Search results for: phytochemical absorption prediction model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19396

Search results for: phytochemical absorption prediction model

17836 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 250
17835 An Electrochemical Study on Ethanol Oxidation with Pt/Pd Composite Electrodes in Sodium Hydroxide Solution

Authors: Yu-Chen Luo, Wan-Tzu Yen, I-Ping Liu, Po-Hsuan Yeh, Yuh-Lang Lee

Abstract:

The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt catalytic layers on the Pd film-coated FTO substrates. According to the SEIRAS spectra, the carbon dioxide signal of the Pt/Pd composite electrode is larger than that of the Pt one, whereas the CO signal of the composite electrode is relatively smaller. This result suggests that the studied Pt/Pd electrode has a better ability against CO poisoning. The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53 and 2.07 for the Pt and Pt/Pd electrodes, respectively, which is possibly attributed to the increasing ability of CO adsorption of Pt electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance in the alkaline system than the Pt does. Furthermore, its stability is also superior.

Keywords: cyclic voltammogram, electroless deposition, ethanol electro-oxidation, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 117
17834 Effect of Inclusion of Rubber on the Compaction Characteristics of Cement - MSWIFA- Clayey Soil Mixtures

Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf

Abstract:

The aim of this study is to show the effect of adding cement municipal solid incineration fly ash and rubber as stabilizer materials on weak soil. A detailed experimental study was conducted in order to show the viability of using these admixtures in improving the maximum dry density and optimum moisture content of the composite soil. Soil samples were prepared by adding Rubber and Cement to municipal solid waste incineration fly-ash - oil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. Three different percentages of fly ash (10%, 20%, and 30%) MSWFA by total dry weight of soil and three different percentages of Portland cement (10%, 15%, and 20%) by total dry weight of the mix and 0%, 5%, 10% for Rubber by total dry weight of the mix were used to find the optimum value. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeded 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that adding Rubber to the mix Soil-MSWIFA-Cement decreases its MDD due to the low specific gravity of rubber and it affects a slight decrease in OMC because the rubber has low absorption of water.

Keywords: clayey soil, MSWIFA, proctor test, rubber

Procedia PDF Downloads 114
17833 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 502
17832 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 340
17831 Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses

Authors: Mahamuda Sk, Srinivasa Rao Allam, Vijaya Prakash G.

Abstract:

The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser.

Keywords: Europium, Judd-Ofelt parameters, laser, luminescence

Procedia PDF Downloads 239
17830 A Framework for Consumer Selection on Travel Destinations

Authors: J. Rhodes, V. Cheng, P. Lok

Abstract:

The aim of this study is to develop a parsimonious model that explains the effect of different stimulus on a tourist’s intention to visit a new destination. The model consists of destination trust and interest as the mediating variables. The model was tested using two different types of stimulus; both studies empirically supported the proposed model. Furthermore, the first study revealed that advertising has a stronger effect than positive online reviews. The second study found that the peripheral route of the elaboration likelihood model has a stronger influence power than the central route in this context.

Keywords: advertising, electronic word-of-mouth, elaboration likelihood model, intention to visit, trust

Procedia PDF Downloads 457
17829 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 119
17828 A Combined AHP-GP Model for Selecting Knowledge Management Tool

Authors: Ahmad Sarfaraz, Raiyad Herwies

Abstract:

In this paper, a multi-criteria decision making analysis is used to help any organization selects the best KM tool that fits and serves its needs. The AHP model is used based on a previous study to highlight and identify the main criteria and sub-criteria that are incorporated in the selection process. Different KM tools alternatives with different criteria are compared and weighted accurately to be incorporated in the GP model. The main goal is to combine the GP model with the AHP model to ensure that selecting the KM tool considers the resource constraints. Two important issues are discussed in this paper: how different factors could be taken into consideration in forming the AHP model, and how to incorporate the AHP results into the GP model for better results.

Keywords: knowledge management, analytical hierarchy process, goal programming, multi-criteria decision making

Procedia PDF Downloads 383
17827 Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications

Authors: Manel Bouloudenine, Karima Djeddou, Hadjer Ben Manser, Hana Soualah Alila, Mohmed Bououdina

Abstract:

This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones.

Keywords: silvers nanoparticles, microwaves, EDS, TEM

Procedia PDF Downloads 145
17826 Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient

Authors: Piyarat Parklug, Busaba Supawattanaobodee, Penpat Pinyowattanasilp

Abstract:

The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation.

Keywords: equation, Graves’disease, prediction, 24-hour uptake

Procedia PDF Downloads 137
17825 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
17824 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway

Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih

Abstract:

Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.

Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi

Procedia PDF Downloads 85
17823 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 352
17822 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 260
17821 An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm

Authors: Lihua Zhu, Jianfeng Du, Yu Wang, Zhiqiang Wu

Abstract:

Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach.

Keywords: UAV swarm, collision avoidance, complex environment, online priority design

Procedia PDF Downloads 212
17820 Acetic Acid Adsorption and Decomposition on Pt(111): Comparisons to Ni(111)

Authors: Lotanna Ezeonu, Jason P. Robbins, Ziyu Tang, Xiaofang Yang, Bruce E. Koel, Simon G. Podkolzin

Abstract:

The interaction of organic molecules with metal surfaces is of interest in numerous technological applications, such as catalysis, bone replacement, and biosensors. Acetic acid is one of the main products of bio-oils produced from the pyrolysis of hemicellulosic feedstocks. However, their high oxygen content makes them unsuitable for use as fuels. Hydrodeoxygenation is a proven technique for catalytic deoxygenation of bio-oils. An understanding of the energetics and control of the bond-breaking sequences of biomass-derived oxygenates on metal surfaces will enable a guided optimization of existing catalysts and the development of more active/selective processes for biomass transformations to fuels. Such investigations have been carried out with the aid of ultrahigh vacuum and its concomitant techniques. The high catalytic activity of platinum in biomass-derived oxygenate transformations has sparked a lot of interest. We herein exploit infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption(TPD), and density functional theory(DFT) to study the adsorption and decomposition of acetic acid on a Pt(111) surface, which was then compared with Ni(111), a model non-noble metal. We found that acetic acid adsorbs molecularly on the Pt(111) surface, interacting through the lone pair of electrons of one oxygen atomat 90 K. At 140 K, the molecular form is still predominant, with some dissociative adsorption (in the form of acetate and hydrogen). Annealing to 193 K led to complete dehydrogenation of molecular acetic acid species leaving adsorbed acetate. At 440 K, decomposition of the acetate species occurs via decarbonylation and decarboxylation as evidenced by desorption peaks for H₂,CO, CO₂ and CHX fragments (x=1, 2) in theTPD.The assignments for the experimental IR peaks were made using visualization of the DFT-calculated vibrational modes. The results showed that acetate adsorbs in a bridged bidentate (μ²η²(O,O)) configuration. The coexistence of linear and bridge bonded CO was also predicted by the DFT results. Similar molecular acid adsorption energy was predicted in the case of Ni(111) whereas a significant difference was found for acetate adsorption.

Keywords: acetic acid, platinum, nickel, infared-absorption spectrocopy, temperature programmed desorption, density functional theory

Procedia PDF Downloads 105
17819 Use of Real Time Ultrasound for the Prediction of Carcass Composition in Serrana Goats

Authors: Antonio Monteiro, Jorge Azevedo, Severiano Silva, Alfredo Teixeira

Abstract:

The objective of this study was to compare the carcass and in vivo real-time ultrasound measurements (RTU) and their capacity to predict the composition of Serrana goats up to 40% of maturity. Twenty one females (11.1 ± 3.97 kg) and Twenty one males (15.6 ± 5.38 kg) were utilized to made in vivo measurements with a 5 MHz probe (ALOKA 500V scanner) at the 9th-10th, 10th-11th thoracic vertebrae (uT910 and uT1011, respectively), at the 1st- 2nd, 3rd-4th, and 4th-5th lumbar vertebrae (uL12, ul34 and uL45, respectively) and also at the 3rd-4th sternebrae (EEST). It was recorded the images of RTU measurements of Longissimus thoracis et lumborum muscle (LTL) depth (EM), width (LM), perimeter (PM), area (AM) and subcutaneous fat thickness (SFD) above the LTL, as well as the depth of tissues of the sternum (EEST) between the 3rd-4th sternebrae. All RTU images were analyzed using the ImageJ software. After slaughter, the carcasses were stored at 4 ºC for 24 h. After this period the carcasses were divided and the left half was entirely dissected into muscle, dissected fat (subcutaneous fat plus intermuscular fat) and bone. Prior to the dissection measurements equivalent to those obtained in vivo with RTU were recorded. Using the Statistica 5, correlation and regression analyses were performed. The prediction of carcass composition was achieved by stepwise regression procedure, with live weight and RTU measurements with and without transformation of variables to the same dimension. The RTU and carcass measurements, except for SFD measurements, showed high correlation (r > 0.60, P < 0.001). The RTU measurements and the live weight, showed ability to predict carcass composition on muscle (R2 = 0.99, P < 0.001), subcutaneous fat (R2 = 0.41, P < 0.001), intermuscular fat (R2 = 0.84, P < 0.001), dissected fat (R2 = 0.71, P < 0.001) and bone (R2 = 0.94, P < 0.001). The transformation of variables allowed a slight increase of precision, but with the increase in the number of variables, with the exception of subcutaneous fat prediction. In vivo measurements by RTU can be applied to predict kid goat carcass composition, from 5 measurements of RTU and the live weight.

Keywords: carcass, goats, real time, ultrasound

Procedia PDF Downloads 259
17818 AgriFood Model in Ankara Regional Innovation Strategy

Authors: Coskun Serefoglu

Abstract:

The study aims to analyse how a traditional sector such as agri-food could be mobilized through regional innovation strategies. A principal component analysis as well as qualitative information, such as in-depth interviews, focus group and surveys, were employed to find the priority sectors. An agri-food model was developed which includes both a linear model and interactive model. The model consists of two main components, one of which is technological integration and the other one is agricultural extension which is based on Land-grant university approach of U.S. which is not a common practice in Turkey.

Keywords: regional innovation strategy, interactive model, agri-food sector, local development, planning, regional development

Procedia PDF Downloads 148
17817 Investigation of Structural and Optical Properties of Coal Fly Ash Thin Film Doped with T𝒊O₂ Nanoparticles

Authors: Rawan Aljabbari, Thamer Alomayri, Faisal G. Al-Maqate, Abeer Al Suwat

Abstract:

For environmentally friendly innovative technologies and a sustainable future, fly ash/TiO₂ thin film nanocomposites are essential. Fly ash will be doped with titanium dioxide in this work in order to better understand its optical characteristics and employ it in semiconductor electrical devices. This study focused on the structure, morphology, and optical properties of fly ash/TiO₂ thin films. The spin-coating technique was used to create thin coatings of fly ash/TiO₂. For the first time, the doping of TiO₂ in the fly ash host at ratios of 1, 2, and 3 wt% was investigated with the thickness of all samples fixed. When compared to undoped thin films, the surface morphology of the doped thin films was improved. The weakly crystalline structure of the doped fly ash films was verified by XRD. The optical bandgap energy of these films was successfully reduced by the TiO₂ doping, going from 3.9 to 3.5 eV. With increasing dopant concentration, the value of Urbach energy is increasing. The optical band gap is clearly in opposition to the disorder. While it considerably improved the optical conductivity to a value of 4.1 x 10^9 s^(-1), it also raised the refractive index and extinction coefficient. Depending on the TiO₂ doping ratio, the transmittance decreased, and the reflection increased. As the TiO₂ concentration rises, the absorption of photon energy rises, and the absorption coefficient of photon energy is reduced. results in their possible use as solar energy and semiconductor materials.

Keywords: fly ash, structural analysis, optical properties, morphology

Procedia PDF Downloads 84
17816 Stability Analysis of SEIR Epidemic Model with Treatment Function

Authors: Sasiporn Rattanasupha, Settapat Chinviriyasit

Abstract:

The treatment function adopts a continuous and differentiable function which can describe the effect of delayed treatment when the number of infected individuals increases and the medical condition is limited. In this paper, the SEIR epidemic model with treatment function is studied to investigate the dynamics of the model due to the effect of treatment. It is assumed that the treatment rate is proportional to the number of infective patients. The stability of the model is analyzed. The model is simulated to illustrate the analytical results and to investigate the effects of treatment on the spread of infection.

Keywords: basic reproduction number, local stability, SEIR epidemic model, treatment function

Procedia PDF Downloads 520
17815 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay

Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers

Abstract:

The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.

Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations

Procedia PDF Downloads 222
17814 Antimicrobial Value of Olax subscorpioidea and Bridelia ferruginea on Micro-Organism Isolates of Dental Infection

Authors: I. C. Orabueze, A. A. Amudalat, S. A. Adesegun, A. A. Usman

Abstract:

Dental and associated oral diseases are increasingly affecting a considerable portion of the population and are considered some of the major causes of tooth loss, discomfort, mouth odor and loss of confidence. This study focused on the ethnobotanical survey of medicinal plants used in oral therapy and evaluation of the antimicrobial activities of methanolic extracts of two selected plants from the survey for their efficacy against dental microorganisms. The ethnobotanical survey was carried out in six herbal markets in Lagos State, Nigeria by oral interviewing and information obtained from an old family manually complied herbal medication book. Methanolic extracts of Olax subscorpioidea (stem bark) and Bridelia ferruginea (stem bark) were assayed for their antimicrobial activities against clinical oral isolates (Aspergillus fumigatus, Candida albicans, Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa). In vitro microbial technique (agar well diffusion method and minimum inhibitory concentration (MIC) assay) were employed for the assay. Chlorhexidine gluconate was used as the reference drug for comparison with the extract results. And the preliminary phytochemical screening of the constituents of the plants were done. The ethnobotanical survey produced plants (28) of diverse family. Different parts of plants (seed, fruit, leaf, root, bark) were mentioned but 60% mentioned were either the stem or the bark. O. subscorpioidea showed considerable antifungal activity with zone of inhibition ranging from 2.650 – 2.000 cm against Aspergillus fumigatus but no such encouraging inhibitory activity was observed in the other assayed organisms. B. ferruginea showed antibacterial sensitivity against Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa with zone of inhibitions ranging from 3.400 - 2.500, 2.250 - 1.600, 2.700 - 1.950, 2.225 – 1.525 cm respectively. The minimum inhibitory concentration of O. subscorpioidea against Aspergillus fumigatus was 51.2 mg ml-1 while that of B. ferruginea against Streptococcus spp was 0.1mg ml-1 and for Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa were 25.6 mg ml-1. A phytochemical analysis reveals the presence of alkaloids, saponins, cardiac glycoside, tannins, phenols and terpenoids in both plants, with steroids only in B. ferruginea. No toxicity was observed among mice given the two methanolic extracts (1000 mg Kg-1) after 21 days. The barks of both plants exhibited antimicrobial properties against periodontal diseases causing organisms assayed, thus up-holding their folkloric use in oral disorder management. Further research could be done viewing these extracts as combination therapy, checking for possible synergistic value in toothpaste and oral rinse formulations for reducing oral bacterial flora and fungi load.

Keywords: antimicrobial activities, Bridelia ferruginea, dental disinfection, methanolic extract, Olax subscorpioidea, ethnobotanical survey

Procedia PDF Downloads 243
17813 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 18
17812 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires

Authors: Kazeem K. Adewole

Abstract:

This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.

Keywords: across-the-width lamination, tensile properties, lamination location, wire

Procedia PDF Downloads 473
17811 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 53
17810 An Assessment of Trace Heavy Metal Contamination of Some Edible Oils Regularly Marketed in Benue and Taraba States of Nigeria

Authors: Raphael Odoh, Obida J. Oko, Mary S. Dauda

Abstract:

The determination of Cd, Cr, Cu, Fe,Mn, Ni, Pb and Zn contents in edible oils (palm oil, ground-nut oil and soybean oil) bought from various markets of Benue and Taraba state were carried out with flame atomic absorption spectrophotometric technique. The method 3031 developed acid digestion of oils for metal analysis by atomic absorption or ICP spectrometry was used in the preparation of the edible oil samples for the determination of total metal content in this study. The overall results (µg/g) in palm oil sample ranged from 0.028-0.076, 0.035-0.092, 1.011-1.955, 2.101-4.892, 0.666-0.922, 0.054-0.095, 0.031-0.068 and 1.987-2.971 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively, while in ground-nut oil the overall results ranged from 0.011-0.042, 0.011-0.052, 0.133-0.788, 1.789-2.511, 0.078-0.765, 0.045-0.092, 0.011-0.028 and 1.098-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. Of the heavy metals considered Cd and Ni showed the highest contamination in the soybean oil sample. The overall results in soybean oil samples ranged from 0.011-0.015, 0.017-0.032, 0.453-0.987, 1.789-2.511, 0.089-0.321, 0.011-0.016, 0.012-0.065 and 1.011-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The concentration of Pb was the highest. The degree of contamination by each metal was estimated by the transfer factor. The transfer factors obtained for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in edible oils (palm oil, ground-nut oil and soybean oil) were 10.800, 16.500, 16.000, 18.813, 15.115, 14.230, 23.000 and 9.418 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in palm oil, and 7.000, 12.500, 8.880, 11.333, 7.708, 10.833, 15.00 and 6.608 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in ground-nut oil while for soybean oil the transfer factors were 13.000, 11.000, 7.642, 11.578, 4.486, 13.00, 12.333 and 4.412 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The inter-element correlation was found among metals in edible oil samples using Pearson’s correlation co-efficient. There were positive and negative correlations among the metals determined. All Metals determined showed degree of contamination but concentrations lower than the USP specification.

Keywords: Benue State, contamination, edible oils, heavy metals, markets, Taraba State

Procedia PDF Downloads 321
17809 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading

Authors: A. Siva, K. Bala Subramanian, Kinson Prabu

Abstract:

Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.

Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity

Procedia PDF Downloads 272
17808 Design of Lead-Lag Based Internal Model Controller for Binary Distillation Column

Authors: Rakesh Kumar Mishra, Tarun Kumar Dan

Abstract:

Lead-Lag based Internal Model Control method is proposed based on Internal Model Control (IMC) strategy. In this paper, we have designed the Lead-Lag based Internal Model Control for binary distillation column for SISO process (considering only bottom product). The transfer function has been taken from Wood and Berry model. We have find the composition control and disturbance rejection using Lead-Lag based IMC and comparing with the response of simple Internal Model Controller.

Keywords: SISO, lead-lag, internal model control, wood and berry, distillation column

Procedia PDF Downloads 642
17807 A Prediction Model of Tornado and Its Impact on Architecture Design

Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen

Abstract:

Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.

Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design

Procedia PDF Downloads 134