Search results for: concrete degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3566

Search results for: concrete degradation

2036 Mitigation of Interference in Satellite Communications Systems via a Cross-Layer Coding Technique

Authors: Mario A. Blanco, Nicholas Burkhardt

Abstract:

An important problem in satellite communication systems which operate in the Ka and EHF frequency bands consists of the overall degradation in link performance of mobile terminals due to various types of degradations in the link/channel, such as fading, blockage of the link to the satellite (especially in urban environments), intentional as well as other types of interference, etc. In this paper, we focus primarily on the interference problem, and we develop a very efficient and cost-effective solution based on the use of fountain codes. We first introduce a satellite communications (SATCOM) terminal uplink interference channel model that is classically used against communication systems that use spread-spectrum waveforms. We then consider the use of fountain codes, with focus on Raptor codes, as our main mitigation technique to combat the degradation in link/receiver performance due to the interference signal. The performance of the receiver is obtained in terms of average probability of bit and message error rate as a function of bit energy-to-noise density ratio, Eb/N0, and other parameters of interest, via a combination of analysis and computer simulations, and we show that the use of fountain codes is extremely effective in overcoming the effects of intentional interference on the performance of the receiver and associated communication links. We then show this technique can be extended to mitigate other types of SATCOM channel degradations, such as those caused by channel fading, shadowing, and hard-blockage of the uplink signal.

Keywords: SATCOM, interference mitigation, fountain codes, turbo codes, cross-layer

Procedia PDF Downloads 359
2035 Effects of Oxidized LDL in M2 Macrophages: Implications in Atherosclerosis

Authors: Fernanda Gonçalves, Karla Alcântara, Vanessa Moura, Patrícia Nolasco, Jorge Kalil, Maristela Hernandez

Abstract:

Introduction: Atherosclerosis is a chronic disease where two striking features are observed: retention of lipids and inflammation. Understanding the interaction between immune cells and lipoproteins involved in atherogenesis are urgent challenges, since cardiovascular diseases are the leading cause of death worldwide. Macrophages are critical to the development of atherosclerotic plaques and in the perpetuation of inflammation in these lesions. These cells are also directly involved in unstable plaque rupture. Recently different populations of macrophages are being identified in atherosclerotic lesions. Although the presence of M2 macrophages (macrophages activated by the alternative pathway, eg. The IL-4) has been identified, the function of these cells in atherosclerosis is not yet defined. M2 macrophages have a high endocytic capacity, they promote remodeling of tissues and to have anti-inflammatory activity. However, in atherosclerosis, especially unstable plaques, severe inflammatory reaction, accumulation of cellular debris and intense degradation of the tissue is observed. Thus, it is possible that the M2 macrophages have altered function (phenotype) in atherosclerosis. Objective: Our aim is to evaluate if the presence of oxidized LDL alters the phenotype and function of M2 macrophages in vitro. Methods: For this, we will evaluate whether the addition of lipoprotein in M2 macrophages differentiated in vitro with IL -4 induces 1) a reduction in the secretion of anti-inflammatory cytokines (CBA and ELISA), 2) secretion of inflammatory cytokines (CBA and ELISA), 3) expression of cell activation markers (Flow cytometry), 4) alteration in gene expression of molecules adhesion and extracellular matrix (Real-Time PCR) and 5) Matrix degradation (confocal microscopy). Results: In oxLDL stimulated M2 macrophages cultures we did not find any differences in the expression of the cell surface markers tested, including: HLA-DR, CD80, CD86, CD206, CD163 and CD36. Also, cultures stimulated with oxLDL had similar phagocytic capacity when compared to unstimulated cells. However, in the supernatant of these cultures an increase in the secretion of the pro-inflammatory cytokine IL-8 was detected. No significant changes where observed in IL-6, IL-10, IL-12 and IL-1b levels. The culture supernatant also induced massive extracellular matrix (produced by mouse embryo fibroblast) filaments degradation. When evaluating the expression of 84 extracellular matrix and adhesion molecules genes, we observed that the stimulation of oxLDL in M2 macrophages decreased 47% of the genes and increased the expression of only 3% of the genes. In particular we noted that oxLDL inhibit the expression of 60% of the genes constituents of extracellular matrix and collagen expressed by these cells, including fibronectin1 and collagen VI. We also observed a decrease in the expression of matrix protease inhibitors, such as TIMP 2. On the opposite, the matricellular protein thrombospondin had a 12 fold increase in gene expression. In the presence of native LDL 90% of the genes had no altered expression. Conclusion: M2 macrophages stimulated with oxLDL secrete the pro-inflammatory cytokine IL-8, have an altered extracellular matrix constituents gene expression, and promote the degradation of extracellular matrix. M2 macrophages may contribute to the perpetuation of inflammation in atherosclerosis and to plaque rupture.

Keywords: atherosclerosis, LDL, macrophages, m2

Procedia PDF Downloads 334
2034 Prospective Future of Frame Fire Tests

Authors: Chung-Hao Wu, Tung-Dju Lin, Ming-Chin Ho, Minehiro Nishiyama

Abstract:

This paper discusses reported fire tests of concrete beams and columns, future fire tests of beam/column frames, and an innovative concept for designing a beam/column furnace. The proposed furnace could be designed to maximize the efficiency of fire test procedures and minimize the cost of furnace construction and fuel consumption. ASTM E119 and ISO 834 standards were drafted based on prescriptive codes and have several weaknesses. The first involves a provision allowing the support regions of a test element to be protected from fire exposure. The second deals with the L/30 deflection end point instead of the structural end point (collapse) in order to protect the hydraulic rams from fire damage. Furthermore, designers commonly use the measured fire endurances of interior columns to assess fire ratings of edge and corner columns of the same building. The validity of such an engineering practice is theoretically unsound. Performance-Based Codes (PBC) require verification tests of structural frames including the beam/column joints to overcome these weaknesses but allow the use of element test data as reference only. In the last 30 years, PBC have gained global popularity because the innovative design and flexibility in achieving an ultimate performance goal.

Keywords: fire resistance, concrete structure, beam/column frame, fire tests

Procedia PDF Downloads 328
2033 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes

Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah

Abstract:

The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.

Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential

Procedia PDF Downloads 88
2032 Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication

Authors: Mariano Gonzalez Cortina, Pablo Saiz Martinez, Francisco Fernandez Martinez, Antonio Rodriguez Sanchez

Abstract:

Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics.

Keywords: construction and demolition waste, masonry mortar, mechanical properties, recycled aggregate, waste treatment

Procedia PDF Downloads 421
2031 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 117
2030 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments

Procedia PDF Downloads 296
2029 Stipagrostis ciliata (Desf.) De Winter: A Promising Pastoral Species for Ecological Restoration in North African Arid Bioclimate

Authors: Lobna Mnif Fakhfakh, Mohamed Chaieb

Abstract:

Most ecological studies in North Africa reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppic ecosystems are characterized by a low density of perennial grasses. This phenomenon reveals a drop in food value of rangelands, which is now estimated at less than 100 UF.ha -1. -1 Year in all North African steppes. However, for ecological restoration initiatives, some species such the genus of Stipagrostis and Stipa can be considered a good candidates species for effective pastoral improvement under arid bioclimate. The present work concerns Stipagrostis ciliata (Desf.) De Winter, perennial grasses, abundant in ecosystems characterized by the high content of gypsum (CaSO4)2H2O in the southern Tunisia. This tufted species with C4 biochemical photosynthesis type is able to grow and develop under high temperature and low annual rainfall, where the minimum water potential (ψmd), can reach -4 MPa during the summer season with a phenological growth maintained throughout the season unfavorable. At this point in the early autumn rains, S. ciliata begins its growth, especially with a heading which occurs 2-3 weeks after the first autumn rains. From the foregoing, it can be concluded that Stipagrostis ciliata is an excellent promising pastoral species for the ecological restoration, and enhancement of ecosystems biological productivity in arid bioclimate of North Africa.

Keywords: Stipagrostis ciliata, pastoral species, ecological restoration, arid bioclimate

Procedia PDF Downloads 415
2028 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications

Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh

Abstract:

Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.

Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential

Procedia PDF Downloads 139
2027 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 471
2026 Measuring the Effect of Co-Composting Oil Sludge with Pig, Cow, Horse And Poultry Manures on the Degradation in Selected Polycyclic Aromatic Hydrocarbons Concentrations

Authors: Ubani Onyedikachi, Atagana Harrison Ifeanyichukwu, Thantsha Mapitsi Silvester

Abstract:

Components of oil sludge (PAHs) are known cytotoxic, mutagenic and potentially carcinogenic compounds also bacteria and fungi have been found to degrade PAHs to innocuous compounds. This study is aimed at measuring the effect of pig, cow, horse and poultry manures on the degradation in selected PAHs present in oil sludge. Soil spiked with oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil: manure and wood-chips in a ratio of 2:1 (w/v) spiked soil: wood-chips. Control was set up similar as the one above but without manure. The mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Highest temperature reached was 27.5 °C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78μg/dwt/day. Microbial growth and activities were enhanced; bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Percentage reduction in PAHs was measured using automated soxhlet extractor with Dichloromethane coupled with gas chromatography/mass spectrometry (GC/MS). Results from PAH measurements showed reduction between 77% and 99%. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs.

Keywords: animal manures, bioremediation, co-composting, oil refinery sludge, PAHs

Procedia PDF Downloads 268
2025 Phenological Variability among Stipagrostis ciliata Accessions Growing under Arid Bioclimate of Southern of Tunisia

Authors: Lobna Mnif Fakhfakh, Mohamed Chaieb

Abstract:

Most ecological studies in North Africa arid bioclimate reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing during a long time. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grasses. The objective of the present work is to examine the phenology and the above ground growth of several Stipagrostis ciliata accessions, growing under different arid bioclimate of North Africa (case of Tunisia). The results of the ANOVA test, next to the mean values of all measurements show significant differences in all morphological parameters of S. ciliata accessions. Plant diameter, biovolume, root biomass with protective sleeve and spike number show very significant. Differences between S. ciliata accessions. Significance tests for the differences of means indicate high distinctiveness of accessions. Pearson’s correlation analysis of the morphological traits suggests that these traits are significantly and positively correlated. Cluster analysis indicates overall differences among accessions and exhibits the presence of three clusters. The Principal component analysis (PCA) is applied on a table with four observations and 12 variables. Dispersion of Stipagrostis ciliata accessions on the first two axes of principal component analysis confirms the presence of three groups of plants. The characterization of Stipagrostis ciliata plants has shown that significant differences exist in terms of morphological and phenological parameters.

Keywords: accession, morphology, phenology, Stipagrostis ciliata

Procedia PDF Downloads 253
2024 Households’ Willingness to Pay for Watershed Management Practices in Lake Hawassa Watershed, Southern Ethiopia

Authors: Mulugeta Fola, Mengistu Ketema, Kumilachew Alamerie

Abstract:

Watershed provides vast economic benefits within and beyond the management area of interest. But most watersheds in Ethiopia are increasingly facing the threats of degradation due to both natural and man-made causes. To reverse these problems, communities’ participation in sustainable management programs is among the necessary measures. Hence, this study assessed the households’ willingness to pay for watershed management practices through a contingent valuation study approach. Double bounded dichotomous choice with open-ended follow-up format was used to elicit the households’ willingness to pay. Based on data collected from 275 randomly selected households, descriptive statistics results indicated that most households (79.64%) were willing to pay for watershed management practices. A bivariate Probit model was employed to identify determinants of households’ willingness to pay and estimate mean willingness to pay. Its result shows that age, gender, income, livestock size, perception of watershed degradation, social position, and offered bids were important variables affecting willingness to pay for watershed management practices. The study also revealed that the mean willingness to pay for watershed management practices was calculated to be 58.41 Birr and 47.27 Birr per year from the double bounded and open-ended format, respectively. The study revealed that the aggregate welfare gains from watershed management practices were calculated to be 931581.09 Birr and 753909.23 Birr per year from double bounded dichotomous choice and open-ended format, respectively. Therefore, the policymakers should make households to pay for the services of watershed management practices in the study area.

Keywords: bivariate probit model, contingent valuation, watershed management practices, willingness to pay

Procedia PDF Downloads 222
2023 Instrumentation of Urban Pavements Built with Construction and Demolition Waste

Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez

Abstract:

This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.

Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap

Procedia PDF Downloads 157
2022 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition

Authors: Karolina Mazur, Stanislaw Kuciel

Abstract:

Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.

Keywords: biocomposites, PLA, PHA, storage

Procedia PDF Downloads 264
2021 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 208
2020 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.

Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light

Procedia PDF Downloads 168
2019 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite

Procedia PDF Downloads 245
2018 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation

Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone

Abstract:

This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.

Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit

Procedia PDF Downloads 239
2017 Life Cycle Analysis of Using Brick Waste in Road Technology

Authors: Mezhoud Samy, Toumi Youcef, Boukendekdji Otmane

Abstract:

Nowadays, industrial by-products and waste are increasing along with public needs increase. The engineering sector has turned to sustainable development by emphasizing the aspects of environmental and life cycle assessment as an important objective. Among this waste, the remains of the red bricks (DBR) may be an alternative worth checking out, given their availability and abundance at the construction sites. In this context, this work aims to valorize DBR in the concrete road (BR). The incorporation of DBR is carried out by the substitution of the granular fractions of mixtures from noble quarry materials. The experimental plan aims to determine the physico-mechanical performance and environmental performance of manufactured BRs from DBR with a cement content (6.5%) and compared with a control BR without DBR. The studied characteristics are proctor, resistance to compression, resistance to flexural tensile at 7 and 28 days, modulus of elasticity, and total shrinkage. The results of this experimental study showed that the characteristics of recycled aggregates (DBR) are lower than those of natural aggregates but remain acceptable with respect to regulations. Results demonstrate the mechanical performance of BR made from less DBR than the control BR without DBR but remains appreciable and encourage their jobs in the road sector. Recycled aggregates can constitute an interesting economic and ecological alternative but require elementary precautions before any use.

Keywords: life cycle assessment, brick waste, road concrete, performance

Procedia PDF Downloads 92
2016 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway

Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani

Abstract:

Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.

Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase

Procedia PDF Downloads 368
2015 Usage of Palm Oil Industrial Wastes as Construction Materials

Authors: Mohammad Momeenul Islam, U. Johnson Alengaram, Mohd Zamin Jumaat, Iftekhair Ibnul Bashar

Abstract:

Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work.

Keywords: construction materials, oil palm shells (OPS), palm oil fuel ash (POFA), aggregates

Procedia PDF Downloads 353
2014 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 60
2013 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 226
2012 Population Stereotype Production, User Factors, and Icon Design for Underserved Communities of Rural India

Authors: Avijit Sengupta, Klarissa Ting Ting Cheng, Maffee Peng-Hui Wan

Abstract:

This study investigates the influence of user factors and referent characteristics on representation types generated using the stereotype production method for designing icons. Sixty-eight participants of farming communities were asked to draw images based on sixteen feature referents. Significant statistical differences were found between the types of representations generated for contextual and context-independent referents. Strong correlations were observed between years of formal education and total number of abstract representations produced for both contextual and context-independent referents. However, representation characteristics were not influenced by other user factors such as participants’ experience with mobile phone and years of farming experience. A statistically significant tendency of making concrete representations was observed for both contextual and context-independent referents. These findings provide insights on community members’ involvement in icon design and suggest a consolidated icon design strategy based on population stereotype, particularly for under-served rural communities of India.

Keywords: abstract representation, concrete representation, participatory design, population stereotype

Procedia PDF Downloads 374
2011 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 265
2010 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 374
2009 Design of Ka-Band Satellite Links in Indonesia

Authors: Zulfajri Basri Hasanuddin

Abstract:

There is an increasing demand for broadband services in Indonesia. Therefore, the answer is the use of Ka-Band which has some advantages such as wider bandwidth, the higher transmission speeds, and smaller size of antenna in the ground. However, rain attenuation is the primary factor in the degradation of signal at the Kaband. In this paper, the author will determine whether the Ka-band frequency can be implemented in Indonesia which has high intensity of rainfall.

Keywords: Ka-band, link budget, link availability, BER, Eb/No, C/N

Procedia PDF Downloads 420
2008 Assessment of Drinking Water Contamination from the Water Source to the Consumer in Palapye Region, Botswana

Authors: Tshegofatso Galekgathege

Abstract:

Poor water quality is of great concern to human health as it can cause disease outbreaks. A standard practice today, in developed countries, is that people should be provided with safe-reliable drinking water, as safe drinking water is recognized as a basic human right and a cost effective measure of reducing diseases. Over 1.1 billion people worldwide lack access to a safe water supply and as a result, the majority are forced to use polluted surface or groundwater. It is widely accepted that our water supply systems are susceptible to the intentional or accidental contamination .Water quality degradation may occur anywhere in the path that water takes from the water source to the consumer. Chlorine is believed to be an effective tool in disinfecting water, but its concentration may decrease with time due to consumption by chemical reactions. This shows that we are at the risk of being infected by waterborne diseases if chlorine in water falls below the required level of 0.2-1mg/liter which should be maintained in water and some contaminants enter into the water distribution system. It is believed that the lack of adequate sanitation also contributes to the contamination of water globally. This study therefore, assesses drinking water contamination from the source to the consumer by identifying the point vulnerable to contamination from the source to the consumer in the study area .To identify the point vulnerable to contamination, water was sampled monthly from boreholes, water treatment plant, water distribution system (WDS), service reservoirs and consumer taps from all the twenty (20) villages of Palapye region. Sampled water was then taken to the laboratory for testing and analysis of microbiological and chemical parameters. Water quality analysis were then compared with Botswana drinking water quality standards (BOS32:2009) to see if they comply. Major sources of water contamination identified during site visits were the livestock which were found drinking stagnant water from leaking pipes in 90 percent of the villages. Soils structure around the area was negatively affected because of livestock movement even vegetation in the area. In conclusion microbiological parameters of water in the study area do not comply with drinking water standards, some microbiological parameters in water indicated that livestock do not only affect land degradation but also the quality of water. Chlorine has been applied to water over some years but it is not effective enough thus preventative measures have to be developed, to prevent contaminants from reaching water. Remember: Prevention is better than cure.

Keywords: land degradation, leaking systems, livestock, water contamination

Procedia PDF Downloads 350
2007 Analysis of Incidences of Collapsed Buildings in the City of Douala, Cameroon from 2011-2020

Authors: Theodore Gautier Le Jeune Bikoko, Jean Claude Tchamba, Sofiane Amziane

Abstract:

This study focuses on the problem of collapsed buildings within the city of Douala over the past ten years, and more precisely, within the period from 2011 to 2020. It was carried out in a bid to ascertain the real causes of this phenomenon, which has become recurrent in the leading economic city of Cameroon. To achieve this, it was first necessary to review some works dealing with construction materials and technology as well as some case histories of structural collapse within the city. Thereafter, a statistical study was carried out on the results obtained. It was found that the causes of building collapses in the city of Douala are: Neglect of administrative procedures, use of poor quality materials, poor composition and confectioning of concrete, lack of Geotechnical study, lack of structural analysis and design, corrosion of the reinforcement bars, poor maintenance in buildings, and other causes. Out of the 46 cases of structural failure of buildings within the city of Douala, 7 of these were identified to have had no geotechnical study carried out, giving a percentage of 15.22%. It was also observed that out of the 46 cases of structural failure, 6 were as a result of lack of proper structural analysis and design, giving a percentage of 13.04%. Subsequently, recommendations and suggestions are made in a bid to placing particular emphasis on the choice of materials, the manufacture and casting of concrete, as well as the placement of the required reinforcements. All this guarantees the stability of a building.

Keywords: collapse buildings, Douala, structural collapse, Cameroon

Procedia PDF Downloads 164