Search results for: hybrid hierarchical clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2802

Search results for: hybrid hierarchical clustering

1272 Strategies to Improve Learning and Teaching of Software Packages Among Undergraduate Students

Authors: Sara Moridpour

Abstract:

Engineering students need to learn different software packages to meet the emerging industry needs. Face-to-face lectures provide an interactive environment for learning software packages. However, COVID changed expectations of face-to-face learning and teaching. It is essential to enhance the interaction among students and teachers in online and virtual learning and teaching of software packages. The proposed study introduces strategies for teaching engineering software packages in online and hybrid environments and evaluates students’ skills by an authentic assignment.

Keywords: teaching software packages, authentic assessment., engineering, undergraduate students

Procedia PDF Downloads 140
1271 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 452
1270 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites

Authors: Priyankar P. Deka, Sutanu Samanta

Abstract:

This paper describes the development of new class of epoxy based hybrid composites reinforced with jute and filled with rice husk flour. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylene tetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.

Keywords: jute, mechanical characterization, natural fiber, rice husk

Procedia PDF Downloads 285
1269 Critical Success Factors for Sustainable Smart City Project in India

Authors: Debasis Sarkar

Abstract:

Development of a Smart City would depend upon the development of its infrastructure in a smart way. Primarily based on the ideology of the fourth industrial revolution a Smart City project should have Smart governance, smart health care, smart building, smart transportation, smart mobility, smart energy, smart technology and smart citizen. Considering the Indian scenario of current state of cities in India, it has become very essential to decide the specific parameters which would govern the development of a Smart City project. It has been observed that there are significant parameters beyond Information and Communication Technology (ICT), which govern the development of a Smart City project. This paper is an attempt to identify the Critical Success Factors (CSF) which are significantly responsible for the development of a Smart City project in Western India. Responses to questionnaire survey were analyzed on basis of Likert scale. They were further critically evaluated with help of Factor Comparison Method (FCM) and Analytical Hierarchy Process (AHP). The project authorities need to incorporate Building Information Modeling (BIM) to make the smart city project more collaborative. To make the project more sustainable, use of flyash in the concrete used, reduced usage of cement and steel, use of alternate fuels like biodiesel is recommended.

Keywords: analytical hierarchical process, building information modeling, critical success factors, factor comparison method

Procedia PDF Downloads 252
1268 Exchange Rate Forecasting by Econometric Models

Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir

Abstract:

The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.

Keywords: exchange rate, ARIMA, GARCH, PAK/USD

Procedia PDF Downloads 561
1267 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey

Authors: Maleh Yassine, Ezzati Abdellah

Abstract:

Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.

Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS

Procedia PDF Downloads 384
1266 AI-Powered Conversation Tools - Chatbots: Opportunities and Challenges That Present to Academics within Higher Education

Authors: Jinming Du

Abstract:

With the COVID-19 pandemic beginning in 2020, many higher education institutions and education systems are turning to hybrid or fully distance online courses to maintain social distance and provide a safe virtual space for learning and teaching. However, the majority of faculty members were not well prepared for the shift to blended or distance learning. Communication frustrations are prevalent in both hybrid and full-distance courses. A systematic literature review was conducted by a comprehensive analysis of 1688 publications that focused on the application of the adoption of chatbots in education. This study aimed to explore instructors' experiences with chatbots in online and blended undergraduate English courses. Language learners are overwhelmed by the variety of information offered by many online sites. The recently emerged chatbots (e.g.: ChatGPT) are slightly superior in performance as compared to those traditional through previous technologies such as tapes, video recorders, and websites. The field of chatbots has been intensively researched, and new methods have been developed to demonstrate how students can best learn and practice a new language in the target language. However, it is believed that among the many areas where chatbots are applied, while chatbots have been used as effective tools for communicating with business customers, in consulting and targeting areas, and in the medical field, chatbots have not yet been fully explored and implemented in the field of language education. This issue is challenging enough for language teachers; they need to study and conduct research carefully to clarify it. Pedagogical chatbots may alleviate the perception of a lack of communication and feedback from instructors by interacting naturally with students through scaffolding the understanding of those learners, much like educators do. However, educators and instructors lack the proficiency to effectively operate this emerging AI chatbot technology and require comprehensive study or structured training to attain competence. There is a gap between language teachers’ perceptions and recent advances in the application of AI chatbots to language learning. The results of the study found that although the teachers felt that the chatbots did the best job of giving feedback, the teachers needed additional training to be able to give better instructions and to help them assist in teaching. Teachers generally perceive the utilization of chatbots to offer substantial assistance to English language instruction.

Keywords: artificial intelligence in education, chatbots, education and technology, education system, pedagogical chatbot, chatbots and language education

Procedia PDF Downloads 66
1265 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission

Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola

Abstract:

The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.

Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering

Procedia PDF Downloads 325
1264 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
1263 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.

Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost

Procedia PDF Downloads 88
1262 Mobilizing Resources for Social Entrepreneurial Opportunity: A Framework of Engagement Strategy

Authors: Balram Bhushan

Abstract:

The emergence of social entrepreneurship challenges the strict categorization of not-for-profit, for-profit and hybrid organizations. Although the blurring of boundaries helps social entrepreneurial organizations (SEOs) make better use of emerging opportunities, it poses a significant challenge while mobilizing money from different sources. Additionally, for monetary resources, the legal framework of the host country may further complicate the issue by imposing strict accounting standards. Under such circumstances, the resource providers fail to recognize the suitable engagement strategy with the SEO of their choice. Based on the process of value creation and value capture, this paper develops a guiding framework for resource providers to design an appropriate mix of engagement with the identified SEOs. Essentially, social entrepreneurship creates value at the societal level, but value capture is a characteristic of an organization. Additionally, SEOs prefer value creation over value capture. The paper argued that the nature of the relationship between value creation and value capture determines the extent of blurred boundaries of the organization. Accordingly, synergistic, antagonistic and sequential relationships were proposed between value capture and value creation. When value creation is synergistically associated with value creation, the preferred nature of such action falls within the nature of for-profit organizations within the strictest legal framework. Banks offering micro-loans are good examples of this category. Opposite to this, the antagonist relationship between value creation and value capture, where value capture opportunities are sacrificed for value creation, dictates non-profit organizational structure. Examples of this category include non-government organizations and charity organizations. Finally, the sequential relationship between value capture opportunities is followed for value creation opportunities and guides the action closer to the hybrid structure. Examples of this category include organizations where a non-for-profit unit controls for-profit units of the organization either legally or structurally. As an SEO may attempt to utilize multiple entrepreneurial opportunities falling across any of the three relationships between value creation and value capture, the resource providers need to evaluate an appropriate mix of these relationships before designing their engagement strategies. The paper suggests three guiding principles for the engagement strategy. First, the extent of investment should be proportional to the synergistic relationship between value capture and value creation. Second, the subsidized support should be proportional to the sequential relationship. Finally, the funding (charity contribution) should be proportional to the antagonistic relationship. Finally, the resource providers are needed to keep a close watch on the evolving relationship between value creation and value capture for introducing appropriate changes in their engagement strategy.

Keywords: social entrepreneurship, value creation, value capture, entrepreneurial opportunity

Procedia PDF Downloads 132
1261 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering

Authors: Tianyang Xu

Abstract:

Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.

Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics

Procedia PDF Downloads 132
1260 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
1259 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
1258 Bag of Local Features for Person Re-Identification on Large-Scale Datasets

Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou

Abstract:

In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.

Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking

Procedia PDF Downloads 195
1257 High Performance Ceramic-Based Phthalonitrile Micro and Nanocomposites

Authors: M. Derradji, W. B. Liu

Abstract:

The current work discusses the effects of adding various types of ceramic fillers on the curing behavior, thermal, mechanical, anticorrosion, and UV shielding properties of the bisphenol-A based phthalonitrile resins. The effects of different ceramic filler contents and sizes as well as their surface treatments are also discussed in terms of their impact on the morphology and mechanisms of enhancement. The synergistic effect obtained by these combinations extends the use of the phthalonitrile resins to more exigent applications such as aerospace and military. The presented results reveal the significant advantages that can be obtained from the preparation of hybrid materials based on phthalonitrile resins and open the way for further research in the field.

Keywords: mechanical properties, particle reinforced composites, polymer matrix composites (PMCs), thermal properties

Procedia PDF Downloads 155
1256 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 165
1255 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 412
1254 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 352
1253 The Effect of Environmental CSR on Corporate Social Performance: The Mediating Role of Green Innovation and Corporate Image

Authors: Edward Fosu

Abstract:

Green innovation has emerged as a significant environmental concern across the world. Green innovation refers to the utilization of technological developments that facilitate energy savings and waste material recycling. The stakeholder theory and resourced-based theory were used to examine how stakeholders' expectations affect corporate green innovation activities and how corporate innovation initiatives affect the corporate image and social performance. This study used structural equation modelling (SEM) and hierarchical regression to test the effects of environmental corporate social responsibility on social performance through mediators: green innovation and corporate image. A quantitative design was employed using data from Chinese companies in Ghana for this study. The study assessed. The results revealed that environmental practices promote corporate social performance (β = 0.070, t = 1.974, p = 0.049), positively affect green product innovation (β = 0.251, t = 7.478, p < 0.001), and has direct effect on green process innovation (β = 0.174, t = 6.192, p < 0.001). Green product innovation and green process innovation significantly promote corporate image respectively (β = 0.089, t = 2.581, p = 0.010), (β = 0.089, t = 2.367, p = 0.018). Corporate image has significant direct effects on corporate social performance (β = 0.146, t = 4.256, p < 0.001). Corporate environmental practices have an impact on the development of green products and processes which promote companies’ social performance. Additionally, evidence supports that corporate image influences companies’ social performance.

Keywords: environmental CSR, corporate image, green innovation, coprorate social performance

Procedia PDF Downloads 125
1252 Technical and Economic Potential of Partial Electrification of Railway Lines

Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong

Abstract:

Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.

Keywords: electrification, hybrid, railway, storage

Procedia PDF Downloads 429
1251 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer

Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah

Abstract:

In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.

Keywords: perovskite, mesoscopic, hysteresis, toluene air

Procedia PDF Downloads 170
1250 Perceived Causes of Mathematics Phobia Amongst Senior Secondary School Students in Yenagoa Metropolis, Bayelsa State, Nigeria

Authors: Iniye Irene Wodi, Kennedy B. Gibson

Abstract:

Students’ poor performance in mathematics in both internal and external examinations has been a source of concern to researchers in Nigeria. The cause of this has been attributed to both teachers and students. To this end, this study sought to find out students’ perceptions of teachers’ attributes as a cause of mathematics phobia among secondary school students in Bayelsa State Nigeria. The population of the study comprised of all students of senior secondary schools in Yenagoa metropolis. A sample of 120 students was drawn from this population using clustering and simple random sampling techniques. The instrument for data collection was a researcher constructed questionnaire titled Mathematics Phobia Questionnaire (MPQ). Data were analysed, and the results revealed that students perceived teachers’ attributes such as methods and styles of teaching, difficulty in communication, etc. as causes of mathematics phobia among students in senior secondary schools in Bayelsa State. Based on the result, it was therefore recommended that mathematics teachers should be retrained periodically in order to learn new and innovative ways of teaching mathematics to prevent its phobia among students.

Keywords: mathematics phobia, teacher attributes, teaching method, teaching style

Procedia PDF Downloads 112
1249 Single Cu‒N₄ Sites Enable Atomic Fe Clusters with High-Performance Oxygen Reduction Reaction

Authors: Shuwen Wu, Zhi LI

Abstract:

Atomically dispersed Fe‒N₄ catalysts are proven as promising alternatives to commercial Pt/C for the oxygen reduction reaction. Most reported Fe‒N₄ catalysts suffer from inferior O‒O bond-breaking capability due to superoxo-like O₂ adsorption, though the isolated dual-atomic metal sites strategy is extensively adopted. Atomic Fe clusters hold greater promise for promoting O‒O bond cleavage by forming peroxo-like O₂ adsorption. However, the excessively strong binding strength between Fe clusters and oxygenated intermediates sacrifices the activity. Here, we first report a Fex/Cu‒N@CF catalyst with atomic Fe clusters functionalized by adjacent single Cu‒N₄ sites anchoring on a porous carbon nanofiber membrane. The theoretical calculation indicates that the single Cu‒N₄ sites can modulate the electronic configuration of Fe clusters to reduce O₂* protonation reaction free energy, which ultimately enhances the electrocatalytic performance. Particularly, the Cu‒N₄ sites can increase the overlaps between the d orbitals of Fe and p orbitals of O to accelerate O‒O cleavage in OOH*. As a result, this unique atomic catalyst exhibits a half potential (E1/2) of 0.944 V in an alkaline medium exceeding that of commercial Pt/C, whereas acidic performance E1/2 = 0.815 V is comparable to Pt/C. This work shows the great potential of single atoms for improvements in atomic cluster catalysts.

Keywords: Hierarchical porous fibers, atomic Fe clusters, Cu single atoms, oxygen reduction reaction; O-O bond cleavage

Procedia PDF Downloads 116
1248 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 524
1247 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization

Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen

Abstract:

This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.

Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization

Procedia PDF Downloads 248
1246 Going Horizontal: Confronting the Challenges When Transitioning to Cloud

Authors: Harvey Hyman, Thomas Hull

Abstract:

As one of the largest cancer treatment centers in the United States, we continuously confront the challenge of how to leverage the best possible technological solutions, in order to provide the highest quality of service to our customers – the doctors, nurses and patients at Moffitt who are fighting every day for the prevention and cure of cancer. This paper reports on the transition from a vertical to a horizontal IT infrastructure. We discuss how the new frameworks and methods such as public, private and hybrid cloud, brokering cloud services are replacing the traditional vertical paradigm for computing. We also report on the impact of containers, micro services, and the shift to continuous integration/continuous delivery. These impacts and changes in delivery methodology for computing are driving how we accomplish our strategic IT goals across the enterprise.

Keywords: cloud computing, IT infrastructure, IT architecture, healthcare

Procedia PDF Downloads 380
1245 Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model

Authors: Riccardo Loggia, Francesca Pizzimenti, Francesco Lelli, Luigi Martirano

Abstract:

Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station.

Keywords: electric vehicles, charging stations, sharing model, fast charging, car park, power profiles

Procedia PDF Downloads 154
1244 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm

Authors: Hossein Abbasi

Abstract:

The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.

Keywords: frequency control, HS algorithm, microgrid, PI controller, voltage control

Procedia PDF Downloads 391
1243 Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: Polyoxometalate, Keggin, Organic-inorganic salt, TMV

Procedia PDF Downloads 288