Search results for: cell survival
3011 Autophagy Suppresses Bladder Tumor Formation in a Mouse Orthotopic Bladder Tumor Formation Model
Authors: Wan-Ting Kuo, Yi-Wen Liu, Hsiao-Sheng Liu
Abstract:
Annual incidence of bladder cancer increases in the world and occurs frequently in the male. Most common type is transitional cell carcinoma (TCC) which is treated by transurethral resection followed by intravesical administration of agents. In clinical treatment of bladder cancer, chemotherapeutic drugs-induced apoptosis is always used in patients. However, cancers usually develop resistance to chemotherapeutic drugs and often lead to aggressive tumors with worse clinical outcomes. Approximate 70% TCC recurs and 30% recurrent tumors progress to high-grade invasive tumors, indicating that new therapeutic agents are urgently needed to improve the successful rate of overall treatment. Nonapoptotic program cell death may assist to overcome worse clinical outcomes. Autophagy which is one of the nonapoptotic pathways provides another option for bladder cancer patients. Autophagy is reported as a potent anticancer therapy in some cancers. First of all, we established a mouse orthotopic bladder tumor formation model in order to create a similar tumor microenvironment. IVIS system and micro-ultrasound were utilized to noninvasively monitor tumor formation. In addition, we carried out intravesical treatment in our animal model to be consistent with human clinical treatment. In our study, we carried out intravesical instillation of the autophagy inducer in mouse orthotopic bladder tumor to observe tumor formation by noninvasive IVIS system and micro-ultrasound. Our results showed that bladder tumor formation is suppressed by the autophagy inducer, and there are no significant side effects in the physiology of mice. Furthermore, the autophagy inducer upregulated autophagy in bladder tissues of the treated mice was confirmed by Western blot, immunohistochemistry, and immunofluorescence. In conclusion, we reveal that a novel autophagy inducer with low side effects suppresses bladder tumor formation in our mouse orthotopic bladder tumor model, and it provides another therapeutic approach in bladder cancer patients.Keywords: bladder cancer, transitional cell carcinoma, orthotopic bladder tumor formation model, autophagy
Procedia PDF Downloads 1753010 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28
Authors: Kyoung Lee
Abstract:
Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.Keywords: biofilm, matrix, pellicle, pseudomonas
Procedia PDF Downloads 1523009 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients
Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera
Abstract:
Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine
Procedia PDF Downloads 2493008 In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa
Authors: Marek Halenár, Eva Tvrdá, Simona Baldovská, Ľubomír Ondruška, Peter Massányi, Adriana Kolesárová
Abstract:
This study aimed to assess the in vitro effects of different concentrations of the Viscum album extract on the motility, viability, and reactive oxygen species (ROS) production by rabbit spermatozoa during different time periods (0, 2, and 8h). Spermatozoa motility was assessed by using the CASA (Computer aided sperm analysis) system. Cell viability was evaluated by using the metabolic activity MTT assay, and the luminol-based luminometry was applied to quantify the ROS formation. The CASA analysis revealed that low Viscum concentrations were able to prevent a rapid decline of spermatozoa motility, especially in the case of concentrations ranging between 1 and 5 µg/mL (P<0.05 with respect to time 8h). At the same time, concentrations ranging between 1 and 100 µg/mL of the extract led to a significant preservation of the cell viability (P<0.05 in case of 5, 50 and 100 µg/mL; P<0.01 with respect to 1 and 10 µg/mL, time 8h). 1 and 5 µg/mL of the extract exhibited antioxidant characteristics, translated into a significant reduction of the ROS production, particularly notable at time 8h (P<0.01). The results indicate that the Viscum extract is capable of delaying the damage inflicted to the spermatozoon by the in vitro environment.Keywords: CASA, mistletoe, mitochondrial activity, motility, reactive oxygen species, rabbits, spermatozoa, Viscum album
Procedia PDF Downloads 3933007 ¹⁸F-FDG PET/CT Impact on Staging of Pancreatic Cancer
Authors: Jiri Kysucan, Dusan Klos, Katherine Vomackova, Pavel Koranda, Martin Lovecek, Cestmir Neoral, Roman Havlik
Abstract:
Aim: The prognosis of patients with pancreatic cancer is poor. The median of survival after establishing diagnosis is 3-11 months without surgical treatment, 13-20 months with surgical treatment depending on the disease stage, 5-year survival is less than 5%. Radical surgical resection remains the only hope of curing the disease. Early diagnosis with valid establishment of tumor resectability is, therefore, the most important aim for patients with pancreatic cancer. The aim of the work is to evaluate the contribution and define the role of 18F-FDG PET/CT in preoperative staging. Material and Methods: In 195 patients (103 males, 92 females, median age 66,7 years, 32-88 years) with a suspect pancreatic lesion, as part of the standard preoperative staging, in addition to standard examination methods (ultrasonography, contrast spiral CT, endoscopic ultrasonography, endoscopic ultrasonographic biopsy), a hybrid 18F-FDG PET/CT was performed. All PET/CT findings were subsequently compared with standard staging (CT, EUS, EUS FNA), with peroperative findings and definitive histology in the operated patients as reference standards. Interpretation defined the extent of the tumor according to TNM classification. Limitations of resectability were local advancement (T4) and presence of distant metastases (M1). Results: PET/CT was performed in a total of 195 patients with a suspect pancreatic lesion. In 153 patients, pancreatic carcinoma was confirmed and of these patients, 72 were not indicated for radical surgical procedure due to local inoperability or generalization of the disease. The sensitivity of PET/CT in detecting the primary lesion was 92.2%, specificity was 90.5%. A false negative finding in 12 patients, a false positive finding was seen in 4 cases, positive predictive value (PPV) 97.2%, negative predictive value (NPV) 76,0%. In evaluating regional lymph nodes, sensitivity was 51.9%, specificity 58.3%, PPV 58,3%, NPV 51.9%. In detecting distant metastases, PET/CT reached a sensitivity of 82.8%, specificity was 97.8%, PPV 96.9%, NPV 87.0%. PET/CT found distant metastases in 12 patients, which were not detected by standard methods. In 15 patients (15.6%) with potentially radically resectable findings, the procedure was contraindicated based on PET/CT findings and the treatment strategy was changed. Conclusion: PET/CT is a highly sensitive and specific method useful in preoperative staging of pancreatic cancer. It improves the selection of patients for radical surgical procedures, who can benefit from it and decreases the number of incorrectly indicated operations.Keywords: cancer, PET/CT, staging, surgery
Procedia PDF Downloads 2463006 Evaluating the Efficacy of Tasquinimod in Covid-19
Authors: Raphael Udeh, Luis García De Guadiana Romualdo, Xenia Dolje-Gore
Abstract:
Background: Quite disturbing is the huge public health impact of COVID-19: As at today [25th March 2021, the COVID-19 global burden shows over 123 million cases and over 2.7 million deaths worldwide. Rationale: Recent evidence shows calprotectin’s potential as a therapeutic target, stating that tasquinimod, from the Quinoline-3-Carboxamide family is capable of blocking the interaction between calprotectin and TLR4. Hence preventing the cytokine release syndrome, that heralds the functional exhaustion in COVID-19. Early preclinical studies showed that tasquinimod inhibit tumor growth and prevent angiogenesis/cytokine storm. Phase I – III clinical studies in prostate cancer showed it has a good safety profile with good radiologic progression free survival but no effect on overall survival. Rationale/hypothesis: Strategic endeavors have been amplified globally to assess new therapeutic interventions for COVID-19 management – thus the clinical and antiviral efficacy of tasquinimod in COVID-19 remains to be explored. Hence the primary objective of this trial will be to evaluate the efficacy of tasquinimod in the treatment of adult patients with severe COVID-19 infections. Therefore, I hypothesise that among adults with COVID19 infection, tasquinimod will reduce the severe respiratory distress associated with COVID-19 compared to placebo, over a 28-day study period. Method: The setting is in Europe. Design – a randomized, placebo-controlled, phase II double-blinded trial. Trial lasts for 28 days from randomization, Tasquinimod capsule given as 0.5mg daily 1st fortnight, then 1mg daily 2nd fortnight. I0 outcome - assessed using six-point ordinal scale alongside eight 20 outcomes. 125 participants to be enrolled, data collection at baseline and subsequent data points, and safety reporting monitored via serological profile. Significance: This work could potentially establish tasquinimod as an effective and safe therapeutic agent for COVID-19 by reducing the severe respiratory distress, related time to recovery, time on oxygen/admission. It will also drive future research – as in larger multi-centre RCT.Keywords: Calprotectin, COVID-19, Phase II Trial, Tasquinimod
Procedia PDF Downloads 1943005 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques
Authors: Amir Peyman Soleymani, Jasna Jankovic
Abstract:
The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations
Procedia PDF Downloads 1523004 PDMS-Free Microfluidic Chips Fabrication and Utilisation for Pulsed Electric Fields Applications
Authors: Arunas Stirke, Neringa Bakute, Gatis Mozolevskis
Abstract:
A technology of microfluidics is an emerging tool in the field of biology, medicine and chemistry. Microfluidic device is also known as ‘lab-on-a-chip’ technology [1]. In moving from macro- to microscale, there is unprecedented control over spatial and temporal gradients and patterns that cannot be captured in conventional Petri dishes and well plates [2]. However, there is not a single standard microfluidic chip designated for all purposes – every different field of studies needs a specific microchip with certain geometries, inlet/outlet, channel depth and other parameters to precisely regulate the required function. Since our group is studying an effect of pulsed electric field (PEF) to the cells, we have manufactured a microfluidic chip designated for high-throughput electroporation of cells. In our microchip, a cell culture chamber is divided into two parallel channels by a membrane, meanwhile electrodes for electroporation are attached to the wall of the channels. Both microchannels have their own inlet and outlet, enabling injection of transfection material separately. Our perspective is to perform electroporation of mammalian cells in two different ways: (1) plasmid and cells are injected in the same microchannel and (2) injected into separate microchannels. Moreover, oxygen and pH sensors are integrated on order to analyse cell viability parameters after PEF treatment.Keywords: microfluidics, chip, fabrication, electroporation
Procedia PDF Downloads 823003 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress
Authors: S. K. Thind, Aparjot Kaur
Abstract:
Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism
Procedia PDF Downloads 3233002 The Molecular Rationale for Steroid Based Therapy of Leukemia: Diagnostic and Therapeutic Implications
Authors: Eitan Yefenof
Abstract:
Glucocorticoid (GC) hormones, e.g. Dexamethasone and Prednisone, are widely used in the therapy of leukemia and lymphoma owing to their apoptogenic effect on lymphoid cells. However, the emergence of GC resistant cells during therapy is a major cause for treatment failure, urging the need for novel strategies that maintain leukemia sensitivity to the pro-apoptotic activity of GCs. GCs act by binding to the GC receptor (GR), which, in its inactive state, is sequestered in the cytosol by a multi-subunit complex of heat shock proteins. Upon ligand binding, the complex dissociates, allowing GR activation and translocation to the nucleus, where it regulates transcription of multiple genes. We demonstrated that in addition to gene expression, GR also regulates microRNA (miR) expression. Deep-sequencing analysis revealed 14 miRs that are regulated in GC-sensitive but resistant leukemias upon treatment with GC. GC up-regulates miR-103, miR-15~16 and miR-30e/d, while down-regulates miR-17, mir-18a, miR-19a, miR-19b, miR-20a and miR-92a (members of the miR-17∼92a multi-cistron). Upon transfection, miR-103 confers GC apoptotic sensitivity to otherwise GC-resistant cell. Furthermore, knocking down miR-103 expression reduces the GC apoptotic response of sensitive cells. miR-103 abrogates c-Myc expression, an oncogenic transcription factor which is deregulated in many cancers. In addition, miR-103 up-regulates Bim, a pro-apoptotic protein crucial for GC-induced death. Activated glycogen synthase kinase 3 (GSK3) is also crucial for GC-induced apoptosis. GSK3 is active in GC-sensitive but not in GC-resistant cells. We found that GSK3 associates with the GR multi-subunit complex. Upon GC exposure, it dissociates from the GR and interacts with Bim to enable activation of the mitochondrial apoptosis pathway. miR-103 mediated c-Myc ablation is followed by down-regulation of the multi-cistron miR-17~92a, in particular miR-18a and miR-20a. miR-18a targets GR for degradation whereas miR-20a targets Bim degradation. Hence, miR-103 acts, in concert with Bim and GR, as a "tumor suppressor" that leads to reduced proliferation, cell-cycle arrest and cell death. We suggest that miR-103 can provide a diagnostic tool that predicts the sensitivity of leukemia to GC based therapy. Furthermore, exosomal delivery of miR-103 or up-regulation of the endogenous miR-103 could confer apoptotic sensitivity to resistant cells at the outset, thus becoming a useful therapeutic tool combined with GCs.Keywords: apoptosis, leukemia, micro-RNA, steroids
Procedia PDF Downloads 2453001 Blood Profile of Weaner Rabbits Fed Pigeon Pea (Cajanus cajan) Meal as Replacement for Groundnut Cake
Authors: Adedokun Mathew Adewale, Ayandiran Samuel Kola, Adekunle Ibironke
Abstract:
Pigeon pea (Cajanus cajan) seeds contain about 20–22 percent protein and appreciable amounts of essential amino acids and minerals. Hence, this study evaluated the blood profile of weaner rabbits fed Cajanus cajan meal (CCM) as a replacement for groundnut cake. Forty weaner rabbits of mixed breed aged 5 - 6 weeks were used for the study, which lasted for 8 weeks. The rabbits were randomly allocated to four treatments (10 rabbits per treatment) in a completely randomized design. Four concentrate diets were compounded by direct replacement of groundnut cake with Cajanus cajan meal (CCM) at 0, 50, 75, and 100%, respectively. There were no significant differences (p>0.05) among the mean counts of packed cell volume, red blood cell, haemoglobin, and monocyte. The 75% CCM diet had significantly the highest (p<0.05). However, rabbits fed diets containing CCM had significantly higher (p<0.05) eosinophil than 0%CCM. Rabbits fed diets containing 100%CCM had significantly highest (p<0.05) total protein followed by 0%CCM, 75%CCM, and least 50%CCM, while 0%CCM and 75%CCM diets were significantly higher (p<0.05) in albumin. However, animals fed diets containing CCM had significantly lower (p<0.05) cholesterol content than 0%CCM diet. It could be concluded that Cajanus cajan meal could replace groundnut cake up to 100% in the diets of rabbits without any deleterious effect on the blood profile of the animals.Keywords: blood profile, groundnut cake, pigeon pea, weaner rabbits
Procedia PDF Downloads 83000 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 7412999 In vitro Effects of Berberine on the Vitality and Oxidative Profile of Bovine Spermatozoa
Authors: Eva Tvrdá, Hana Greifová, Peter Ivanič, Norbert Lukáč
Abstract:
The aim of this study was to evaluate the dose- and time-dependent in vitro effects of berberine (BER), a natural alkaloid with numerous biological properties on bovine spermatozoa during three time periods (0 h, 2 h, 24 h). Bovine semen samples were diluted and cultivated in physiological saline solution containing 0.5% DMSO together with 200, 100, 50, 10, 5, and 1 μmol/L BER. Spermatozoa motility was assessed using the computer assisted semen analyzer. The viability of spermatozoa was assessed by the metabolic (MTT) assay, production of superoxide radicals was quantified using the nitroblue tetrazolium (NBT) test, and chemiluminescence was used to evaluate the generation of reactive oxygen species (ROS). Cell lysates were prepared and the extent of lipid peroxidation (LPO) was evaluated using the TBARS assay. The results of the movement activity showed a significant increase in the motility during long term cultivation in case of concentrations ranging between 1 and 10 μmol/L BER (P < 0.01; P < 0.001; 24 h). At the same time, supplementation of 1, 5 and 10 μmol/L BER led to a significant preservation of the cell viability (P < 0.001; 24 h). BER addition at a range of 1-50 μmol/L also provided a significantly higher protection against superoxide (P < 0.05) and ROS (P < 0.001; P < 0.01) overgeneration as well as LPO (P < 0.01; P<0.05) after a 24 h cultivation. We may suggest that supplementation of BER to bovine spermatozoa, particularly at concentrations ranging between 1 and 50 μmol/L, may offer protection to the motility, viability and oxidative status of the spermatozoa, particularly notable at 24 h.Keywords: berberine, bulls, motility, oxidative profile, spermatozoa, viability
Procedia PDF Downloads 1292998 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina
Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran
Abstract:
Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.Keywords: biocontrol, bioefficacy, cellulase, chitinase
Procedia PDF Downloads 3742997 Facial Design of Combined Photoelectrocehmcial-Fenton Coupling Nanocomposites for Antibiotic Eliminations
Authors: Xinyong Li
Abstract:
A new coupling system was constructed by combining photo-electrochemical cell with eletro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photo-induced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.Keywords: Electro-Fenton, photo-electrochemical, synergic effect, sulfamethoxazole
Procedia PDF Downloads 1402996 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis
Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong
Abstract:
A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell
Procedia PDF Downloads 3412995 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels
Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das
Abstract:
A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear
Procedia PDF Downloads 1262994 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions
Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella
Abstract:
Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity
Procedia PDF Downloads 1212993 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis
Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini
Abstract:
H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry
Procedia PDF Downloads 1522992 Molecular Detection of mRNA bcr-abl and Circulating Leukemic Stem Cells CD34+ in Patients with Acute Lymphoblastic Leukemia and Chronic Myeloid Leukemia and Its Association with Clinical Parameters
Authors: B. Gonzalez-Yebra, H. Barajas, P. Palomares, M. Hernandez, O. Torres, M. Ayala, A. L. González, G. Vazquez-Ortiz, M. L. Guzman
Abstract:
Leukemia arises by molecular alterations of the normal hematopoietic stem cell (HSC) transforming it into a leukemic stem cell (LSC) with high cell proliferation, self-renewal, and cell differentiation. Chronic myeloid leukemia (CML) originates from an LSC-leading to elevated proliferation of myeloid cells and acute lymphoblastic leukemia (ALL) originates from an LSC development leading to elevated proliferation of lymphoid cells. In both cases, LSC can be identified by multicolor flow cytometry using several antibodies. However, to date, LSC levels in peripheral blood (PB) are not established well enough in ALL and CML patients. On the other hand, the detection of the minimal residue disease (MRD) in leukemia is mainly based on the identification of the mRNA bcr-abl gene in CML patients and some other genes in ALL patients. There is no a properly biomarker to detect MDR in both types of leukemia. The objective of this study was to determine mRNA bcr-abl and the percentage of LSC in peripheral blood of patients with CML and ALL and identify a possible association between the amount of LSC in PB and clinical data. We included in this study 19 patients with Leukemia. A PB sample was collected per patient and leukocytes were obtained by Ficoll gradient. The immunophenotype for LSC CD34+ was done by flow cytometry analysis with CD33, CD2, CD14, CD16, CD64, HLA-DR, CD13, CD15, CD19, CD10, CD20, CD34, CD38, CD71, CD90, CD117, CD123 monoclonal antibodies. In addition, to identify the presence of the mRNA bcr-abl by RT-PCR, the RNA was isolated using TRIZOL reagent. Molecular (presence of mRNA bcr-abl and LSC CD34+) and clinical results were analyzed with descriptive statistics and a multiple regression analysis was performed to determine statistically significant association. In total, 19 patients (8 patients with ALL and 11 patients with CML) were analyzed, 9 patients with de novo leukemia (ALL = 6 and CML = 3) and 10 under treatment (ALL = 5 and CML = 5). The overall frequency of mRNA bcr-abl was 31% (6/19), and it was negative in ALL patients and positive in 80% in CML patients. On the other hand, LSC was determined in 16/19 leukemia patients (%LSC= 0.02-17.3). The Novo patients had higher percentage of LSC (0.26 to 17.3%) than patients under treatment (0 to 5.93%). The amount of LSC was significantly associated with the amount of LSC were: absence of treatment, the absence of splenomegaly, and a lower number of leukocytes, negative association for the clinical variables age, sex, blasts, and mRNA bcr-abl. In conclusion, patients with de novo leukemia had a higher percentage of circulating LSC than patients under treatment, and it was associated with clinical parameters as lack of treatment, absence of splenomegaly and a lower number of leukocytes. The mRNA bcr-abl detection was only possible in the series of patients with CML, and molecular detection of LSC could be identified in the peripheral blood of all leukemia patients, we believe the identification of circulating LSC may be used as biomarker for the detection of the MRD in leukemia patients.Keywords: stem cells, leukemia, biomarkers, flow cytometry
Procedia PDF Downloads 3552991 Hardness and Microstructure of Rapidly Quenched Aluminum Alloys
Authors: Mehdi Ghatus
Abstract:
Two simple apparatus based on the hammer and anvil principle have been constructed and used to study the microstructure and micro-hardness characteristics of some AL-base alloys. Foils with thicknesses arranging from 20 µm up to 600 µm have been obtained. The cooling rate was estimated to be in the range 10^4 - 10^5 K/sec. Microstructure study of rapidly quenched Al-30% Si foils indicated that with decreasing the foil thickness the size of primary Si crystallites decreases in the whole investigated range (0.64-0.15 mm). However, the volume fraction of the primary Si crystals in the structure remained constant down to thickness the primary Si volume fraction started to decrease. Rapid quenching of Al- 14-16% Cu showed single phase cell structure. In foils up to 0.55 mm with decreasing the foil thickness the cell size decreases and micro-hardness increases particularly in foils below 0.3 mm in thickness. Isochronal annealing of theses foils show that the highly supersaturated Al-14-16% Cu solid solution decomposes readily at relatively low temperature and short time intervals. The maximum hardness is obtained after annealing at 100 °C for 30 minutes. However with decreasing the Cu content of the foils the precipitation process is largely delayed. Eight hours of annealing at 100 °C was not enough to achieve the maximum hardness in Al-4% Cu thin foils. The achieved hardness value was more than twice of the maximum hardness obtained in articles of similar composition but conventionally aged.Keywords: aluminum, hardness, alloys, quenched aluminum
Procedia PDF Downloads 4392990 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production
Authors: Apurva Gupta, Surendra Singh
Abstract:
Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin
Procedia PDF Downloads 1672989 Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion and Chorion-Derived Mesenchymal Stem Cells
Authors: Kenichi Yamahara, Makiko Ohshima, Shunsuke Ohnishi, Hidetoshi Tsuda, Akihiko Taguchi, Toshihiro Soma, Hiroyasu Ogawa, Jun Yoshimatsu, Tomoaki Ikeda
Abstract:
We have previously reported the therapeutic potential of rat fetal membrane(FM)-derived mesenchymal stem cells (MSCs) using various rat models including hindlimb ischemia, autoimmune myocarditis, glomerulonephritis, renal ischemia-reperfusion injury, and myocardial infarction. In this study, 1) we isolated and characterized MSCs from human amnion and chorion; 2) we examined their differences in the expression profile of growth factors and cytokines; and 3) we investigated the therapeutic potential and difference of these MSCs using murine hindlimb ischemia and acute graft-versus-host disease (GVHD) models. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of GVHD disease. Our results highlight that human amnionand chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.Keywords: amnion, chorion, fetal membrane, mesenchymal stem cells
Procedia PDF Downloads 4122988 Central Vascular Function and Relaxibility in Beta-thalassemia Major Patients vs. Sickle Cell Anemia Patients by Abdominal Aorta and Aortic Root Speckle Tracking Echocardiography
Authors: Gehan Hussein, Hala Agha, Rasha Abdelraof, Marina George, Antoine Fakhri
Abstract:
Background: β-Thalassemia major (TM) and sickle cell disease (SCD) are inherited hemoglobin disorders resulting in chronic hemolytic anemia. Cardiovascular involvement is an important cause of morbidity and mortality in these groups of patients. The narrow border is between overt myocardial dysfunction and clinically silent left ventricular (LV) and / or right ventricular (RV) dysfunction in those patients. 3 D Speckle tracking echocardiography (3D STE) is a novel method for the detection of subclinical myocardial involvement. We aimed to study myocardial affection in SCD and TM using 3D STE, comparing it with conventional echocardiography, correlate it with serum ferritin level and lactate dehydrogenase (LDH). Methodology: Thirty SCD and thirty β TM patients, age range 4-18 years, were compared to 30 healthy age and sex matched control group. Cases were subjected to clinical examination, laboratory measurement of hemoglobin level, serum ferritin, and LDH. Transthoracic color Doppler echocardiography, 3D STE, tissue Doppler echocardiography, and aortic speckle tracking were performed. Results: significant reduction in global longitudinal strain (GLS), global circumferential strain (GCS), and global area strain (GAS) in SCD and TM than control (P value <0.001) there was significantly lower aortic speckle tracking in patients with TM and SCD than control (P value< 0.001). LDH was significantly higher in SCD than both TM and control and it correlated significantly positive mitral inflow E, (p value:0.022 and 0.072. r: 0.416 and -0.333 respectively) lateral E/E’ (p value.<0.001and 0.818. r. 0.618 and -0. 044.respectively) and septal E/E’ (p value 0.007 and 0.753& r value 0.485 and -0.060 respectively) in SCD but not TM and significant negative correlation between LDH and aortic root speckle tracking (value 0.681& r. -0.078.). The potential diagnostic accuracy of LDH in predicting vascular dysfunction as represented by aortic root GCS with a sensitivity 74% and aortic root GCS was predictive of LV dysfunction in SCD patients with sensitivity 100% Conclusion: 3D STE LV and RV systolic dysfunction in spite of their normal values by conventional echocardiography. SCD showed significantly lower right ventricular dysfunction and aortic root GCS than TM and control. LDH can be used to screen patients for cardiac dysfunction in SCD, not in TMKeywords: thalassemia major, sickle cell disease, 3d speckle tracking echocardiography, LDH
Procedia PDF Downloads 1682987 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells
Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah
Abstract:
Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell
Procedia PDF Downloads 2812986 Imperial/Royal Renewal in Byzantium and Medieval Georgia: Case of Alexios I Komnenos (r. 1081–1118) and Davit IV the Builder (r. 1089–1125)
Authors: Sandro Nikolaishvili
Abstract:
The end of the eleventh and the beginning of the twelfth century was a transitional period for the Byzantine empire as well as for the Caucasus. The empire was struggling for its survival under Alexios I Komnenos while Medieval Georgia was emerging as a dominant player in the Caucasus under Davit IV the Builder. The reigns of these two rulers were periods of renewal and transformation. I aim to compare the imperial image of Alexios I Komnenos with the renewed kingship ideology under Davit IV. I will hypothesize about the possible translation of the Byzantine political culture into the Medieval Georgia.Keywords: Byzantium, Georgia, imperial, image
Procedia PDF Downloads 4162985 Isolation and Characterization of Anti-melanoma (Skin Cancer) Compounds from Corchorus olitorius .L
Authors: Peramachi Sathiyamoorthy, Jacop Gopas, Avi Golan Goldhirsh
Abstract:
Corchorus olitorius is a leafy vegetable and an industrial crop. The herb has antioxidant, anti inflammatory, and anti-cancer properties. To assay the pharmaceutical properties, aqueous extracts of leaves and seeds from C. olitorius were tested against drug resistant melanoma cell line. The test showed LC50 of the extract was 0.08µg/ml. Aqueous seed extract exhibited higher melanoma inhibiting activity than leaf extract. Dialysis of seed extract showed that the active compound is less than 12 KDa. The compound with <3 KDa MW separated by microconcentration of seed extract showed 70.5 % inhibition of melanoma cell growth. Among the two fractions obtained by Gel filtration with G10 column, the first fraction at 1:2000 dilutions exhibited 100% inhibition of melanoma growth. The compound with Rf value 0.86 (MA4) isolated by TLC separation showed about 98% cytotoxicity against melanoma at 1: 1000 dilutions. Furthermore, HPLC separation of MA4 compound with Superdex 75 column resulted in 4 compounds. Out of 4, one compound showed melanoma inhibition. The active compound is identified by reagent methods as Strophanthidin. Further toxicological and clinical studies will lead to the development of a potential drug to treat drug resistant melanoma.Keywords: corchorus olitorius, melanoma, drug development, strophanthidin
Procedia PDF Downloads 1292984 Effects of Cell Phone Electromagnetic Radiation on the Brain System
Authors: A. Alao Olumuyiwa
Abstract:
Health hazards reported to be associated with exposure to electromagnetic radiations which include brain tumors, genotoxic effects, neurological effects, immune system deregulation, allergic responses and some cardiovascular effects are discussed under a closed tabular model in this study. This review however showed that there is strong and robust evidence that chronic exposures to electromagnetic frequency across the spectrum, through strength, consistency, biological plausibility and many dose-response relationships, may result in brain cancer and other carcinogenic disease symptoms. There is therefore no safe threshold because of the genotoxic nature of the mechanism that may however be involved. The discussed study explains that the cell phone has induced effects upon the blood –brain barrier permeability and the cerebellum exposure to continuous long hours RF radiation may result in significant increase in albumin extravasations. A physical Biomodeling approach is however employed to review this health effects using Specific Absorption Rate (SAR) of different GSM machines to critically examine the symptoms such as a decreased loco motor activity, increased grooming and reduced memory functions in a variety of animal spices in classified grouped and sub grouped models.Keywords: brain cancer, electromagnetic radiations, physical biomodeling, specific absorption rate (SAR)
Procedia PDF Downloads 3452983 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing
Authors: Daniel Phifer, Anna Prokhodtseva
Abstract:
DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell
Procedia PDF Downloads 2052982 The Effect of Different Levels of Seed and Extract of Harmal (Peganum harmala L.) on Immune Responses of Broiler Chicks
Authors: M. Toghyani, A. Ghasemi, S. A. Tabeidian
Abstract:
The present study was carried out to evaluate the effect of different levels of dietary seed and extract of Harmal (Peganum harmala L.) on immunity of broiler chicks. A total of 350 one-day old broiler chicks (Ross 308) were randomly allocated to five dietary treatments with four replicates pen of 14 birds each. Dietary treatments consisted of control, 1 and 2 g/kg Harmal seed in diet, 100 and 200 mg/L Harmal seed extract in water. Broilers received dietary treatments from 1 to 42 d. Two birds from each pen were randomly weighed and sacrificed at 42 d of age, the relative weight of lymphoid organs (bursa of Fabercius and spleen) to live weight were calculated. Antibody titers against Newcastle and influenza viruses and sheep red blood cell were measured at 30 d of age. Results showed that the relative weights of lymphoid organs were not affected by dietary treatments. Furthermore, antibody titer against Newcastle and influenza viruses as well as sheep red blood cell antigen were significantly (P<0.05) enhanced by feeding Harmal seed and extract. In conclusion, the results indicated that dietary inclusion of Harmal seed and extract enhanced immunological responses in broiler chicks.Keywords: broiler chicks, Harmal, immunity, Peganum harmala
Procedia PDF Downloads 548