theoretical Approach to Kinetic of Heat Transfer under Irradiation
Authors: Pavlo Selyshchev
Abstract:
A theoretical approach to describe kinetic of heat transfer between an irradiated sample and environment is developed via formalism of the Complex systems and kinetic equations. The irradiated material is a metastable system with non-linear feedbacks, which can give rise to different regimes of buildup and annealing of radiation-induced defects, heating and heat transfer with environment. Irradiation with energetic particles heats the sample and produces defects of the crystal lattice of the sample. The crystal with defects accumulates extra (non-thermal) energy, which is transformed into heat during the defect annealing. Any increase of temperature leads to acceleration of defect annealing, to additional transformation of non-thermal energy into heat and to further growth of the temperature. Thus a non-linear feedback is formed. It is shown that at certain conditions of irradiation this non-linear feedback leads to self-oscillations of the defect density, the temperature of the irradiated sample and the heat transfer between the sample and environment. Simulation and analysis of these phenomena is performed. The frequency of the self-oscillations is obtained. It is determined that the period of the self-oscillations is varied from minutes to several hours depending on conditions of irradiation and properties of the sample. Obtaining results are compared with experimental ones.Keywords: irradiation, heat transfer, non-linear feed-back, self-oscillations
Procedia PDF Downloads 231776 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels
Authors: O. Altuntaş, A. Güral
Abstract:
The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.Keywords: powder metallurgy steel, bainite, cementite, austempering and spheroidization heat treatment
Procedia PDF Downloads 161775 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies
Authors: Amira Abdelrasoul
Abstract:
This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.Keywords: biomimetic, membrane, synchrotron, permeability, morphology
Procedia PDF Downloads 102774 On Unification of the Electromagnetic, Strong and Weak Interactions
Authors: Hassan Youssef Mohamed
Abstract:
In this paper, we show new wave equations, and by using the equations, we concluded that the strong force and the weak force are not fundamental, but they are quantum effects for electromagnetism. This result is different from the current scientific understanding about strong and weak interactions at all. So, we introduce three evidences for our theory. First, we prove the asymptotic freedom phenomenon in the strong force by using our model. Second, we derive the nuclear shell model as an approximation of our model. Third, we prove that the leptons do not participate in the strong interactions, and we prove the short ranges of weak and strong interactions. So, our model is consistent with the current understanding of physics. Finally, we introduce the electron-positron model as the basic ingredients for protons, neutrons, and all matters, so we can study all particles interactions and nuclear interaction as many-body problems of electrons and positrons. Also, we prove the violation of parity conservation in weak interaction as evidence of our theory in the weak interaction. Also, we calculate the average of the binding energy per nucleon.Keywords: new wave equations, the strong force, the grand unification theory, hydrogen atom, weak force, the nuclear shell model, the asymptotic freedom, electron-positron model, the violation of parity conservation, the binding energy
Procedia PDF Downloads 185773 Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows
Authors: Sajjad ur Rahman, Mariam Azam, Mukarram Bashir, Seemal Javaid, Aoun Muhammad, Muhammad Tahir, Jawad, Hannan Khan, Muhammad Zohaib
Abstract:
Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%.Keywords: microbial metabolites, Saccharomyces cerevisiae, milk production, fermentation, post-biotic metabolites, immunity
Procedia PDF Downloads 93772 Modification of Polyurethane Adhesive for OSB/EPS Panel Production
Authors: Stepan Hysek, Premysl Sedivka, Petra Gajdacova
Abstract:
Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production.Keywords: adhesive, polyurethane, recyclate, SIP
Procedia PDF Downloads 275771 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles
Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad
Abstract:
Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness
Procedia PDF Downloads 240770 Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework
Authors: Boce Zhang, Yaguang Luo
Abstract:
Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain.Keywords: climacteric produce, controllable ripening, food waste challenge, metal organic framework
Procedia PDF Downloads 247769 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification
Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi
Abstract:
Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.Keywords: chitosan, gelatin, superabsorbent, water absorbency
Procedia PDF Downloads 464768 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning
Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park
Abstract:
A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions
Procedia PDF Downloads 440