Search results for: improvement of model accuracy and reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23601

Search results for: improvement of model accuracy and reliability

22041 Field Oriented Control of Electrical Motor for Efficiency Improvement of Aerial Vehicle

Authors: Francois Defay

Abstract:

Uses of Unmanned aerial vehicle (UAV) are increasing for many applicative cases. Long endurance UAVs are required for inspection or transportation in some deserted places. The global optimization of the efficiency is the aim of the works in ISAE-SUPAERO. From the propulsive part until the motor control, the global optimization can increase significantly the global efficiency. This paper deals with the global improvement of the efficiency of the electrical propulsion for the aerial vehicle. The application case of study is a small airplane of 2kg. A global modelization is presented in order to validate the electrical engine in a complete simulation from aerodynamics to battery. The classical control of the synchronous permanent drive is compared to the field-oriented control which is not yet applied for UAVs. The experimental results presented show an increase of more than 10 percent of the efficiency. A complete modelization and simulation based on Matlab/ Simulink are presented in this paper and compared to the experimental study. Finally this paper presents solutions to increase the endurance of the electrical aerial vehicle and provide models to optimize the global consumption for a specific mission. The next step is to use this model and the control to work with distributed propulsion which is the future for small distance plane.

Keywords: electrical propulsion, endurance, field-oriented control, UAV

Procedia PDF Downloads 237
22040 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 261
22039 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 274
22038 Review in Role of Geotextile on Soil Improvement

Authors: Sandra Ghavam Shirazi, Mohsen Ramezan Shirazi, Mohammadreza Golhashem

Abstract:

Nowadays by development of construction in modern world new techniques are introduced to civil engineering. As for geotechnical problems and demands of soil improvement, engineers are searching for decisive methods to ensure the safety of projects. As a popular material Geotextiles are used in almost every aspect of civil engineering. There is a vast variety of geotextiles and each kind has their own unique characteristics therefor to select the proper geotextile for a specific project their properties must be carefully examined. This review gathers and evaluates different parameters of geotextiles that are used in geotechnical field.

Keywords: geotextile, soft soils, fabric, stabilization, fiber

Procedia PDF Downloads 407
22037 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion

Authors: Albert Alexander Stonier

Abstract:

Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.

Keywords: solar photovoltaic, power electronics, power quality, PWM

Procedia PDF Downloads 280
22036 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 135
22035 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility

Authors: Le Kang

Abstract:

According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.

Keywords: USR, achievement model, ferris wheel model, social responsibilities

Procedia PDF Downloads 725
22034 High Resolution Sandstone Connectivity Modelling: Implications for Outcrop Geological and Its Analog Studies

Authors: Numair Ahmed Siddiqui, Abdul Hadi bin Abd Rahman, Chow Weng Sum, Wan Ismail Wan Yousif, Asif Zameer, Joel Ben-Awal

Abstract:

Advances in data capturing from outcrop studies have made possible the acquisition of high-resolution digital data, offering improved and economical reservoir modelling methods. Terrestrial laser scanning utilizing LiDAR (Light detection and ranging) provides a new method to build outcrop based reservoir models, which provide a crucial piece of information to understand heterogeneities in sandstone facies with high-resolution images and data set. This study presents the detailed application of outcrop based sandstone facies connectivity model by acquiring information gathered from traditional fieldwork and processing detailed digital point-cloud data from LiDAR to develop an intermediate small-scale reservoir sandstone facies model of the Miocene Sandakan Formation, Sabah, East Malaysia. The software RiScan pro (v1.8.0) was used in digital data collection and post-processing with an accuracy of 0.01 m and point acquisition rate of up to 10,000 points per second. We provide an accurate and descriptive workflow to triangulate point-clouds of different sets of sandstone facies with well-marked top and bottom boundaries in conjunction with field sedimentology. This will provide highly accurate qualitative sandstone facies connectivity model which is a challenge to obtain from subsurface datasets (i.e., seismic and well data). Finally, by applying this workflow, we can build an outcrop based static connectivity model, which can be an analogue to subsurface reservoir studies.

Keywords: LiDAR, outcrop, high resolution, sandstone faceis, connectivity model

Procedia PDF Downloads 226
22033 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semi-analytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific sub-parametric elements. Mapping functions are uses as a class of higher-order Lagrange polynomials, special shape functions, Gauss-Lobatto -Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D elastodynamic problems, lagrange polynomials, G-L-Lquadrature, decoupled SBFEM

Procedia PDF Downloads 444
22032 Development of Patient Satisfaction Questionnaire for Diabetes Management in Thailand and Lao People Democratic Republic

Authors: Phoutsathaphone Sibounheuang, Phayom Sookaneknun Olson, Chanuttha Ploylearmsang, Santiparp Sookaneknun, Chanthanom Manithip

Abstract:

Patient satisfaction is an outcome that can be measured and used to improve diabetes care and management. There are limited instruments for assessing patient satisfaction covering the whole process of diabetes management. In this study, the questionnaire was developed with items pooled from a systematic review of qualitative studies of patients’ and healthcare providers’ perspectives in diabetes management. The questionnaire consists of 11 domains with 45 items. The Thai version was translated to Lao and then checked by back-translating it into Thai. We tested the questionnaire on 150 diabetes patients in Thailand and 150 in Lao People Democratic Republic (PDR). Validity was performed by factor analysis and Pearson correlation. Internal consistency reliability was estimated by calculating Cronbach’s alpha. The study was approved by the Mahasarakham University Ethics Committee, and the National Ethics Committee for Health Research, Lao PDR. The Thai and Lao versions showed the construct validity by principal component analysis. This consisted of 11 domains which account for 71.23% of the variance (Thai version) and 71.66% of the variance (Lao version) in the total patient satisfaction scores. The Kaiser-Meyer-Olkin (KMO) measures were 0.85 for the Thai version and 0.75 for the Lao version. The Bartlett tests of sphericity of both versions were significant (p < 0.001). The factor loadings of all items in both versions were > 0.40. The convergent validity of the Thai and Lao versions was 93.63% and 79.54% respectively. The discriminant validity for the Thai and Lao versions was 92.68% and 88.68% respectively. Cronbach’s alpha was 0.95 in both versions. The Patient Satisfaction Questionnaire (PSQ) in both versions had acceptable properties. This study has yielded evidence supporting the validity and reliability of both versions.

Keywords: construct validity, diabetes management, patient satisfaction, questionnaire development, reliability

Procedia PDF Downloads 140
22031 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions

Authors: Ramin Rostamkhani, Thurasamy Ramayah

Abstract:

One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.

Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components

Procedia PDF Downloads 87
22030 Dynamic Relaxation and Isogeometric Analysis for Finite Deformation Elastic Sheets with Combined Bending and Stretching

Authors: Nikhil Padhye, Ellen Kintz, Dan Dorci

Abstract:

Recent years have seen a rising interest in study and applications of materially uniform thin-structures (plates/shells) subject to finite-bending and stretching deformations. We introduce a well-posed 2D-model involving finite-bending and stretching of thin-structures to approximate the three-dimensional equilibria. Key features of this approach include: Non-Uniform Rational B-Spline (NURBS)-based spatial discretization for finite elements, method of dynamic relaxation to predict stable equilibria, and no a priori kinematic assumption on the deformation fields. The approach is validated against the benchmark problems,and the use of NURBS for spatial discretization facilitates exact spatial representation and computation of curvatures (due to C1-continuity of interpolated displacements) for this higher-order accuracy 2D-model.

Keywords: Isogeometric Analysis, Plates/Shells , Finite Element Methods, Dynamic Relaxation

Procedia PDF Downloads 168
22029 Mathematical Modeling of the Fouling Phenomenon in Ultrafiltration of Latex Effluent

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

An efficient and well-planned ultrafiltration process is becoming a necessity for monetary returns in the industrial settings. The aim of the present study was to develop a mathematical model for an accurate prediction of ultrafiltration membrane fouling of latex effluent applied to homogeneous and heterogeneous membranes with uniform and non-uniform pore sizes, respectively. The models were also developed for an accurate prediction of power consumption that can handle the large-scale purposes. The model incorporated the fouling attachments as well as chemical and physical factors in membrane fouling for accurate prediction and scale-up application. Both Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 µm and a molecular weight cut-off of 60,000, respectively, were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of the simulated paint effluent. Furthermore, hydrophilic ultrafilic and hydrophobic PVDF membranes with MWCO of 100,000 were used to test the reliability of the models. Monodisperse particles of 50 nm and 100 nm in diameter, and a latex effluent with a wide range of particle size distributions were utilized to validate the models. The aggregation and the sphericity of the particles indicated a significant effect on membrane fouling.

Keywords: membrane fouling, mathematical modeling, power consumption, attachments, ultrafiltration

Procedia PDF Downloads 470
22028 Prediction of the Heat Transfer Characteristics of Tunnel Concrete

Authors: Seung Cho Yang, Jae Sung Lee, Se Hee Park

Abstract:

This study suggests the analysis method to predict the damages of tunnel concrete caused by fires. The result obtained from the analyses of concrete temperatures at a fire in a tunnel using ABAQUS was compared with the test result. After the reliability of the analysis method was verified, the temperatures of a tunnel at a real fire and those of concrete during the fire were estimated to predict fire damages. The temperatures inside the tunnel were estimated by FDS, a CFD model. It was deduced that the fire performance of tunnel lining and the fire damages of the structure at an actual fire could be estimated by the analysis method.

Keywords: fire resistance, heat transfer, numerical analysis, tunnel fire

Procedia PDF Downloads 437
22027 Technical and Economic Environment in the Polish Power System as the Basis for Distributed Generation and Renewable Energy Sources Development

Authors: Pawel Sowa, Joachim Bargiel, Bogdan Mol, Katarzyna Luszcz

Abstract:

The article raises the issue of the development of local renewable energy sources and the production of distributed energy in context of improving the reliability of the Polish Power System and the beneficial impact on local and national energy security. The paper refers to the current problems of local governments in the process of investment in the area of distributed energy projects, and discusses the issues of the future role and cooperation within the local power plants and distributed energy. Attention is paid to the local communities the chance to raise their own resources and management of energy fuels (biomass, wind, gas mining) and improving the local energy balance. The material presented takes the issue of the development of the energy potential of municipalities and future cooperation with professional energy. As an example, practical solutions used in one of the communes in Silesia.

Keywords: distributed generation, mini centers energy, renewable energy sources, reliability of supply of rural commune

Procedia PDF Downloads 600
22026 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 350
22025 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 186
22024 Influence of Nanozeolite Particles on Improvement of Clayey Soil

Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Keywords: nanoparticles, soil improvement, clayey soil, unconfined compression stress

Procedia PDF Downloads 120
22023 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 279
22022 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 459
22021 Competitor Integration with Voice of Customer Ratings in QFD Studies Using Geometric Mean Based on AHP

Authors: Zafar Iqbal, Nigel P. Grigg, K. Govindaraju, Nicola M. Campbell-Allen

Abstract:

Quality Function Deployment (QFD) is structured approach. It has been used to improve the quality of products and process in a wide range of fields. Using this systematic tool, practitioners normally rank Voice of Customer ratings (VoCs) in order to produce Improvement Ratios (IRs) which become the basis for prioritising process / product design or improvement activities. In one matrix of the House of Quality (HOQ) competitors are rated. The method of obtaining improvement ratios (IRs) does not always integrate the competitors’ rating in a systematic way that fully utilises competitor rating information. This can have the effect of diverting QFD practitioners’ attention from a potentially important VOC to less important VOC. In order to enhance QFD analysis, we present a more systematic method for integrating competitor ratings, utilising the geometric mean of the customer rating matrix. In this paper we develop a new approach, based on the Analytic Hierarchy Process (AHP), in which we generating a matrix of multiple comparisons of all competitors, and derive a geometric mean for each competitor. For each VOC an improved IR is derived which-we argue herein - enhances the initial VOC importance ratings by integrating more information about competitor performance. In this way, our method can help overcome one of the possible shortcomings of QFD. We then use a published QFD example from literature as a case study to demonstrate the use of the new AHP-based IRs, and show how these can be used to re-rank existing VOCs to -arguably- better achieve the goal of customer satisfaction in relation VOC ratings and competitors’ rankings. We demonstrate how two dimensional AHP-based geometric mean derived from the multiple competitor comparisons matrix can be useful for analysing competitors’ rankings. Our method utilises an established methodology (AHP) applied within an established application (QFD), but in an original way (through the competitor analysis matrix), to achieve a novel improvement.

Keywords: quality function deployment, geometric mean, improvement ratio, AHP, competitors ratings

Procedia PDF Downloads 367
22020 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
22019 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point

Procedia PDF Downloads 331
22018 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model

Procedia PDF Downloads 501
22017 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study

Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre

Abstract:

Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.

Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.

Procedia PDF Downloads 111
22016 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 112
22015 Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy

Authors: K. Khaerunnisa, D. Ryangga, S. A. Pawiro

Abstract:

Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers.

Keywords: Callibration Methods, Film Dosimetry EBT3, Flat Bad Scanner, Densitomete, Spectrophotometer

Procedia PDF Downloads 135
22014 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.

Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography

Procedia PDF Downloads 182
22013 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87
22012 Impact of External Temperature on the Speleothem Growth in the Moravian Karst

Authors: Frantisek Odvarka

Abstract:

Based on the data from the Moravian Karst, the influence of the calcite speleothem growth by selected meteorological factors was evaluated. External temperature was determined as one of the main factors influencing speleothem growth in Moravian Karst. This factor significantly influences the CO₂ concentration in soil/epikarst, and cave atmosphere in the Moravian Karst and significantly contributes to the changes in the CO₂ partial pressure differences between soil/epikarst and cave atmosphere in Moravian Karst, which determines the drip water supersaturation with respect to the calcite and quantity of precipitated calcite in the Moravian Karst cave environment. External air temperatures and cave air temperatures were measured using a COMET S3120 data logger, which can measure temperatures in the range from -30 to +80 °C with an accuracy of ± 0.4 °C. CO₂ concentrations in the cave and soils were measured with a FT A600 CO₂H Ahlborn probe (value range 0 ppmv to 10,000 ppmv, accuracy 1 ppmv), which was connected to the data logger ALMEMO 2290-4, V5 Ahlborn. The soil temperature was measured with a FHA646E1 Ahlborn probe (temperature range -20 to 70 °C, accuracy ± 0.4 °C) connected to an ALMEMO 2290-4 V5 Ahlborn data logger. The airflow velocities into and out of the cave were monitored by a FVA395 TH4 Thermo anemometer (speed range from 0.05 to 2 m s⁻¹, accuracy ± 0.04 m s⁻¹), which was connected to the ALMEMO 2590-4 V5 Ahlborn data logger for recording. The flow was measured in the lower and upper entrance of the Imperial Cave. The data were analyzed in MS Office Excel 2019 and PHREEQC.

Keywords: speleothem growth, carbon dioxide partial pressure, Moravian Karst, external temperature

Procedia PDF Downloads 144