Search results for: Radial Basis Functions (RBF) neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9465

Search results for: Radial Basis Functions (RBF) neural networks

7965 Managing the Local Manager: A Comparative Study of Core HRM Functions in Multinationals

Authors: Maria Khan

Abstract:

Framing good core Human Resource Management (HRM) functions like recruitment, selection, training and development, which if executed effectively, can become a strategic advantage for a company. HRM policies related to mid-level managers can depend on the type of top management. This may be due to the difference in perception of effective HRM policies of an expatriate and local leadership. This comparative case study assesses how local mid-level managers are managed in leading multinational telecom companies in Pakistan. Core HRM functions related to managers were analysed through field research based on semi-structured interviews with relevant Human Resource Managers. Results suggest that recruitment and selection practices are not too different and are in compliance with best HRM practices. However, there is a difference in the effective implementation of Training and Development policies. Changing global management trends and skill development dictate that MNCs continuously develop the local talent effectively for local and international success.

Keywords: recruitment, selection, training, development, core HRM, human resource management, subsidiary, international staffing, managers, MNC, expatriate

Procedia PDF Downloads 327
7964 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 126
7963 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol

Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani

Abstract:

Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.

Keywords: heuristics routing, intelligent routing, VANET, route optimization

Procedia PDF Downloads 177
7962 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis

Authors: Iannick Gagnon, Alain April

Abstract:

The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.

Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis

Procedia PDF Downloads 153
7961 Solving Ill-Posed Initial Value Problems for Switched Differential Equations

Authors: Eugene Stepanov, Arcady Ponosov

Abstract:

To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.

Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities

Procedia PDF Downloads 184
7960 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 175
7959 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja

Abstract:

A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 223
7958 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 517
7957 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks

Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul

Abstract:

Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.

Keywords: control and protection systems, distributed generation, renewable energy, very small power producers

Procedia PDF Downloads 477
7956 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 379
7955 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 181
7954 Creating Knowledge Networks: Comparative Analysis of Reference Cases

Authors: Sylvia Villarreal, Edna Bravo

Abstract:

Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.

Keywords: creation, knowledge management, network, stages

Procedia PDF Downloads 302
7953 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load

Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir

Abstract:

Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.

Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy

Procedia PDF Downloads 188
7952 Conscious Intention-based Processes Impact the Neural Activities Prior to Voluntary Action on Reinforcement Learning Schedules

Authors: Xiaosheng Chen, Jingjing Chen, Phil Reed, Dan Zhang

Abstract:

Conscious intention can be a promising point cut to grasp consciousness and orient voluntary action. The current study adopted a random ratio (RR), yoked random interval (RI) reinforcement learning schedule instead of the previous highly repeatable and single decision point paradigms, aimed to induce voluntary action with the conscious intention that evolves from the interaction between short-range-intention and long-range-intention. Readiness potential (RP) -like-EEG amplitude and inter-trial-EEG variability decreased significantly prior to voluntary action compared to cued action for inter-trial-EEG variability, mainly featured during the earlier stage of neural activities. Notably, (RP) -like-EEG amplitudes decreased significantly prior to higher RI-reward rates responses in which participants formed a higher plane of conscious intention. The present study suggests the possible contribution of conscious intention-based processes to the neural activities from the earlier stage prior to voluntary action on reinforcement leanring schedule.

Keywords: Reinforcement leaning schedule, voluntary action, EEG, conscious intention, readiness potential

Procedia PDF Downloads 78
7951 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution

Authors: Md. Rashidul Hasan, Atikur Rahman Baizid

Abstract:

The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.

Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function

Procedia PDF Downloads 384
7950 A Narrative of Nationalism in Mainstream Media: The US, China, and COVID-19

Authors: Rachel Williams, Shiqi Yang

Abstract:

Our research explores the influence nationalism has had on media coverage of the COVID-19 pandemic as it relates to China in the United States through an inclusive qualitative analysis of two US news networks, Fox News and CNN. In total, the transcripts of sixteen videos uploaded on YouTube, each with more than 100,000 views, were gathered for data processing. Co-occurrence networks generated by KH Coder illuminate the themes and narratives underpinning the reports from Fox News and CNN. The results of in-depth content analysis with keywords suggest that the pandemic has been framed in an ethnopopulist nationalist manner, although to varying degrees between networks. Specifically, the authors found that Fox News is more likely to report hypotheses or statements as a fact; on the contrary, CNN is more likely to quote data and statements from official institutions. Future research into how nationalist narratives have developed in China and in other US news coverage with a more systematic and quantitative method can be conducted to expand on these findings.

Keywords: nationalism, media studies, us and china, COVID-19, social media, communication studies

Procedia PDF Downloads 58
7949 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping

Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract:

This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.

Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning

Procedia PDF Downloads 311
7948 Robust Numerical Solution for Flow Problems

Authors: Gregor Kosec

Abstract:

Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.

Keywords: fluid flow, meshless, low Pr problem, natural convection

Procedia PDF Downloads 233
7947 Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks

Authors: Dongwon Lee, Sunmyeng Kim

Abstract:

Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput.

Keywords: acoustic channel, MAC, temporal reuse, UAN

Procedia PDF Downloads 349
7946 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 201
7945 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 527
7944 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network

Authors: K. Padmavathi, K. Sri Ramakrishna

Abstract:

This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.

Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database

Procedia PDF Downloads 281
7943 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 316
7942 The Changes of Functions of Leishan Miao New-Year in Southeast Guizhou

Authors: Lanyan Peng, Ling Chen

Abstract:

Leishan Miao New-Year is one of the grandest festivals in the southeastern of Guizhou Province in China. It was officially listed in the National Intangible Cultural Heritage List in 2008, as a traditional folk cultural activity organized by the local Miao people. With the rise of cultural tourism, after 19 years of exploration, the local government has successfully built Miao New-Year into a cultural card that is well-known at home and abroad. During the Miao New-Year period, it has attracted 3.8 million tourists and achieves a win-win situation in the economy and culture. However, tourism development has changed the living environment and living state of the local people. And it is accompanied by changes in the form of the festival, the content of the festival, and the local people’s needs and attitudes to the festival. This paper uses the field investigation method to achieve 410 questionnaires and 35 interviews, exploring the process and the reasons for changes of Leishan Miao New-Year’s cultural function. Among all the functions, the economic function, identity function, and entertainment function have been enhanced, and the marriage and love function has been extended. In the meanwhile, sacrificial function has been weakened. There are some trends in functions. The function of commemorating ancestor and self-entertainment has been changed to entertaining people and economic pursuit.

Keywords: Miao New-Year, Miao nationality, festival function, changes

Procedia PDF Downloads 121
7941 Movement of the Viscous Elastic Fixed Vertically Located Cylinder in Liquid with the Free Surface Under the Influence of Waves

Authors: T. J. Hasanova, C. N. Imamalieva

Abstract:

The problem about the movement of the rigid cylinder keeping the vertical position under the influence of running superficial waves in a liquid is considered. The indignation of a falling wave caused by the presence of the cylinder which moves is thus considered. Special decomposition on a falling harmonious wave is used. The problem dares an operational method. For a finding of the original decision, Considering that the image denominator represents a tabular function, Voltaire's integrated equation of the first sort which dares a numerical method is used. Cylinder movement in the continuous environment under the influence of waves is considered in work. Problems are solved by an operational method, thus originals of required functions are looked for by the numerical definition of poles of combinations of transcendental functions and calculation of not own integrals. Using specificity of a task below, Decisions are under construction the numerical solution of the integrated equation of Volter of the first sort that does not create computing problems of the complex roots of transcendental functions connected with search.

Keywords: rigid cylinder, linear interpolation, fluctuations, Voltaire's integrated equation, harmonious wave

Procedia PDF Downloads 319
7940 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems

Authors: Taha Bensiradj, Samira Moussaoui

Abstract:

Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.

Keywords: HSVN, ITS, VANET, WSN

Procedia PDF Downloads 361
7939 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy

Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao

Abstract:

Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.

Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation

Procedia PDF Downloads 153
7938 Investigation of Delivery of Triple Play Services

Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 541
7937 Thiopental-Fentanyl versus Midazolam-Fentanyl for Emergency Department Procedural Sedation and Analgesia in Patients with Shoulder Dislocation and Distal Radial Fracture-Dislocation: A Randomized Double-Blind Controlled Trial

Authors: D. Farsi, G. Dokhtvasi, S. Abbasi, S. Shafiee Ardestani, E. Payani

Abstract:

Background and aim:It has not been well studied whether fentanyl-thiopental (FT) is effective and safe for PSA in orthopedic procedures in Emergency Department (ED). The aim of this trial was to evaluate the effectiveness of intravenous FTversusfentanyl-midazolam (FM)in patients who suffered from shoulder dislocation or distal radial fracture-dislocation. Methods:In this randomized double-blinded study, Seventy-six eligible patients were entered the study and randomly received intravenous FT or FM. The success rate, onset of action and recovery time, pain score, physicians’ satisfaction and adverse events were assessed and recorded by treating emergency physicians. The statistical analysis was intention to treat. Results: The success rate after administrating loading dose in FT group was significantly higher than FM group (71.7% vs. 48.9%, p=0.04); however, the ultimate unsuccess rate after 3 doses of drugs in the FT group was higher than the FM group (3 to 1) but it did not reach to significant level (p=0.61). Despite near equal onset of action time in two study group (P=0.464), the recovery period in patients receiving FT was markedly shorter than FM group (P<0.001). The occurrence of adverse effects was low in both groups (p=0.31). Conclusion: PSA using FT is effective and appears to be safe for orthopedic procedures in the ED. Therefore, regarding the prompt onset of action, short recovery period of thiopental, it seems that this combination can be considered more for performing PSA in orthopedic procedures in ED.

Keywords: procedural sedation and analgesia, thiopental, fentanyl, midazolam, orthopedic procedure, emergency department, pain

Procedia PDF Downloads 252
7936 Decellularized Brain-Chitosan Scaffold for Neural Tissue Engineering

Authors: Yun-An Chen, Hung-Jun Lin, Tai-Horng Young, Der-Zen Liu

Abstract:

Decellularized brain extracellular matrix had been shown that it has the ability to influence on cell proliferation, differentiation and associated cell phenotype. However, this scaffold is thought to have poor mechanical properties and rapid degradation, it is hard for cell recellularization. In this study, we used decellularized brain extracellular matrix combined with chitosan, which is naturally occurring polysaccharide and non-cytotoxic polymer, forming a 3-D scaffold for neural stem/precursor cells (NSPCs) regeneration. HE staining and DAPI fluorescence staining confirmed decellularized process could effectively vanish the cellular components from the brain. GAGs and collagen I, collagen IV were be showed a great preservation by Alcain staining and immunofluorescence staining respectively. Decellularized brain extracellular matrix was well mixed in chitosan to form a 3-D scaffold (DB-C scaffold). The pore size was approximately 50±10 μm examined by SEM images. Alamar blue results demonstrated NSPCs had great proliferation ability in DB-C scaffold. NSPCs that were cultured in this complex scaffold differentiated into neurons and astrocytes, as reveled by NSPCs expression of microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP). In conclusion, DB-C scaffold may provide bioinformatics cues for NSPCs generation and aid for CNS injury functional recovery applications.

Keywords: brain, decellularization, chitosan, scaffold, neural stem/precursor cells

Procedia PDF Downloads 320