Search results for: system competencies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17966

Search results for: system competencies

2156 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems

Authors: Edgar Gasafi, Robert Pardemann, Linus Perander

Abstract:

For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.

Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene

Procedia PDF Downloads 232
2155 Climate Change Adaptation in the U.S. Coastal Zone: Data, Policy, and Moving Away from Moral Hazard

Authors: Thomas Ruppert, Shana Jones, J. Scott Pippin

Abstract:

State and federal government agencies within the United States have recently invested substantial resources into studies of future flood risk conditions associated with climate change and sea-level rise. A review of numerous case studies has uncovered several key themes that speak to an overall incoherence within current flood risk assessment procedures in the U.S. context. First, there are substantial local differences in the quality of available information about basic infrastructure, particularly with regard to local stormwater features and essential facilities that are fundamental components of effective flood hazard planning and mitigation. Second, there can be substantial mismatch between regulatory Flood Insurance Rate Maps (FIRMs) as produced by the National Flood Insurance Program (NFIP) and other 'current condition' flood assessment approaches. This is of particular concern in areas where FIRMs already seem to underestimate extant flood risk, which can only be expected to become a greater concern if future FIRMs do not appropriately account for changing climate conditions. Moreover, while there are incentives within the NFIP’s Community Rating System (CRS) to develop enhanced assessments that include future flood risk projections from climate change, the incentive structures seem to have counterintuitive implications that would tend to promote moral hazard. In particular, a technical finding of higher future risk seems to make it easier for a community to qualify for flood insurance savings, with much of these prospective savings applied to individual properties that have the most physical risk of flooding. However, there is at least some case study evidence to indicate that recognition of these issues is prompting broader discussion about the need to move beyond FIRMs as a standalone local flood planning standard. The paper concludes with approaches for developing climate adaptation and flood resilience strategies in the U.S. that move away from the social welfare model being applied through NFIP and toward more of an informed risk approach that transfers much of the investment responsibility over to individual private property owners.

Keywords: climate change adaptation, flood risk, moral hazard, sea-level rise

Procedia PDF Downloads 109
2154 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 364
2153 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT

Authors: Jae Ni Jang, Young Uk Kim

Abstract:

Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.

Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT

Procedia PDF Downloads 51
2152 Application of Bundle Care to Reduce Invasive Catheter-Associated Infection in High Risk Units at a Medical Center

Authors: Hsin-Hsin Chang, Jann-Tay Wang, Wang-Huei Sheng

Abstract:

Background: Hospital-associated infections (HAIs) have significant medical and social resource consumption. In view of medical technology change rapidly and the prolonged average life expectancy, the patients' chances of receiving invasive medical devices have also increased. As well as the potential disease of the patients, the aging, and immune dysfunction makes the disease more serious, raising the risk of HAIs. In our adult intensive care units, catheter-associated urinary tract infections (CAUTIs) have an average of 4.6% in 2014, which is much higher than that of the National Healthcare Safety Network (NHSN). Therefore, we started the intervention of CAUTI bundle care. Methods: This 3-year intervention was conducted in adults’ intensive care units (ICUs) during January 2015 to December 2017. The implementation of CAUTI bundle care in order to reduce invasive catheter-associated infections were built on evidence-based infection control measures. Prospective surveillance was performed on all patients admitted to hospital. The four major directions are 'Leader Engagement', 'Educate Personnel', 'Executive Multidisciplinary Teamwork', 'Innovation and Improvement of Tools'. Results: During the intervention period, there were 167,024 patient-days with a total of 508 episodes of CAUTIs in the entire adult ICUs identified. The incidence of CAUTIs in adult ICU was significantly decreased in the intervention period (from 2015 to 2017), from 4.6 to 3.6 per 1000 catheter days (p=0.05). Conclusion: The necessity for the implementation of CAUTI bundle care in the health care system plays an important role in the quality and policy of infection control. Multidisciplinary teamwork, education, a comprehensive checklist and from time to time audit feedback to improve healthcare workers’ compliance are the keys to success.

Keywords: bundle care, hospital-associated infections, leader engagement, multidisciplinary team work

Procedia PDF Downloads 155
2151 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties

Authors: Parikshit Gogo, N. N. Dutta

Abstract:

The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.

Keywords: laccase, catechin, conjugation reaction, antioxidant properties

Procedia PDF Downloads 270
2150 Closing the Assessment Loop: Case Study in Improving Outcomes for Online College Students during Pandemic

Authors: Arlene Caney, Linda Fellag

Abstract:

To counter the adverse effect of Covid-19 on college student success, two faculty members at a US community college have used web-based assessment data to improve curricula and, thus, student outcomes. This case study exemplifies how “closing the loop” by analyzing outcome assessments in real time can improve student learning for academically underprepared students struggling during the pandemic. The purpose of the study was to develop ways to mitigate the negative impact of Covid-19 on student success of underprepared college students. Using the Assessment, Evaluation, Feedback and Intervention System (AEFIS) and other assessment tools provided by the college’s Office of Institutional Research, an English professor and a Music professor collected data in skill areas related to their curricula over four semesters, gaining insight into specific course sections and learners’ performance across different Covid-driven course formats—face-to-face, hybrid, synchronous, and asynchronous. Real-time data collection allowed faculty to shorten and close the assessment loop, and prompted faculty to enhance their curricula with engaging material, student-centered activities, and a variety of tech tools. Frequent communication, individualized study, constructive criticism, and encouragement were among other measures taken to enhance teaching and learning. As a result, even while student success rates were declining college-wide, student outcomes in these faculty members’ asynchronous and synchronous online classes improved or remained comparable to student outcomes in hybrid and face-to-face sections. These practices have demonstrated that even high-risk students who enter college with remedial level language and mathematics skills, interrupted education, work and family responsibilities, and language and cultural diversity can maintain positive outcomes in college across semesters, even during the pandemic.

Keywords: AEFIS, assessment, distance education, institutional research center

Procedia PDF Downloads 88
2149 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting

Authors: Kristin Thooft

Abstract:

— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursing

Keywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload

Procedia PDF Downloads 174
2148 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 272
2147 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation

Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot

Abstract:

The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.

Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution

Procedia PDF Downloads 124
2146 Study on Effectiveness of Strategies to Re-Establish Landscape Connectivity of Expressways with Reference to Southern Expressway Sri Lanka

Authors: N. G. I. Aroshana, S. Edirisooriya

Abstract:

Construction of highway is the most emerging development tendency in Sri Lanka. With these development activities, there are a lot of environmental and social issues started. Landscape fragmentation is one of the main issues that highly effect to the environment by the construction of expressways. Sri Lankan expressway system getting effort to treat fragmented landscape by using highway crossing structures. This paper designates, a highway post construction landscape study on the effectiveness of the landscape connectivity structures to restore connectivity. Geographic Information Systems (GIS), least cost path tool has been used in the selected two plots; 25km alone the expressway to identify animal crossing paths. Animal accident data use as measure for determining the most contributed plot for landscape connectivity. Number of patches, Mean patch size, Class area use as a parameter to determine the most effective land use class to reestablish the landscape connectivity. The findings of the research express scrub, grass and marsh were the most positively affected land use typologies for increase the landscape connectivity. It represents the growth increased by 8% within the 12 years of time. From the least cost analysis within the plot one, 28.5% of total animal crossing structures are within the high resistance land use classes. Southern expressway used reinforced compressed earth technologies for construction. It has been controlled the growth of the climax community. According to all findings, it could assume that involvement of the landscape crossing structures contributes to re-establish connectivity, but it is not enough to restore the majority of disturbance performed by the expressway. Connectivity measures used within the study can use as a tool for re-evaluate future involvement of highway crossing structures. Proper placement of the highway crossing structures leads to increase the rate of connectivity. The study recommends that monitoring the all stages (preconstruction, construction and post construction) of the project and preliminary design, and the involvement of the research applied connectivity assessment strategies helps to overcome the complication regarding the re-establishment of landscape connectivity using the highway crossing structures that facilitate the growth of flora and fauna.

Keywords: landscape fragmentation, least cost path, land use analysis, landscape connectivity structures

Procedia PDF Downloads 150
2145 Impact of Wastewater Irrigation on Soil and Vegetable Quality in Peri Urban Cropping System

Authors: Neelam Patel

Abstract:

Farmers in peri-urban areas of developing countries depend on wastewater for Irrigation but with great environmental and health hazards. Since, irrigation with wastewater is growing in the developing countries but its suitability to environment and other health factors should be checked. Metal pollution is a very serious issue these days, various neuro, physical and mental disorders are prevailing due to the metal pollution. Waste water contaminated with heavy metals got accumulated in the soil and then bioaccumulated in the vegetables irrigated with waste water. A 3-year field experiment on cauliflower has been done by using wastewater with two different methods of irrigation i.e. Drip and Flood irrigation and checked the impact on the cauliflower and soil quality. Heavy metals (Cr, Cu, Ni, Zn and Pb) have been studied in wastewater used for the irrigation and their accumulation in the soil and vegetable was studied. The study reveals that the concentration of heavy metals increases by 100 times from initial in soil. After 3 years, the concentration of Copper(41 ppm) Chromium(39.4 ppm) Lead(62.2ppm) Zinc(100.5 ppm) and Nickel(75.7 ppm) in Flood irrigated soil while in Drip irrigated soil , Copper (36.4 ppm) Chromium(36.8 ppm) Lead(53.7 ppm) Zinc(70.3 ppm) and Nickel (53.9 ppm). In vegetable, the wastewater irrigated shows an increase in the concentration of metals with the time and the accumulation of Nickel (6.98ppm), Lead (30.18 ppm) and Zinc (55.83 ppm) in drip irrigated while in flood irrigated, Nickel (30.58 ppm), Lead (73.95ppm) Zinc (93.50 ppm) and Copper (54.58 ppm) in edible part of cauliflower which is above the permissible limits suggested by different international agencies. On other hand, the nutrients content i.e. Nitrogen, Phosphorus and Potassium in soil was increased in concentration with time. The study pointed out that the metal contaminated waste water consisting the nutrients in it but also heavy metals which causes health issues in human. While the increase in concentration of nutrients in the soil indirectly helpful to the farmers economically by restricting the use of fertilizers. But the metal pollution directly affects the health of human being. The different method of irrigation suggested that the drip irrigated vegetable acquired less metal then the flood one and is a better combo with the waste water for the irrigation.

Keywords: drip irrigation, heavy metals, metal contamination, waste water

Procedia PDF Downloads 330
2144 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 499
2143 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries

Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi

Abstract:

Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.

Keywords: critical raw materials, energy storage, sodium metal halide, battery

Procedia PDF Downloads 114
2142 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 88
2141 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes

Authors: Siddharth Ahuja, T. M. Muruganandam

Abstract:

An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.

Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions

Procedia PDF Downloads 218
2140 Observation of a Phase Transition in Adsorbed Hydrogen at 101 Kelvin

Authors: Raina J. Olsen, Andrew K. Gillespie, John W. Taylor, Cristian I. Contescu, Peter Pfeifer, James R. Morris

Abstract:

While adsorbent surfaces such as graphite are known to increase the melting temperature of solid H2, this effect is normally rather small, increasing to 20 Kelvin (K) relative to 14 K in the bulk. An as-yet unidentified phase transition has been observed in a system of H2 adsorbed in a porous, locally graphitic, Saran carbon with sub-nanometer sized pores at temperatures (74-101 K) and pressures ( > 76 bar) well above the critical point of bulk H2 using hydrogen adsorption and neutron scattering experiments. Adsorption data shows a discontinuous pressure jump in the kinetics at 76 bar after nearly an hour of equilibration time, which is identified as an exothermic phase transition. This discontinuity is observed in the 87 K isotherm, but not the 77 K isotherm. At higher pressures, the measured isotherms show greater excess adsorption at 87 K than 77 K. Inelastic neutron scattering measurements also show a striking phase transition, with the amount of high angle scattering (corresponding to large momentum transfer/ large effective mass) increasing by up to a factor of 5 in the novel phase. During the course of the neutron scattering experiment, three of these reversible spectral phase transitions were observed to occur in response to only changes in sample temperature. The novel phase was observed by neutron scattering only at high H2 pressure (123 bar and 187 bar) and temperatures between 74-101 K in the sample of interest, but not at low pressure (30 bar), or in a control activated carbon at 186 bar of H2 pressure. Based on several of the more unusual observations, such as the slow equilibration and the presence of both an upper and lower temperature bound, a reasonable hypothesis is that this phase forms only in the presence of a high concentration of ortho-H2 (nuclear spin S=1). The increase in adsorption with temperature, temperatures which cross the lower temperature bound observed by neutron scattering, indicates that this novel phase is denser. Structural characterization data on the adsorbent shows that it may support a commensurate solid phase denser than those known to exist on graphite at much lower temperatures. Whatever this phase is eventually proven to be, these results show that surfaces can have a more striking effect on hydrogen phases than previously thought.

Keywords: adsorbed phases, hydrogen, neutron scattering, nuclear spin

Procedia PDF Downloads 466
2139 Life Cycle Assessment of Biogas Energy Production from a Small-Scale Wastewater Treatment Plant in Central Mexico

Authors: Joel Bonales, Venecia Solorzano, Carlos Garcia

Abstract:

A great percentage of the wastewater generated in developing countries don’t receive any treatment, which leads to numerous environmental impacts. In response to this, a paradigm change in the current wastewater treatment model based on large scale plants towards a small and medium scale based model has been proposed. Nevertheless, small scale wastewater treatment (SS-WTTP) with novel technologies such as anaerobic digesters, as well as the utilization of derivative co-products such as biogas, still presents diverse environmental impacts which must be assessed. This study consisted in a Life Cycle Assessment (LCA) performed to a SS-WWTP which treats wastewater from a small commercial block in the city of Morelia, Mexico. The treatment performed in the SS-WWTP consists in anaerobic and aerobic digesters with a daily capacity of 5,040 L. Two different scenarios were analyzed: the current plant conditions and a hypothetical energy use of biogas obtained in situ. Furthermore, two different allocation criteria were applied: full impact allocation to the system’s main product (treated water) and substitution credits for replacing Mexican grid electricity (biogas) and clean water pumping (treated water). The results showed that the analyzed plant had bigger impacts than what has been reported in the bibliography in the basis of wastewater volume treated, which may imply that this plant is currently operating inefficiently. The evaluated impacts appeared to be focused in the aerobic digestion and electric generation phases due to the plant’s particular configuration. Additional findings prove that the allocation criteria applied is crucial for the interpretation of impacts and that that the energy use of the biogas obtained in this plant can help mitigate associated climate change impacts. It is concluded that SS-WTTP is a environmentally sound alternative for wastewater treatment from a systemic perspective. However, this type of studies must be careful in the selection of the allocation criteria and replaced products, since these factors have a great influence in the results of the assessment.

Keywords: biogas, life cycle assessment, small scale treatment, wastewater treatment

Procedia PDF Downloads 125
2138 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 302
2137 Wide Dissemination of CTX-M-Type Extended-Spectrum β-Lactamases in Korean Swine Farms

Authors: Young Ah Kim, Hyunsoo Kim, Eun-Jeong Yoon, Young Hee Seo, Kyungwon Lee

Abstract:

Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from food animals are considered as a reservoir for transmission of ESBL genes to human. The aim of this study is to assess the prevalence and molecular epidemiology of ESBL-producing E. coli colonization in pigs, farm workers, and farm environments to elucidate the transmission of multidrug-resistant clones from animal to human. Nineteen pig farms were enrolled across the country in Korea from August to December 2017. ESBL-producing E. coli isolates were detected in 190 pigs, 38 farm workers, and 112 sites of farm environments using ChromID ESBL (bioMerieux, Marcy l'Etoile, France), directly (stool or perirectal swab) or after enrichment (sewage). Antimicrobial susceptibility tests were done with disk diffusion methods and blaTEM, blaSHV, and blaCTX-M were detected with PCR and sequencing. The genomes of the four CTX-M-55-producing E. coli isolates from various sources in one farm were entirely sequenced to assess the relatedness of the strains. Whole genome sequencing (WGS) was performed with PacBio RS II system (Pacific Biosciences, Menlo Park, CA, USA). ESBL genotypes were 85 CTX-M-1 group (one CTX-M-3, 23 CTX-M-15, one CTX-M-28, 59 CTX-M-55, one CTX-M-69) and 60 CTX-M-9 group (41 CTX-M-14, one CTX-M-17, one CTX-M-27, 13 CTX-M-65, 4 CTX-M-102) in total 145 isolates. The rectal colonization rates were 53.2% (101/190) in pigs and 39.5% (15/38) in farm workers. In WGS, sequence types (STs) were determined as ST69 (E. coli PJFH115 isolate from a human carrier), ST457 (two E. coli isolates PJFE101 recovered from a fence and PJFA1104 from a pig) and ST5899 (E. coli PJFA173 isolate from the other pig). The four plasmids encoding CTX-M-55 (88,456 to 149, 674 base pair), whether it belonged to IncFIB or IncFIC-IncFIB type, shared IncF backbone furnishing the conjugal elements, suggesting of genes originated from same ancestor. In conclusion, the prevalence of ESBL-producing E. coli in swine farms was surprisingly high, and many of them shared common ESBL genotypes of clinical isolates such as CTX-M-14, 15, and 55 in Korea. It could spread by horizontal transfer between isolates from different reservoirs (human-animal-environment).

Keywords: Escherichia coli, extended-spectrum β-lactamase, prevalence, whole genome sequencing

Procedia PDF Downloads 204
2136 Soil-Structure Interaction in a Case Study Bridge: Seismic Response under Moderate and Strong Near-Fault Earthquakes

Authors: Nastaran Cheshmehkaboodi, Lotfi Guizani, Noureddine Ghlamallah

Abstract:

Seismic isolation proves to be a powerful technology in reducing seismic hazards and enhancing overall structural resilience. However, the performance of the technology can be influenced by various factors, including seismic inputs and soil conditions. This research aims to investigate the effects of moderate and strong earthquakes associated with different distances of the source on the seismic responses of conventional and isolated bridges, considering the soil-structure interaction effects. Two groups of moderate and strong near-fault records are applied to the conventional and isolated bridges, with and without considering the underlying soil. For this purpose, using the direct method, three soil properties representing rock, dense, and stiff soils are modeled in Abaqus software. Nonlinear time history analysis is carried out, and structural responses in terms of maximum deck acceleration, deck displacement, and isolation system displacement are studied. The comparison of dynamic responses between both earthquake groups demonstrates a consistent pattern, indicating that the bridge performance and the effects of soil-structure interaction are primarily influenced by the ground motions and their frequency contents. Low ratios of PGA/PGV are found to significantly impact all dynamic responses, resulting in higher force and displacement responses, regardless of the distance associated with the ruptured fault. In addition, displacement responses increase drastically on softer soils. Thus, meticulous consideration is crucial in designing isolation systems to avoid underestimating displacement demands and to ensure sufficient displacement capacity. Despite a lower PGA value in high seismicity areas in this study, the acceleration demand during strong earthquakes is up to 1.3 times higher in conventional bridges and up to 3 times higher in isolated bridges than in moderate earthquakes. Additionally, the displacement demand in strong earthquakes is up to 2 times higher in conventional bridges and up to 5 times higher in isolated bridges compared to moderate earthquakes, highlighting the increased force and displacement demand in strong earthquakes.

Keywords: bridges, seismic isolation, near-fault, earthquake characteristics, soil-structure interaction

Procedia PDF Downloads 63
2135 Kirigami Designs for Enhancing the Electromechanical Performance of E-Textiles

Authors: Braden M. Li, Inhwan Kim, Jesse S. Jur

Abstract:

One of the fundamental challenges in the electronic textile (e-textile) industry is the mismatch in compliance between the rigid electronic components integrated onto soft textile platforms. To address these problems, various printing technologies using conductive inks have been explored in an effort to improve the electromechanical performance without sacrificing the innate properties of the printed textile. However, current printing methods deposit densely layered coatings onto textile surfaces with low through-plane wetting resulting in poor electromechanical properties. This work presents an inkjet printing technique in conjunction with unique Kirigami cut designs to address these issues for printed smart textiles. By utilizing particle free reactive silver inks, our inkjet process produces conformal and micron thick silver coatings that surround individual fibers of the printed smart textile. This results in a highly conductive (0.63 Ω sq-1) printed e-textile while also maintaining the innate properties of the textile material including stretchability, flexibility, breathability and fabric hand. Kirigami is the Japanese art of paper cutting. By utilizing periodic cut designs, Kirigami imparts enhanced flexibility and delocalization of stress concentrations. Kirigami cut design parameters (i.e., cut spacing and length) were correlated to both the mechanical and electromechanical properties of the printed textiles. We demonstrate that designs using a higher cut-out ratio exponentially softens the textile substrate. Thus, our designs achieve a 30x improvement in the overall stretchability, 1000x decrease in elastic modulus, and minimal resistance change over strain regimes of 100-200% when compared to uncut designs. We also show minimal resistance change of our Kirigami inspired printed devices after being stretched to 100% for 1000 cycles. Lastly, we demonstrate a Kirigami-inspired electrocardiogram (ECG) monitoring system that improves stretchability without sacrificing signal acquisition performance. Overall this study suggests fundamental parameters affecting the performance of e-textiles and their scalability in the wearable technology industry

Keywords: kirigami, inkjet printing, flexible electronics, reactive silver ink

Procedia PDF Downloads 146
2134 Territorial Analysis of the Public Transport Supply: Case Study of Recife City

Authors: Cláudia Alcoforado, Anabela Ribeiro

Abstract:

This paper is part of an ongoing PhD thesis. It seeks to develop a model to identify the spatial failures of the public transportation supply. In the construction of the model, it also seeks to detect the social needs arising from the disadvantage in transport. The case study is carried out for the Brazilian city of Recife. Currently, Recife has a population density of 7,039.64 inhabitants per km². Unfortunately, only 46.9% of urban households on public roads have adequate urbanization. Allied to this reality, the trend of the occupation of the poorest population is that of the peripheries, a fact that has been consolidated in Brazil and Latin America, thus burdening the families' income, since the greater the distances covered for the basic activities and consequently also the transport costs. In this way, there have been great impacts caused by the supply of public transportation to locations with low demand or lack of urban infrastructure. The model under construction uses methods such as Currie’s Gap Assessment associated with the London’s Public Transport Access Level, and the Public Transport Accessibility Index developed by Saghapour. It is intended to present the stage of the thesis with the spatial/need gaps of the neighborhoods of Recife already detected. The benefits of the geographic information system are used in this paper. It should be noted that gaps are determined from the transport supply indices. In this case, considering the presence of walking catchment areas. Still in relation to the detection of gaps, the relevant demand index is also determined. This, in turn, is calculated through indicators that reflect social needs. With the use of the smaller Brazilian geographical unit, the census sector, the model with the inclusion of population density in the study areas should present more consolidated results. Based on the results achieved, an analysis of transportation disadvantage will be carried out as a factor of social exclusion in the study area. It is anticipated that the results obtained up to the present moment, already indicate a strong trend of public transportation in areas of higher income classes, leading to the understanding that the most disadvantaged population migrates to those neighborhoods in search of employment.

Keywords: gap assessment, public transport supply, social exclusion, spatial gaps

Procedia PDF Downloads 184
2133 A Framework Based Blockchain for the Development of a Social Economy Platform

Authors: Hasna Elalaoui Elabdallaoui, Abdelaziz Elfazziki, Mohamed Sadgal

Abstract:

Outlines: The social economy is a moral approach to solidarity applied to the projects’ development. To reconcile economic activity and social equity, crowdfunding is as an alternative means of financing social projects. Several collaborative blockchain platforms exist. It eliminates the need for a central authority or an inconsiderate middleman. Also, the costs for a successful crowdfunding campaign are reduced, since there is no commission to be paid to the intermediary. It improves the transparency of record keeping and delegates authority to authorities who may be prone to corruption. Objectives: The objectives are: to define a software infrastructure for projects’ participatory financing within a social and solidarity economy, allowing transparent, secure, and fair management and to have a financial mechanism that improves financial inclusion. Methodology: The proposed methodology is: crowdfunding platforms literature review, financing mechanisms literature review, requirements analysis and project definition, a business plan, Platform development process and implementation technology, and testing an MVP. Contributions: The solution consists of proposing a new approach to crowdfunding based on Islamic financing, which is the principle of Mousharaka inspired by Islamic financing, which presents a financial innovation that integrates ethics and the social dimension into contemporary banking practices. Conclusion: Crowdfunding platforms need to secure projects and allow only quality projects but also offer a wide range of options to funders. Thus, a framework based on blockchain technology and Islamic financing is proposed to manage this arbitration between quality and quantity of options. The proposed financing system, "Musharaka", is a mode of financing that prohibits interests and uncertainties. The implementation is offered on the secure Ethereum platform as investors sign and initiate transactions for contributions using their digital signature wallet managed by a cryptography algorithm and smart contracts. Our proposal is illustrated by a crop irrigation project in the Marrakech region.

Keywords: social economy, Musharaka, blockchain, smart contract, crowdfunding

Procedia PDF Downloads 78
2132 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State

Authors: F. Mohammadsadeghi

Abstract:

Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.

Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine

Procedia PDF Downloads 410
2131 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 260
2130 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data

Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan

Abstract:

Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.

Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy

Procedia PDF Downloads 173
2129 Corporate Social Responsibility and Financial Performance Complementarity in Multinational Enterprises of the EU and India: A Socio-Political Approach

Authors: Moses Pinto, Ana Paula Monte

Abstract:

The present research analyses the interactions between various categories of corporate social responsibility (CSR) that mediate the relationship between CSR and financial performance in Multinational Enterprises (MNE) in light of the present socio-political factors prevalent in the countries under observation. In the research it has been hypothesized that the absence of consensus in the empirical literature on the CSR–financial performance relationship may be explained by the existence of synergies (Complementarities) between the different CSR components. Upon investigation about whether such relationships exist, a final unbalanced panel sample of 1000 observations taken from 100 Multinational Enterprises per year functioning in the Schengen countries and one south east Asian country namely: India, over the span of 10 years i.e. from the year 2008 to 2018 has been analyzed. The empirical analysis used in the research methodology employs dynamic Panel Data in time series specifically, the system Generalized Method of Moments (GMM) which had been used to detect the varying degrees of relationships between the CSR and financial performance parameters in the background of the socio-political factors prevailing in the countries at the time and also taking into account the bilateral treaty obligations between the countries under observation. The econometric model has employed the financial ratio namely the Return on Assets (ROA) as an indicator of financial performance in order to gauge the internal performance and valuation of a firm as opposed to the Tobin’s Q that provides for the external evaluation of a firm’s financial performance which may not always be accurate. The various CSR dimensions have demonstrated significant correlations to the ‘ROA’ which include some negatively associated correlations and one positively associated correlation that is highly significant throughout the analysis of the observations, namely the correlation between the ‘ROA’ and the CSR dimension: ‘Environment’. The results provide a deeper insight in the synergistic CSR activities that managers could adapt into their Firm’s CSR strategy in order to enhance the ‘ROA’ and also to understand which interactions between the CSR dimensions can be adapted together due to their positively correlated association with each other and the ROA. The future lines of research would be inclined to investigate the effects of socio-political factors on the ROA of the MNEs through better designed econometric models.

Keywords: CSR, financial performance, complementarity, sociopolitical factors

Procedia PDF Downloads 128
2128 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 117
2127 Enabling Socio Cultural Sustainability of the "Thousand and One Churches" Archaeological Site

Authors: E. Erdogan, M. Ulusoy

Abstract:

In terms of tourism, the concept of sustainability can be defined as preserving and developing natural, historical, cultural, social, and aesthetic values and enabling their permanency. Sustainable tourism aims to preserve natural, historical, cultural, and social resources, also by supporting economic progress protecting economic development and environmental values that emerge as a consequence of tourism activities. Cultural tourism feeds on sustainable cultural treasures inherently and is the most effective touristic activity. Traditional configurations and structural characteristics play an important role in generating cultural tourism in a region. Sustainable cultural tourism is related to trips upon people who embark with the aim of visiting culturally rich regions, learning about and observing fast-disappearing lifestyles and collecting cultural values as memories. With its huge tourism potential, Karadağ is the most significant cultural asset of the Karaman province, possessing unique riches in terms of cultural world history. Host to one of the most important Byzantine cities in Anatolia, Karadağ is like an open-air museum with its unparalleled architectural structures. There is a village named Madenşehir in the plain at the outskirts of Karadağ, near to which are located the “Thousand and One Churches” ruins. The 80-household house is located near the ruins in an area that been declared a 1st degree historic preservation district. stones gathered from local churches were used in the construction of these households. A ministry has assigned a new residential site near the boundaries of the 2nd degree preservation district, and the decision has been made to move the occupants to this area. The most important issue here is to enable locals’ sociocultural and socioeconomic sustainability. It is also important to build these structures in a manner compatible with the historical visual look, ecological system and environmental awareness. Therefore this new site will be planned as touristic area in terms of sustainable cultural tourism and in these new plans, shall fulfill functions oriented toward both tourists and locals. It is very important that this change be sustainable and also support cultural tourism.

Keywords: cultural tourism, new village settlement, socio cultural sustainability, “thousand and one churches” site

Procedia PDF Downloads 400