Search results for: total fertility rate
571 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal
Authors: Pedro B. Antunes, Paulo J. Ramísio
Abstract:
Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.Keywords: coastal zones, monitoring, road runoff pollution, salt deposition
Procedia PDF Downloads 240570 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit
Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini
Abstract:
Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift
Procedia PDF Downloads 293569 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria
Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola
Abstract:
The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon
Procedia PDF Downloads 615568 Employee Commitment as a Means of Revitalising the Hospitality Industry post-Covid: Considering the Impact of Psychological Contract and Psychological Capital
Authors: Desere Kokt
Abstract:
Hospitality establishments worldwide are bearing the brunt of the effects of Covid-19. As the hospitality industry is looking to recover, emphasis is placed on rejuvenating the industry. This is especially pertinent for economic development in areas of high unemployment, such as the Free State province of South Africa. The province is not a main tourist area and thus depends on the influx of tourists. The province has great scenic beauty with many accommodation establishments that provide job opportunities to the local population. The two main economic hubs of the Free State province namely Bloemfontein and Clarens, were the focus of the investigation. The emphasis was on graded accommodation establishments as they must adhere to the quality principles of the Tourism Grading Council of South Africa (TGCSA) to obtain star grading. The hospitality industry is known for being labour intensive, and employees need to be available to cater for the needs of paying customers. This is referred to as ‘emotional labour’ and implies that employees need to manage their feelings and emotions as part of performing their jobs. The focus of this study was thus on psychological factors related to working in the hospitality industry – specifically psychological contract and psychological capital and its impact on the commitment of employees in graded accommodation establishments. Employee commitment can be explained as a psychological state that binds the individual to the organisation and involves a set of psychological relationships that include affective (emotions), normative (perceived obligation) and continuance (staying with the organisation) dimensions. Psychological contract refers to the reciprocal beliefs and expectations between the employer and the employee and consists of transactional and rational contracts. Transactional contracts are associated with the economic exchange, and contractional issues related to the employment contract and rational contracts relate to the social exchange between the employee and the organisation. Psychological capital refers to an individual’s positive psychology state of development that is characterised by self-efficiency (having confidence in doing one’s job), optimism (being positive and persevering towards achieving one’s goals), hope (expectations for goals to succeed) and resilience (bouncing back to attain success when beset by problems and adversity). The study employed a quantitative research approach, and a structured questionnaire was used to gather data from respondents. The study was conducted during the Covid-19 pandemic, which hampered the data gathering efforts of the researchers. Many accommodation establishments were either closed or temporarily closed, which meant that data gathering was an intensive and laborious process. The main researcher travelled to the various establishments to collect the data. Nine hospitality establishments participated in the study, and around 150 employees were targeted for data collection. Ninety-two (92) questionnaires were completed, which represents a response rate of 61%. Data were analysed using descriptive and inferential statistics, and partial least squares structural equation modelling (PLS-SEM) was applied to examine the relationship between the variables.Keywords: employee commitment, hospitality industry, psychological contract, psychological capital
Procedia PDF Downloads 109567 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses
Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard
Abstract:
Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.Keywords: cheese, miniature, model, pseudomonas spp, spoilage
Procedia PDF Downloads 135566 Antiinflammatory and Wound Healing Activity of Sedum Essential Oils Growing in Kazakhstan
Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina
Abstract:
The last decade the growth of severe and disseminated forms of inflammatory diseases is observed in Kazakhstan, in particular, septic shock, which progresses on 3-15% of patients with infectious complications of postnatal period. In terms of the rate of occurrence septic shock takes third place after hemorrhagic and cardiovascular shock, in terms of lethality it takes first place. The structure of obstetric sepsis has significantly changed. Currently the first place is taken by postabortive sepsis (40%) that is connected with usage of imperfect methods of artificial termination of pregnancy in late periods (intraamnial injection of sodium chloride, glucose). The second place is taken by postnatal sepsis (32%); the last place is taken by septic complications of caesarean section (28%). In this connection, search for and assessment of effectiveness of new medicines for treatment of postoperative infectious complications, having biostimulating effect and speeding up regeneration processes, is very promising and topical. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Sedum L. plants using Clevenger apparatus. Pilot batch of plant medicinal product based on Sedum essential oils was produced by Chimpharm JSC, Santo Member of Polpharma Group (Kazakhstan). During clinical test of the plant medicinal product based on Sedum L. essential oils 37 female patients at the age from 35 to 57 with clinical signs of complicated postoperative processes and 12 new mothers with clinical signs of inflammatory process on sutures on anterior abdominal wall after caesarean section and partial disruption of surgical suture line on perineum were examined. Medicine usage methods - surgical wound treatment 2 times a day, treatment with other medicines of local action was not performed. Before and after treatment general clinical test, determination of immune status, bacterioscopic test of wound fluid was performed to all women, medical history data was taken into account, wound cleansing and healing time, full granulations, side effects and complications, satisfaction with the used medicine was assessed. On female patients with inflammatory infiltration and partial disruption of surgical suture line anesthetic wound healing effect of plant medicinal product based on Sedum L. essential oils was observed as early as on the second day after beginning of using it, wound cleansing took place, as a rule, within the first row days. Hyperemia in the area of suture line also was not observed for 2-3-d day of usage of medicine, good constant course was observed. The absence of clinical effect on this group of patients was not registered. The represented data give evidence of that clinical effect was accompanied with normalization of changed laboratory findings. No allergic responses or side effects were observed during usage of the plant medicinal products based on Sedum L. essential oils.Keywords: antiinflammatory, bioactive substances, essential oils, isolation, sedum L., wound healing
Procedia PDF Downloads 273565 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake
Authors: Supriya Majumder, Pabitra Banik
Abstract:
Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.Keywords: arsenic, fractionation, paddy soil, potential availability
Procedia PDF Downloads 127564 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge
Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio
Abstract:
Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction
Procedia PDF Downloads 334563 Neonatology Clinical Routine in Cats and Dogs: Cases, Main Conditions and Mortality
Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, João C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
The neonatal care of cats and dogs represents a challenge to veterinarians due to the small size of the newborns and their physiological particularities. In addition, many Veterinary Medicine colleges around the world do not include neonatology in the curriculum, which makes it less likely for the veterinarian to have basic knowledge regarding neonatal care and worsens the clinical care these patients receive. Therefore, lack of assistance and negligence have become frequent in the field, which contributes towards the high mortality rates. This study aims at describing cases and the main conditions pertaining to the neonatology clinical routine in cats and dogs, highlighting the importance of specialized care in this field of Veterinary Medicine. The study included 808 neonates admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil, between January 2018 and November 2019. Of these, 87.3% (705/808) were dogs and 12.7% (103/808) were cats. Among the neonates admitted, 57.3% (463/808) came from emergency c-sections due to dystocia, 8.7% (71/808) cane from vaginal deliveries with obstetric maneuvers due to dystocia, and 34% (274/808) were admitted for clinical care due to neonatal conditions. Among the neonates that came from emergency c-sections and vaginal deliveries, 47.3% (253/534) was born in respiratory distress due to severe hypoxia or persistent apnea and required resuscitation procedure, such as the Jen Chung acupuncture point (VG26), oxygen therapy with mask, pulmonary expansion with resuscitator, heart massages and administration of emergency medication, such as epinephrine. On the other hand, in the neonatal clinical care, the main conditions and alterations observed in the newborns were omphalophlebitis, toxic milk syndrome, neonatal conjunctivitis, swimmer puppy syndrome, neonatal hemorrhagic syndrome, pneumonia, trauma, low weight at birth, prematurity, congenital malformations (cleft palate, cleft lip, hydrocephaly, anasarca, vascular anomalies in the heart, anal atresia, gastroschisis, omphalocele, among others), neonatal sepsis and other local and systemic bacterial infections, viral infections (feline respiratory complex, parvovirus, canine distemper, canine infectious traqueobronchitis), parasitical infections (Toxocara spp., Ancylostoma spp., Strongyloides spp., Cystoisospora spp., Babesia spp. and Giardia spp.) and fungal infections (dermatophytosis by Microsporum canis). The most common clinical presentation observed was the neonatal triad (hypothermia, hypoglycemia and dehydration), affecting 74.6% (603/808) of the patients. The mortality rate among the neonates was 10.5% (85/808). Being knowledgeable about neonatology is essential for veterinarians to provide adequate care for these patients in the clinical routine. Adding neonatology to college curriculums, improving the dissemination of information on the subject, and providing annual training in neonatology for veterinarians and employees are important to improve immediate care and reduce the mortality rates.Keywords: neonatal care, puppies, neonatal, conditions
Procedia PDF Downloads 229562 Microbial Biogeography of Greek Olive Varieties Assessed by Amplicon-Based Metagenomics Analysis
Authors: Lena Payati, Maria Kazou, Effie Tsakalidou
Abstract:
Table olives are one of the most popular fermented vegetables worldwide, which along with olive oil, have a crucial role in the world economy. They are highly appreciated by the consumers for their characteristic taste and pleasant aromas, while several health and nutritional benefits have been reported as well. Until recently, microbial biogeography, i.e., the study of microbial diversity over time and space, has been mainly associated with wine. However, nowadays, the term 'terroir' has been extended to other crops and food products so as to link the geographical origin and environmental conditions to quality aspects of fermented foods. Taking the above into consideration, the present study focuses on the microbial fingerprinting of the most important olive varieties of Greece with the state-of-the-art amplicon-based metagenomics analysis. Towards this, in 2019, 61 samples from 38 different olive varieties were collected at the final stage of ripening from 13 well spread geographical regions in Greece. For the metagenomics analysis, total DNA was extracted from the olive samples, and the 16S rRNA gene and ITS DNA region were sequenced and analyzed using bioinformatics tools for the identification of bacterial and yeasts/fungal diversity, respectively. Furthermore, principal component analysis (PCA) was also performed for data clustering based on the average microbial composition of all samples from each region of origin. According to the composition, results obtained, when samples were analyzed separately, the majority of both bacteria (such as Pantoea, Enterobacter, Roserbergiella, and Pseudomonas) and yeasts/fungi (such as Aureobasidium, Debaromyces, Candida, and Cladosporium) genera identified were found in all 61 samples. Even though interesting differences were observed at the relative abundance level of the identified genera, the bacterial genus Pantoea and the yeast/fungi genus Aureobasidium were the dominant ones in 35 and 40 samples, respectively. Of note, olive samples collected from the same region had similar fingerprint (genera identified and relative abundance level) regardless of the variety, indicating a potential association between the relative abundance of certain taxa and the geographical region. When samples were grouped by region of origin, distinct bacterial profiles per region were observed, which was also evident from the PCA analysis. This was not the case for the yeast/fungi profiles since 10 out of the 13 regions were grouped together mainly due to the dominance of the genus Aureobasidium. A second cluster was formed for the islands Crete and Rhodes, both of which are located in the Southeast Aegean Sea. These two regions clustered together mainly due to the identification of the genus Toxicocladosporium in relatively high abundances. Finally, the Agrinio region was separated from the others as it showed a completely different microbial fingerprinting. However, due to the limited number of olive samples from some regions, a subsequent PCA analysis with more samples from these regions is expected to yield in a more clear clustering. The present study is part of a bigger project, the first of its kind in Greece, with the ultimate goal to analyze a larger set of olive samples of different varieties and from different regions in Greece in order to have a reliable olives’ microbial biogeography.Keywords: amplicon-based metagenomics analysis, bacteria, microbial biogeography, olive microbiota, yeasts/fungi
Procedia PDF Downloads 122561 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).
Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe
Abstract:
Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media
Procedia PDF Downloads 75560 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China
Authors: Mengdan Guo, Zongmin Wang, Haibo Yang
Abstract:
Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index
Procedia PDF Downloads 62559 i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)
Authors: Beatriz Rebocho, Elisabete Valente, Carla Palma, Andreia Guilherme, Filipa Bessa, Paula Sobral
Abstract:
The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment.Keywords: microplastics, Portugal, Atlantic Ocean, water column, surface water
Procedia PDF Downloads 86558 Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand
Authors: Ajay Kumar Pandey
Abstract:
White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality).Keywords: Lepidiota, profiling, Uttarakhand, whitegrub
Procedia PDF Downloads 224557 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 401556 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors
Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs
Abstract:
Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors
Procedia PDF Downloads 123555 Strength Properties of Ca-Based Alkali Activated Fly Ash System
Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh
Abstract:
Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption
Procedia PDF Downloads 231554 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 134553 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation
Authors: Jin Yue
Abstract:
Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control
Procedia PDF Downloads 68552 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines
Authors: Cristobal García
Abstract:
The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.Keywords: SHM, vibrations, connections, floating offshore platform
Procedia PDF Downloads 130551 A User-Side Analysis of the Public-Private Partnership: The Case of the New Bundang Subway Line in South Korea
Authors: Saiful Islam, Deuk Jong Bae
Abstract:
The purpose of this study is to examine citizen satisfaction and competitiveness of a Public Private Partnership project. The study focuses on PPP in the transport sector and investigates the New Bundang Subway Line (NBL) in South Korea as the object of a case study. Most PPP studies are dominated by the study of public and private sector interests, which are classified in to three major areas comprising of policy, finance, and management. This study will explore the user perspective by assessing customer satisfaction upon NBL cost and service quality, also the competitiveness of NBL compared to other alternative transport modes which serve the Jeongja – Gangnam trip or vice versa. The regular Bundang Subway Line, New Bundang Subway Line, bus and private vehicle are selected as the alternative transport modes. The study analysed customer satisfaction of NBL and citizen’s preference of alternative transport modes based on a survey in Bundang district, South Korea. Respondents were residents and employees who live or work in Bundang city, and were divided into the following areas Pangyo, Jeongjae – Sunae, Migeun – Ori – Jukjeon, and Imae – Yatap – Songnam. The survey was conducted in January 2015 for two weeks, and 753 responses were gathered. By applying the Hedonic Utility approach, the factors which affect the frequency of using NBL were found to be overall customer satisfaction, convenience of access, and the socio economic demographic of the individual. In addition, by applying the Analytic Hierarchy Process (AHP) method, criteria factors influencing the decision to select alternative transport modes were identified. Those factors, along with the author judgement of alternative transport modes, and their associated criteria and sub-criteria produced a priority list of user preferences regarding their alternative transport mode options. The study found that overall the regular Bundang Subway Line (BL), which was built and operated under a conventional procurement method was selected as the most preferable transport mode due to its cost competitiveness. However, on the sub-criteria level analysis, the NBL has competitiveness on service quality, particularly on journey time. By conducting a sensitivity analysis, the NBL can become the first choice of transport by increasing the NBL’s degree of weight associated with cost by 0,05. This means the NBL would need to reduce either it’s fare cost or transfer fee, or combine those two cost components to reduce the total of the current cost by 25%. In addition, the competitiveness of NBL also could be obtained by increasing NBL convenience through escalating access convenience such as constructing an additional station or providing more access modes. Although these convenience improvements would require a few extra minutes of journey time, the user found this to be acceptable. The findings and policy suggestions can contribute to the next phase of NBL development, showing that consideration should be given to the citizen’s voice. The case study results also contribute to the literature of PPP projects specifically from a user side perspective.Keywords: public private partnership, customer satisfaction, public transport, new Bundang subway line
Procedia PDF Downloads 354550 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants
Authors: N. C. Shahi, Anupama Singh, E. Kate
Abstract:
Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying
Procedia PDF Downloads 316549 The Effects of in vitro Digestion on Cheese Bioactivity; Comparing Adult and Elderly Simulated in vitro Gastrointestinal Digestion Models
Authors: A. M. Plante, F. O’Halloran, A. L. McCarthy
Abstract:
By 2050 it is projected that 2 billion of the global population will be more than 60 years old. Older adults have unique dietary requirements and aging is associated with physiological changes that affect appetite, sensory perception, metabolism, and digestion. Therefore, it is essential that foods recommended and designed for older adults promote healthy aging. To assess cheese as a functional food for the elderly, a range of commercial cheese products were selected and compared for their antioxidant properties. Cheese from various milk sources (bovine, goats, sheep) with different textures and fat content, including cheddar, feta, goats, brie, roquefort, halloumi, wensleydale and gouda, were initially digested with two different simulated in vitro gastrointestinal digestion (SGID) models. One SGID model represented a validated in vitro adult digestion system and the second model, an elderly SGID, was designed to consider the physiological changes associated with aging. The antioxidant potential of all cheese digestates was investigated using in vitro chemical-based antioxidant assays, (2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP) and total phenolic content (TPC)). All adult model digestates had high antioxidant activity across both DPPH ( > 70%) and FRAP ( > 700 µM Fe²⁺/kg.fw) assays. Following in vitro digestion using the elderly SGID model, full-fat red cheddar, low-fat white cheddar, roquefort, halloumi, wensleydale, and gouda digestates had significantly lower (p ≤ 0.05) DPPH radical scavenging properties compared to the adult model digestates. Full-fat white cheddar had higher DPPH radical scavenging activity following elderly SGID digestion compared to the adult model digestate, but the difference was not significant. All other cheese digestates from the elderly model were comparable to the digestates from the adult model in terms of radical scavenging activity. The FRAP of all elderly digestates were significantly lower (p ≤ 0.05) compared to the adult digestates. Goats cheese was significantly higher (p ≤ 0.05) in FRAP (718 µM Fe²/kg.fw) compared to all other digestates in the elderly model. TPC levels in the soft cheeses (feta, goats) and low-fat cheeses (red cheddar, white cheddar) were significantly lower (p ≤ 0.05) in the elderly digestates compared to the adult digestates. There was no significant difference in TPC levels, between the elderly and adult model for full-fat cheddar (red, white), roquefort, wensleydale, gouda, and brie digestates. Halloumi cheese was the only cheese that was significantly higher in TPC levels following elderly digestion compared to adult digestates. Low fat red cheddar had significantly higher (p ≤ 0.05) TPC levels compared to all other digestates for both adult and elderly digestive systems. Findings from this study demonstrate that aging has an impact on the bioactivity of cheese, as antioxidant activity and TPC levels were lower, following in vitro elderly digestion compared to the adult model. For older adults, soft cheese, particularly goats cheese, was associated with high radical scavenging and reducing power, while roquefort cheese had low antioxidant activity. Also, elderly digestates of halloumi and low-fat red cheddar were associated with high TPC levels. Cheese has potential as a functional food for the elderly, however, bioactivity can vary depending on the cheese matrix. Funding for this research was provided by the RISAM Scholarship Scheme, Cork Institute of Technology, Ireland.Keywords: antioxidants, cheese, in-vitro digestion, older adults
Procedia PDF Downloads 232548 Prevalence and Molecular Characterization of Extended-Spectrum–β Lactamase and Carbapenemase-Producing Enterobacterales from Tunisian Seafood
Authors: Mehdi Soula, Yosra Mani, Estelle Saras, Antoine Drapeau, Raoudha Grami, Mahjoub Aouni, Jean-Yves Madec, Marisa Haenni, Wejdene Mansour
Abstract:
Multi-resistance to antibiotics in gram-negative bacilli and particularly in enterobacteriaceae, has become frequent in hospitals in Tunisia. However, data on antibiotic resistant bacteria in aquatic products are scarce. The aims of this study are to estimate the proportion of ESBL- and carbapenemase-producing Enterobacterales in seafood (clams and fish) in Tunisia and to molecularly characterize the collected isolates. Two types of seafood were sampled in unrelated markets in four different regions in Tunisia (641 pieces of farmed fish and 1075 mediterranean clams divided into 215 pools, and each pool contained 5 pieces). Once purchased, all samples were incubated in tubes containing peptone salt broth for 24 to 48h at 37°C. After incubation, overnight cultures were isolated on selective MacConkey agar plates supplemented with either imipenem or cefotaxime, identified using API20E test strips (bioMérieux, Marcy-l’Étoile, France) and confirmed by Maldi-TOF MS. Antimicrobial susceptibility was determined by the disk diffusion method on Mueller-Hinton agar plates and results were interpreted according to CA-SFM 2021. ESBL-producing Enterobacterales were detected using the Double Disc Synergy Test (DDST). Carbapenem-resistance was detected using an ertapenem disk and was respectively confirmed using the ROSCO KPC/MBL and OXA-48 Confirm Kit (ROSCO Diagnostica, Taastrup, Denmark). DNA was extracted using a NucleoSpin Microbial DNA extraction kit (Macherey-Nagel, Hoerdt, France), according to the manufacturer’s instructions. Resistance genes were determined using the CGE online tools. The replicon content and plasmid formula were identified from the WGS data using PlasmidFinder 2.0.1 and pMLST 2.0. From farmed fishes, nine ESBL-producing strains (9/641, 1.4%) were isolated, which were identified as E. coli (n=6) and K. pneumoniae (n=3). Among the 215 pools of 5 clams analyzed, 18 ESBL-producing isolates were identified, including 14 E. coli and 4 K. pneumoniae. A low isolation rate of ESBL-producing Enterobacterales was detected 1.6% (18/1075) in clam pools. In fish, the ESBL phenotype was due to the presence of the blaCTX-M-15 gene in all nine isolates, but no carbapenemase gene was identified. In clams, the predominant ESBL phenotype was blaCTX-M-1 (n=6/18). blaCPE (NDM1, OXA48) was detected only in 3 isolates ‘K. pneumoniae isolates’. Replicon typing on the strains carring the ESBL and carbapenemase gene revelead that the major type plasmid carried ESBL were IncF (42.3%) [n=11/26]. In all, our results suggest that seafood can be a reservoir of multi-drug resistant bacteria, most probably of human origin but also by the selection pressure of antibiotic. Our findings raise concerns that seafood bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health.Keywords: BLSE, carbapenemase, enterobacterales, tunisian seafood
Procedia PDF Downloads 115547 Effects of Temperature and Mechanical Abrasion on Microplastics
Authors: N. Singh, G. K. Darbha
Abstract:
Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering
Procedia PDF Downloads 178546 Associated Factors of Hypercholesterolemia, Hyperuricemia and Double Burden of Hypercuricémia-Hypercholesterolemia in Gout Patients: Hospital Based Study
Authors: Pierre Mintom, Armel Assiene Agamou, Leslie Toukem, William Dakam, Christine Fernande Nyangono Biyegue
Abstract:
Context: Hyperuricemia, the presence of high levels of uric acid in the blood, is a known precursor to the development of gout. Recent studies have suggested a strong association between hyperuricemia and disorders of lipoprotein metabolism, specifically hypercholesterolemia. Understanding the factors associated with these conditions in gout patients is essential for effective treatment and management. Research Aim: The objective of this study was to determine the prevalence of hyperuricemia, hypercholesterolemia, and the double burden of hyperuricemia-hypercholesterolemia in the gouty population. Additionally, the study aimed to identify the factors associated with these conditions. Methodology: The study utilized a database from a survey of 150 gouty patients recruited at the Laquintinie Hospital in Douala between August 2017 and February 2018. The database contained information on anthropometric parameters, biochemical markers, and the food and drugs consumed by the patients. Hyperuricemia and hypercholesterolemia were defined based on specific serum uric acid and total cholesterol thresholds, and the double burden was defined as the co-occurrence of hyperuricemia and hypercholesterolemia. Findings: The study found that the prevalence rates for hyperuricemia, hypercholesterolemia, and the double burden were 61.3%, 76%, and 50.7% respectively. Factors associated with these conditions included hypertriglyceridemia, atherogenicity index TC/HDL ratio, atherogenicity index LDL/HDL ratio, family history, and the consumption of specific foods and drinks. Theoretical Importance: The study highlights the strong association between hyperuricemia and dyslipidemia, providing important insights for guiding treatment strategies in gout patients. Additionally, it emphasizes the significance of nutritional education in managing these metabolic disorders, suggesting the need to address eating habits in gout patients. Data Collection and Analysis Procedures: Data was collected through surveys and medical records of gouty patients. Information on anthropometric parameters, biochemical markers, and dietary habits was recorded. Prevalence rates and associated factors were determined through statistical analysis, employing odds ratios to assess the risks. Question Addressed: The study aimed to address the prevalence rates and associated factors of hyperuricemia, hypercholesterolemia, and the double burden in gouty patients. It sought to understand the relationships between these conditions and determine their implications for treatment and nutritional education. Conclusion: Findings show that it’s exists an association between hyperuricemia and hypercholesterolemia in gout patients, thus creating a double burden. The findings underscore the importance of considering family history and eating habits in addressing the double burden of hyperuricemia-hypercholesterolemia. This study provides valuable insights for guiding treatment approaches and emphasizes the need for nutritional education in gout patients. This study specifically focussed on the sick population. A case–control study between gouty and non-gouty populations would be interesting to better compare and explain the results observed.Keywords: gout, hyperuricemia, hypercholesterolemia, double burden
Procedia PDF Downloads 64545 Development of an Automatic Control System for ex vivo Heart Perfusion
Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala
Abstract:
Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller
Procedia PDF Downloads 178544 Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System
Authors: Tamar Trop
Abstract:
Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities.Keywords: bike sharing, Envision™, sustainability rating system, sustainable infrastructure
Procedia PDF Downloads 344543 Use of WhatsApp Messenger for Optimal Healthcare Operational Communication during the COVID-19 Pandemic
Authors: Josiah O. Carter, Charlotte Hayden, Elizabeth Arthurs
Abstract:
Background: During the COVID-19 pandemic, hospital management policies have changed frequently and rapidly. This has created novel challenges in keeping the workforce abreast of these changes to enable them to deliver safe and effective care. Traditional communication methods, e.g. email, do not keep pace with the rapidly changing environment in the hospital, resulting in inaccurate, irrelevant, or outdated information being communicated, resulting in inefficiencies in patient care. Methods: The creation of a WhatsApp messaging group within the medical division at the Bristol Royal Infirmary has enabled senior clinicians and the hospital management team to update the medical workforce in real-time. It has two primary functions: (1) To enable dissemination of a concise, important operational summary. This comprises information on bed status and infection control procedural changes. It is fed directly from a daily critical incident briefing (2) To facilitate a monthly scheduled question and answer (Q&A) session for junior doctors to clarify issues with clinical directors, rota, and management staff. Additional ad-hoc updates are sent out for time-critical information; otherwise, it mainly functions as a broadcast-only group to prevent important information from being lost amongst other communication. All junior doctors within the medical division were invited to join the group. At present, the group comprises 131 participants, of which 10 are administrative staff (rota coordinators, management staff & clinical directors); the remaining 121 are junior clinicians working within the medical division. An electronic survey via Microsoft forms was sent out to junior doctors via the WhatsApp group and via email to assess its utilisation and effectiveness with the aim of quality improvements. Results: Of the 121 group participants, 19 completed the questionnaire (response rate 15.7%). Of these, 16/19 (84.2%) used it regularly, and 12/19 (63.2%) rated it as the most useful source for reliable updates relating to the hospital response to the COVID-19 pandemic, whereas only 2/19 (10.5%) found the trust intranet and the trust COVID-19 operational email update most useful. Respondents rated the WhatsApp group more useful as an information source (mean score 7.7/10) than as a means of providing feedback to management staff (mean score 6.3/10). Qualitative feedback suggested information around ward closures and changes to COVID cohorting, along with updates on staffing issues, were most useful. Respondents also noted the Q&A sessions were an efficient way of relaying feedback about management decisions but that it would be preferable if these sessions could be delivered more frequently. Discussion: During the current global COVID-19 pandemic, there is an increased need for rapid dissemination of critical information within NHS trusts; this includes communication between junior doctors, managers, and senior clinicians. The versatility of WhatsApp permits a variety of functions allowing for regular updates, the dissemination of time-critical information, and enables conversing and feedback. The project has demonstrated that reserved and well-managed use of a WhatsApp group is a welcome, efficient and practical means of communication between the senior management team and the junior medical workforce.Keywords: communication, COVID-19, hospital management, WhatsApp
Procedia PDF Downloads 116542 Expanding Entrepreneurial Capabilities through Business Incubators: A Case Study of Idea Hub Nigeria
Authors: Kenechukwu Ikebuaku
Abstract:
Entrepreneurship has long been offered as the panacea for poor economic growth and high rate of unemployment. Business incubation is considered an effective means for enhancing entrepreneurial actitivities while engendering socio-economic development. Information Technology Developers Entrepreneurship Accelerator (iDEA), is a software business incubation programme established by the Nigerian government as a means of boosting digital entrepreneurship activities and reducing unemployment in the country. This study assessed the contribution of iDEA Nigeria’s entrepreneurship programmes towards enhancing the capabilities of its tenants. Using the capability approach and the sustainable livelihoods approach, the study analysed iDEA programmes’ contribution towards the expansion of participants’ entrepreneurial capabilities. Apart from identifying a set of entrepreneurial capabilities from both the literature and empirical analysis, the study went further to ascertain how iDEA incubation has helped to enhance those capabilities for its tenants. It also examined digital entrepreneurship as a valued functioning and as an intermediate functioning leading to other valuable functioning. Furthermore, the study examined gender as a conversion factor in digital entrepreneurship. Both qualitative and quantitative research methods were used for the study, and measurement of key variables was made. While the entire population was utilised to collect data for the quantitative research, purposive sampling was used to select respondents for semi-structured interviews in the qualitative research. However, only 40 beneficiaries agreed to take part in the survey while 10 respondents were interviewed for the study. Responses collected from questionnaires administered were subjected to statistical analysis using SPSS. The study developed indexes to measure the perception of the respondents, on how iDEA programmes have enhanced their entrepreneurial capabilities. The Capabilities Enhancement Perception Index (CEPI) computed indicated that the respondents believed that iDEA programmes enhanced their entrepreneurial capabilities. While access to power supply and reliable internet have the highest positive deviations around mean, negotiation skills and access to customers/clients have the highest negative deviation. These were well supported by the findings of the qualitative analysis in which the participants unequivocally narrated how the resources provided by iDEA aid them in their entrepreneurial endeavours. It was also found that iDEA programmes have a significant effect on the tenants’ access to networking opportunities, both with other emerging entrepreneurs and established entrepreneurs. While assessing gender as a conversion factor, it was discovered that there was very low female participation within the digital entrepreneurship ecosystem. The root cause of this gender disparity was found in unquestioned cultural beliefs and social norms which relegate women to a subservient position and household duties. The findings also showed that many of the entrepreneurs could be considered opportunity-based entrepreneurs rather than necessity entrepreneurs, and that digital entrepreneurship is a valued functioning for iDEA tenants. With regards to challenges facing digital entrepreneurship in Nigeria, infrastructural/institutional inadequacies, lack of funding opportunities, and unfavourable government policies, were considered inimical to entrepreneurial capabilities in the country.Keywords: entrepreneurial capabilities, unemployment, business incubators, development
Procedia PDF Downloads 241