Search results for: discrete feature vector
1614 Software Defect Analysis- Eclipse Dataset
Authors: Amrane Meriem, Oukid Salyha
Abstract:
The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.Keywords: software engineering, machine learning, bugs detection, effort estimation
Procedia PDF Downloads 871613 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 681612 Integrated Management of Diseases of Vegetables and Flower Crops Grown in Protected Condition under Organic Production System
Authors: Shripad Kulkarni
Abstract:
Plant disease is an impairment of the normal state of a plant that interrupts or modifies its vital functions. Disease occurs on different parts of plants and cause heavy losses. Diagnosis of Problem is very important before planning any management practice and this can be done based on appearance of the crop, examination of the root and examination of the soil. There are various types of diseases such as biotic (transmissible) which accounts for ~30% whereas , abiotic (not transmissible) diseases are the major one with ~70% incidence. Plant diseases caused by different groups of organism’s belonging fungi, bacteria, viruses, nematodes and few others have remained important in causing significant losses in different crops indicating the urgent need of their integrated management. Various factors favor disease development and different steps and methods are involved in management of diseases under protected condition. Management of diseases through botanicals and bioagents by modifying root and aerial environment, vector management along with care to be taken while managing the disease are analysed.Keywords: organic production system, diseases, bioagents and polyhouse, agriculture
Procedia PDF Downloads 4081611 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2531610 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 3851609 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 2811608 Recognition by the Voice and Speech Features of the Emotional State of Children by Adults and Automatically
Authors: Elena E. Lyakso, Olga V. Frolova, Yuri N. Matveev, Aleksey S. Grigorev, Alexander S. Nikolaev, Viktor A. Gorodnyi
Abstract:
The study of the children’s emotional sphere depending on age and psychoneurological state is of great importance for the design of educational programs for children and their social adaptation. Atypical development may be accompanied by violations or specificities of the emotional sphere. To study characteristics of the emotional state reflection in the voice and speech features of children, the perceptual study with the participation of adults and the automatic recognition of speech were conducted. Speech of children with typical development (TD), with Down syndrome (DS), and with autism spectrum disorders (ASD) aged 6-12 years was recorded. To obtain emotional speech in children, model situations were created, including a dialogue between the child and the experimenter containing questions that can cause various emotional states in the child and playing with a standard set of toys. The questions and toys were selected, taking into account the child’s age, developmental characteristics, and speech skills. For the perceptual experiment by adults, test sequences containing speech material of 30 children: TD, DS, and ASD were created. The listeners were 100 adults (age 19.3 ± 2.3 years). The listeners were tasked with determining the children’s emotional state as “comfort – neutral – discomfort” while listening to the test material. Spectrographic analysis of speech signals was conducted. For automatic recognition of the emotional state, 6594 speech files containing speech material of children were prepared. Automatic recognition of three states, “comfort – neutral – discomfort,” was performed using automatically extracted from the set of acoustic features - the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS). The results showed that the emotional state is worse determined by the speech of TD children (comfort – 58% of correct answers, discomfort – 56%). Listeners better recognized discomfort in children with ASD and DS (78% of answers) than comfort (70% and 67%, respectively, for children with DS and ASD). The neutral state is better recognized by the speech of children with ASD (67%) than by the speech of children with DS (52%) and TD children (54%). According to the automatic recognition data using the acoustic feature set GeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.687; children with DS – 0.725; TD children – 0.641. When using the acoustic feature set eGeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.671; children with DS – 0.717; TD children – 0.631. The use of different models showed similar results, with better recognition of emotional states by the speech of children with DS than by the speech of children with ASD. The state of comfort is automatically determined better by the speech of TD children (precision – 0.546) and children with ASD (0.523), discomfort – children with DS (0.504). The data on the specificities of recognition by adults of the children’s emotional state by their speech may be used in recruitment for working with children with atypical development. Automatic recognition data can be used to create alternative communication systems and automatic human-computer interfaces for social-emotional learning. Acknowledgment: This work was financially supported by the Russian Science Foundation (project 18-18-00063).Keywords: autism spectrum disorders, automatic recognition of speech, child’s emotional speech, Down syndrome, perceptual experiment
Procedia PDF Downloads 1901607 Fabric Drapemeter Development towards the Analysis of Its Behavior in 3-D Design
Authors: Aida Sheeta, M. Nashat Fors, Sherwet El Gholmy, Marwa Issa
Abstract:
Globalization has raised the customer preferences not only towards the high-quality garments but also the right fitting, comfort and aesthetic apparels. This only can be accomplished by the good interaction between fabric mechanical and physical properties as well as the required style. Consequently, this paper provides an integrated review of the fabric drape terminology because it is considered as an essential feature in which the fabric can form folds with the help of the gravity. Moreover, an instrument has been fabricated in order to analyze the static and dynamic drape behaviors using different fabric types. In addition, the obtained results find out the parameters affecting the drape coefficient using digital image processing for various kind of commercial fabrics. This was found to be an essential first step in order to analyze the behavior of this fabric when it is fabricated in a certain 3-D garment design.Keywords: cloth fitting, fabric drape nodes, garment silhouette, image processing
Procedia PDF Downloads 1881606 Vehicle Type Classification with Geometric and Appearance Attributes
Authors: Ghada S. Moussa
Abstract:
With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification
Procedia PDF Downloads 3381605 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data
Authors: Rudra P. Pradhan
Abstract:
This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.Keywords: energy consumption, financial development, FATF countries, Panel VECM
Procedia PDF Downloads 2671604 A Study of Different Factors Influencing Youngsters’ Mobile Device Buying Behaviors in Malaysia
Authors: Z. S. Yip, T. K. Tan, C. C. Geh, T. T. Ting
Abstract:
The mobile phone is an indispensable device in today’s daily living. The arising new brands in the market with different specification are targeting at the different population. The most promising market would be the younger generation who are IT savvy. Therefore, it is beneficial to find out their factors of consideration in purchasing a mobile phone. A survey is carried out in Malaysia to discover the current youngster’s mobile phone buying behavior. This study has found that the most influencing factor of consideration is Price, followed by Feature, and Battery Lifespan. Gender and Income have no relationship with certain factors of consideration. It is important to discover the factors of consideration in order to provide industry insight into the current trend of smartphone in Malaysia.Keywords: buying behavior, smart phone, mobile brand, mobile operating system, specification, battery lifespan
Procedia PDF Downloads 3571603 Reflections on Lyotard's Reading of the Kantian Sublime and Its Political Import
Authors: Tugba Ayas Onol
Abstract:
The paper revisits Jean-François Lyotard’s interpretation of the Kantian Sublime as a tool for understanding politics after modernity. In 1985 Lyotard announces the end of rational politics based on consensus and claims that new strategies are urged to recognize the political imperatives of marginalized groups. The charm of the sublime as a reflective judgment is grounded on the fact that the judgment of sublime is free from any notion of consensus or common sense in particular. Lyotard interprets this feature of the sublime as a respect for heterogeneity and for him aesthetic judgments can be a model for understanding justice in postmodern times, in which it seems hard to follow a single universal law among different phrase regimes. More importantly, the Kantian sublime speaks to what Lyotard addresses as the incommensurability of phase genres. The present paper shall try to evaluate Lyotard’s employment of the Kantian notion of the sublime in relation to its possible political import.Keywords: Kant, Lyotard, sublime, politics
Procedia PDF Downloads 3821602 Analysis the Different Types of Nano Sensors on Based of Structure and It’s Applications on Nano Electronics
Authors: Hefzollah Mohammadiyan, Mohammad Bagher Heidari, Ensiyeh Hajeb
Abstract:
In this paper investigates and analyses the structure of nano sensors will be discussed. The structure can be classified based of nano sensors: quantum points, carbon nanotubes and nano tools, which details into each other and in turn are analyzed. Then will be fully examined to the Carbon nanotubes as chemical and mechanical sensors. The following discussion, be examined compares the advantages and disadvantages as different types of sensors and also it has feature and a wide range of applications in various industries. Finally, the structure and application of Chemical sensor transistors and the sensors will be discussed in air pollution control.Keywords: carbon nanotubes, quantum points, chemical sensors, mechanical sensors, chemical sensor transistors, single walled nanotube (SWNT), atomic force microscope (AFM)
Procedia PDF Downloads 4511601 A Study of the Assistant Application for Tourists Taking Metros
Authors: Anqi Wang, Linye Zhang
Abstract:
With the proliferation and development of mobile devices, various mobile apps have appeared to satisfy people’s needs. Metro, with the feature of convenient, punctuality and economic, is one of the most popular modes of transportation in cities. Yet, there are still some inconveniences brought by various factors, impacting tourists’ riding experience. The aim of this study is to help tourists to shorten the time of purchasing tickets, to provide them clear metro information and direct navigation, detailed schedule as well as a way to collect metro cards as souvenir. The study collects data through three phases, including observation, survey and test. Data collected from 106 tourists totally in Wuhan metro stations are discussed in the study. The result reflects tourists’ demand when they take the metro. It also indicates the feasibility of using mobile technology to improve passenger’s experience.Keywords: mobile app, metro, public transportation, ticket, mobile payment, indoors positioning, tourists
Procedia PDF Downloads 1411600 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR
Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid
Abstract:
Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA
Procedia PDF Downloads 4591599 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 881598 Simulation Study on Particle Fluidization and Drying in a Spray Fluidized Bed
Authors: Jinnan Guo, Daoyin Liu
Abstract:
The quality of final products in the coating process significantly depends on particle fluidization and drying in the spray-fluidized bed. In this study, fluidizing gas temperature and velocity are changed, and their effects on particle flow, moisture content, and heat transfer in a spray fluidized bed are investigated by the CFD – Discrete Element Model (DEM). The gas flow velocity distribution of the fluidized bed is symmetrical, with high velocity in the middle and low velocity on both sides. During the heating process, the particles inside the central tube and at the bottom of the bed are rapidly heated. The particle circulation in the annular area is heated slowly and the temperature is low. The inconsistency of particle circulation results in two peaks in the probability density distribution of the particle temperature during the heating process, and the overall temperature of the particles increases uniformly. During the drying process, the distribution of particle moisture transitions from initial uniform moisture to two peaks, and then the number of completely dried (moisture content of 0) particles gradually increases. Increasing the fluidizing gas temperature and velocity improves particle circulation, drying and heat transfer in the bed. The current study provides an effective method for studying the hydrodynamics of spray fluidized beds with simultaneous processes of heating and particle fluidization.Keywords: heat transfer, CFD-DEM, spray fluidized bed, drying
Procedia PDF Downloads 741597 A Comparative Study between FEM and Meshless Methods
Authors: Jay N. Vyas, Sachin Daxini
Abstract:
Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods
Procedia PDF Downloads 3891596 A Reliable Multi-Type Vehicle Classification System
Authors: Ghada S. Moussa
Abstract:
Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm
Procedia PDF Downloads 3591595 Predicting the Potential Geographical Distribution of the Banana Aphid (Pentalonia nigronervosa) as Vector of Banana Bunchy Top Virus Using Diva-GIS
Authors: Marilyn Painagan
Abstract:
This study was conducted to predict the potential geographical distribution of the banana aphid (Pentalonia negronervosa) in North Cotabato through climate envelope approach of DIVA-GIS, a software for analyzing the distribution of organisms to elucidate geographic and ecological patterns. A WorldClim database that was based on weather conditions recorded last 1950 to 2000 with a spatial resolution of approximately 1x1 km. was used in the bioclimatic modelling, this database includes temperature, precipitation, evapotranspiration and bioclimatic variables which was measured at many different locations, a bioclimatic modelling was done in the study. The study revealed that the western part of Magpet and Arakan and the municipality of Antipas are at high potential risk of occurrence of banana aphid while it is not likely to occur in the municipalities of Aleosan, Midsayap, Pikit, M’lang and Tulunan. The result of this study can help developed strategies for monitoring and managing this serious pest of banana and to prepare a mitigation measures on those areas that are potential for future infestation.Keywords: banana aphid, bioclimatic model, bunchy top, climatic envelope approach
Procedia PDF Downloads 2601594 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 4521593 The Urban Project: Metropolization Tool and Sustainability Vector - Case of Constantine
Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad, Chouabbia Khedidja
Abstract:
Cities grow, large or small; they seek to gain a place in the market competition, which talks to sell a product that is the city itself. The metropolis are large cities enjoying a legal status and assets providing their dominions elements on a territory larger than their range, do not escape this situation. Thus, the search for promising tool metropolises better development and durability meet the challenges as economic, social and environmental is timely. The urban project is a new way to build the city; it is involved in the metropolises of two ways, either to manage the crisis and to meet the internal needs of the metropolis, or by creating a regional attractiveness with their potential. This communication will address the issue of urban project as a tool that has and should find a place in the panoply of existing institutional tools. Based on the example of the modernization project of the metropolis of eastern Algeria "Constantine", we will examine what the urban project can bring to a city, the extent of its impact but also the relationship between the visions actors so metropolization a success.Keywords: urban project, metropolis, institutional tools, Constantine
Procedia PDF Downloads 4031592 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1901591 Characteristic Study on Conventional and Soliton Based Transmission System
Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian
Abstract:
Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.Keywords: dispersion length, retrun-to-zero (rz), soliton, soliton period, q-factor
Procedia PDF Downloads 3461590 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 151589 In Search of Bauman’s Moral Impulse in Shadow Factories of China
Authors: Akram Hatami, Naser Firoozi, Vesa Puhakka
Abstract:
Ethics and responsibility are rapidly becoming a distinguishing feature of organizations. In this paper, we analyze ethics and responsibility in shadow factories in China. We engage ourselves with Bauman’s moral impulse perspective because his idea can contextualize ethics and responsibility. Moral impulse is a feeling of a selfless, infinite and unconditional responsibility towards, and care for, Others. We analyze a case study from a secondary data source because, for such a critical phenomenon as business ethics in shadow factories, collecting primary data is difficult, since they are unregistered factories. We argue that there has not been enough attention given to the ethics and responsibility in shadow factories in China. Our main goal is to demonstrate that, considering the Other, more importantly the employees, in ethical decision-making is a simple instruction beyond the narrow version of ethics by ethical codes and rules.Keywords: moral impulse, responsibility, shadow factories, Bauman’s moral impulse
Procedia PDF Downloads 3311588 Mechanical Transmission of Parasites by Cockroaches’ Collected from Urban Environment of Lahore, Pakistan
Authors: Hafsa Memona, Farkhanda Manzoor
Abstract:
Cockroaches are termed as medically important pests because of their wide distribution in human habitation including houses, hospitals, food industries and kitchens. They may harbor multiple drug resistant pathogenic bacteria and protozoan parasites on their external surfaces, disseminate on human food and cause serious diseases and allergies to human. Hence, they are regarded as mechanical vector in human habitation due to their nocturnal activity and nutritional behavior. Viable eggs and dormant cysts of parasites can hitch a ride on cockroaches. Ova and cysts of parasitic organism may settle into the crevices and cracks between thorax and head. There are so many fissures and clefts and crannies on a cockroach which provide site for these organisms. This study aimed with identifying role of cockroaches in mechanically transmitting and disseminating gastrointestinal parasites in two environmental settings; hospitals and houses in urban area of Lahore. Totally, 250 adult cockroaches were collected from houses and hospitals by sticky traps and food baited traps and screened for parasitic load. All cockroaches were captured during their feeding time in natural habitat. Direct wet smear, 1% lugols iodine and modified acid-fast bacilli staining were used to identify the parasites from the body surfaces of cockroaches. Among human habitation two common species of cockroaches were collected i.e. P. americana and B. germanica. The results showed that 112 (46.8%) cockroaches harbored at least one human intestinal parasite on their body surfaces. The cockroaches from hospital environment harboured more parasites than houses. 47 (33.57%) cockroaches from houses and 65 (59.09%) from hospitals were infected with parasitic organisms. Of these, 76 (67.85%) were parasitic protozoans and 36(32.15%) were pathogenic and non-pathogenic intestinal parasites. P. americana harboured more parasites as compared to B. germanica in both environment. Most common human intestinal parasites found on cockroaches include ova of Ascaris lumbricoides (giant roundworm), Trichuris trichura (whipworm), Anchylostoma deodunalae (hookworm), Enterobius vermicularis (pinworm), Taenia spp. and Strongyloides stercoralis (threadworm). The cysts of protozoans’ parasites including Balantidium coli, Entomoeba hystolitica, C. parvum, Isospora belli, Giardia duodenalis and C. cayetenensis were isolated and identified from cockroaches. Both experimental sites were significantly different in carriage of parasitic load on cockroaches. Difference in the hygienic condition of the environments, including human excrement disposal, variable habitat interacted, indoor and outdoor species, may account for the observed variation in the parasitic carriage rate of cockroaches among different experimental site. Thus a finding of this study is that Cockroaches are uniformly distributed in human habitation and act as a mechanical vector of pathogenic parasites that cause common illness such as diarrhea and bowel disorders. This fact contributes to epidemiological chain therefore control of cockroaches will significantly lessen the prevalence of illness in human. Effective control strategies will reduce the public health burden of the gastro-intestinal parasites in the developing countries.Keywords: cockroaches, health risks, hospitals, houses, parasites, protozoans, transmission
Procedia PDF Downloads 2821587 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 4151586 Infection of Phlebotomus Sergenti with Leishmania Tropica in a Classical Focus of Leishmania Major in Tunisia
Authors: Kaouther Jaouadi, Jihene Bettaieb, Amira Bennour, Ghassen Kharroubi, Sadok Salem, Afif Ben Salah
Abstract:
In Tunisia, chronic cutaneous leishmaniasis due to Leishmania (L) tropica is an important health problem. Its spreading has not been fully elucidated. Information on sandfly vectors, as well as their associated Leishmania species, is of paramount importance since vector dispersion is one of the major factors responsible for pathogen dissemination. In total, 650 sandflies were captured between June and August 2015 using sticky paper traps in the governorate of Sidi Bouzid, a classical focus of L. major in the Central-West of Tunisia. Polymerase chain reaction-restriction fragment length polymorphism analysis of the internal transcribed spacer 1 and sequencing were used for Leishmania detection and identification. Ninety-seven unfed females were tested for the presence of Leishmania parasite DNA. Six Phlebotomus sergenti were found positive for L. tropica. This finding enhances the understanding of the cycle extension of L. tropica outside its original focus of Tataouine in the South-East of the country.Keywords: cutaneous leishmaniasis, Leishmania tropica, sandflies, Tunisia
Procedia PDF Downloads 1561585 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 346