Search results for: Impedance Spectroscopy
751 Pro-Ecological Antioxidants for Polymeric Composites
Authors: Masek A., Zaborski M.
Abstract:
In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.Keywords: polymers, flavonoids, stabilization, ageing, oxidation
Procedia PDF Downloads 307750 Dielectric Properties of PANI/h-BN Composites
Authors: Seyfullah Madakbas, Emrah Cakmakci
Abstract:
Polyaniline (PANI), the most studied member of the conductive polymers, has a wide range of uses from several electronic devices to various conductive high-technology applications. Boron nitride (BN) is a boron and nitrogen containing compound with superior chemical and thermal resistance and thermal conductivity. Even though several composites of PANI was prepared in literature, the preparation of h-BN/PANI composites is rare. In this work PANI was polymerized in the presence of different amounts of h-BN (1, 3 and 5% with respect to PANI) by using 0.1 M solution of NH4S2O8 in HCl as the oxidizing agent and conductive composites were prepared. Composites were structurally characterized with FTIR spectroscopy and X-Ray Diffraction (XRD). Thermal properties of conductive composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric measurements were performed in the frequency range of 106–108 Hz at room temperature. The corresponding bands for the benzenoid and quinoid rings at around 1593 and 1496 cm-1 in the FTIR spectra of the composites proved the formation of polyaniline. Together with the FTIR spectra, XRD analysis also revealed the existence of the interactions between PANI and h-BN. Glass transition temperatures (Tg) of the composites increased with the increasing amount of PANI (from 87 to 101). TGA revealed that the char yield of the composites increased as the amount of h-BN was increased in the composites. Finally the dielectric permittivity of 3 wt.%h-BN-containing composite was measured and found as approximately 17. This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: dielectric permittivity, h-BN, PANI, thermal analysis
Procedia PDF Downloads 279749 Principal Component Analysis in Drug-Excipient Interactions
Authors: Farzad Khajavi
Abstract:
Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.Keywords: API, compatibility, DSC, TG, interactions
Procedia PDF Downloads 133748 Synthetic Cannabinoids: Extraction, Identification and Purification
Authors: Niki K. Burns, James R. Pearson, Paul G. Stevenson, Xavier A. Conlan
Abstract:
In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260.Keywords: electrospray mass spectrometry, high performance liquid chromatography, solid phase extraction, synthetic cannabinoids
Procedia PDF Downloads 468747 Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator
Authors: Vikas Teotia, Sanjay Malhotra, Elina Mishra, Prashant Kumar, R. R. Singh, Priti Ukarde, P. P. Marathe, Y. S. Mayya
Abstract:
Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed.Keywords: DTL, focusing, PMQ, proton, rate earth magnets
Procedia PDF Downloads 472746 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.Keywords: ZnO thin films, sol-gel, photocatalysis, aging time
Procedia PDF Downloads 382745 The Multidisciplinary Treatment in Residence Care Clinic for Treatment of Feeding and Eating Disorders
Authors: Yuri Melis, Mattia Resteghini, Emanuela Apicella, Eugenia Dozio, Leonardo Mendolicchio
Abstract:
Aim: This retrospective study was created to analyze the psychometric, anthropometric and body composition values in patients at the beginning and the discharge of their of hospitalization in the residential care clinic for eating and feeding disorders (EFD’s). Method: The sample was composed by (N=59) patients with mean age N= 33,50, divided in subgroups: Anorexia Nervosa (AN) (N=28), Bulimia Nervosa (BN) (N=13) and Binge Eating Disorders (BED) (N=14) recruited from a residential care clinic for eating and feeding disorders. The psychometrics level was measured with self-report questionnaires: Eating Disorders Inventory-3 (EDI-3) The Body Uneasiness Test (BUT), Minnesota Multiphasic Personality Inventory (MMPI – 2). The anthropometric and nutritional values was collected by Body Impedance Assessment (B.I.A), Body mass index (B.M.I.). Measurements were made at the beginning and at the end of hospitalization, with an average time of recovery of about 8,6 months. Results: The all data analysis showed a statistical significance (p-value >0,05 | power size N=0,950) in variation from T0 (start of recovery) to T1 (end of recovery) in the clinical scales of MMPI-2, AN group (Hypocondria T0 64,14 – T1 56,39) (Depression T0 72,93 – T1 59,50) (Hysteria T0 61,29 – T1 56,17) (Psychopathic deviation T0 64,00 – T1 60,82) (Paranoia T0 63,82 – T1 56,14) (Psychasthenia T0 63,82 – T1 57,86) (Schizophrenia T0 64,68 – T1 60,43) (Obsessive T0 60,36 – T1 55,68); BN group (Hypocondria T0 64,08 – T1 47,54) (Depression T0 67,46 – T1 52,46) (Hysteria T0 60,62 – T1 47,84) (Psychopathic deviation T0 65,69 – T1 58,92) (Paranoia T0 67,46 – T1 55,23) (Psychasthenia T0 60,77 – T1 53,77) (Schizophrenia T0 64,68 – T1 60,43) (Obsessive T0 62,92 – T1 54,08); B.E.D groups (Hypocondria T0 59,43 – T1 53,14) (Depression T0 66,71 – T1 54,57) (Hysteria T0 59,86 – T1 53,82) (Psychopathic deviation T0 67,39 – T1 59,03) (Paranoia T0 58,57 – T1 53,21) (Psychasthenia T0 61,43 – T1 53,00) (Schizophrenia T0 62,29 – T1 56,36) (Obsessive T0 58,57 – T1 48,64). EDI-3 report mean value is higher than clinical cut-off at T0, in T1, there is a significant reduction of the general mean of value. The same result is present in the B.U.T. test in the difference between T0 to T1. B.M.I mean value in AN group is (T0 14,83 – T1 18,41) BN group (T0 20 – T1 21,33) BED group (T0 42,32 – T1 34,97) Phase Angle results: AN group (T0 4,78 – T1 5,64) BN (T0 6 – T1 6,53) BED group (T0 6 – T1 6,72). Discussion and conclusion: The evident presence that on the whole sample, we have an altered serious psychiatric and clinic conditions at the beginning of recovery. The interesting conclusions that we can draw from this analysis are that a multidisciplinary approach that includes the entire care of the subject: from the pharmacological treatment, analytical psychotherapy, Psychomotricity, nutritional rehabilitation, and rehabilitative, educational activities. Thus, this Multidisciplinary treatment allows subjects in our sample to be able to restore psychopathological and metabolic values to below the clinical cut-off.Keywords: feeding and eating disorders, anorexia nervosa, care clinic treatment, multidisciplinary treatment
Procedia PDF Downloads 124744 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines
Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna
Abstract:
Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.Keywords: nanoparticles, vincristine, drug delivery, PNIPAM
Procedia PDF Downloads 156743 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction
Authors: Abhishek Chandra, Man Singh
Abstract:
Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.Keywords: silver nanoparticle, surfactant, methylene blue, amino acid
Procedia PDF Downloads 359742 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors
Authors: Ho-Wa Li, Sai-Wing Tsang
Abstract:
The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics
Procedia PDF Downloads 151741 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells
Authors: Kwangwon Seo, Haksoo Han
Abstract:
Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity
Procedia PDF Downloads 528740 Preparation, Characterisation, and Antibacterial Activity of Green-Biosynthesised Silver Nanoparticles Using Clinacanthus Nutans Extract
Authors: Salahaedin Waiezi, Nik Ahmad Nizam Nik Malek, Hassan Abdelmagid Elzamzami, Shahrulnizahana Mohammad Din
Abstract:
A green and safe approach to the synthesis of silver nanoparticles (AgNP) can be performed using plant leaf extract as the reducing agent. Hence, this paper reports the biosynthesis of AgNP using Clinacanthus nutans plant extract. C. nutans is known as belalai gajah in Malaysia and is widely used as a medicinal herb locally. The biosynthesized AgNP, using C. nutans aqueous extract at pH 10, with the reaction temperature of 70°C and 48 h reaction time, was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). A peak appeared in the UV-Vis spectra at around 400 nm, while XRD confirmed the crystal structure of AgNP, with the average size between 20 to 30 nm, as shown in FESEM and TEM. The antibacterial activity of the biosynthesized AgNP, which was performed using the disc diffusion technique (DDT) indicated effective inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In contrast, minimal antibacterial activity was detected against Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA). In general, AgNP produced using C. nutans leaf extract possesses potential antibacterial activity.Keywords: silver nanoparticles, Clinacanthus nutans, antibacterial agent, biosynthesis
Procedia PDF Downloads 204739 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver
Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem
Abstract:
Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization
Procedia PDF Downloads 372738 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study
Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung
Abstract:
Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification
Procedia PDF Downloads 306737 Metallurgical Analysis of Surface Defect in Telescopic Front Fork
Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya
Abstract:
Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.Keywords: telescopic front fork, induction welding, hook crack, internal oxidation
Procedia PDF Downloads 131736 Synthesis of Green Silver Nanoparticles with Aqueous Extract of Glycyrrhiza glabra and Its Characterization
Authors: Mandeep Kataria, Ankita Thakur
Abstract:
Glycyrrhiza glabra grows in the sub- tropical and warm temperate regions of the world, in Mediterranean countries and China, America, Europe, Asia and Australia. It grows in areas with sunny, dry and hot climates. It has numerous medicinal properties like it is used to cure Peptic Ulcers, Canker sores, Eczema, Indigestion and Upper Respiratory Infections. Biosynthetic methods such as plant extract have emerged as a simple and viable alternative to more complex chemical synthetic procedures to obtain nanomaterials. Extract from plant may act both as reducing and capping agents in silver nanoparticles synthesis. In the present work, Green Silver nanoparticles were successfully formulated from bioreduction of silver nitrate solutions using Glycyrrhiza glabra root extract. These Green Silver nanoparticles have been appropriately characterized using Visible spectroscopy, colour change. The Antimicrobial activity was done by Agar disc diffusion assay. AgNPs were developed by using aqueous root extract of Glycyrrhiza glabra, which acts as a reducing as well as stabilizing agent. The green synthetic method is a fast, low cost and eco-friendly process in the field of nanotechnology. The study revealed that the green-synthesized silver nanoparticle provides a promising approach for antimicrobial activity.Keywords: Glycyrrhiza glabra, nanoparticles, antimicrobial activity, aqueous extract
Procedia PDF Downloads 129735 Evaluation of the Antioxidant and Antidiabetic Potential of Fruit and Vegetable Peels
Authors: E. Chiam, E. Koh, W. Teh, M. Prabhakaran
Abstract:
Fruits and vegetables (F&V) are widely eaten for their nutritional value and associated health benefits being an immense source of bioactive compounds. However, F&V peels are often discarded, and it accounts for a higher proportion of food waste. Incorporation of F&V peels as functional ingredients can add more value to food due to the higher amounts of phytochemicals present in them. In this research, methanolic extracts of different F&V peels, namely apple, orange, kiwi, grapefruit, dragon fruit, pomelo, and pumpkin are investigated for their total phenolic content (TPC) by Folin-Ciocalteau (FC) assay and the antioxidant capacity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdenum assay using UV-Vis spectroscopy. Evaluation of the α-glucosidase inhibitory assay was carried out during this study to determine the antidiabetic potential of F&V peels. Results of our study showed that grapefruit peels contained the highest total phenolic content of 477.81 ± 0.01 mg gallic acid equivalent per gram dry weight of the sample, and kiwi peel had the highest antioxidant capacity (90.51 ± 0.10 % inhibition of DPPH radical) among the different F&V peels studied. Fruit peels exhibited high α-glucosidase inhibitory activity. Comparing fruit peels with vegetable peels, it was found that fruit peels had high total phenolic content, antioxidant capacity and anti-diabetic potential compared to vegetable peels.Keywords: polyphenolics, fruit peels, antioxidant, antidiabetic
Procedia PDF Downloads 140734 Green Synthesis and Characterization of Zinc and Ferrous Nanoparticles for Their Potent Therapeutic Approach
Authors: Mukesh Saran, Ashima Bagaria
Abstract:
Green nanotechnology is the most researched field in the current scenario. Herein we study the synthesis of Zinc and Ferrous nanoparticles using Moringa oleifera leaf extracts. Our protocol using established protocols heat treatment of plant extracts along with the solution of copper sulphate in the ratio of 1:1. The leaf extracts of Moringa oleifera were prepared in deionized water. Copper sulfate solution (1mM) was added to this, and the change in color of the solution was observed indicating the formation of Cu nanoparticles. The as biosynthesized Cu nanoparticles were characterized with the help of Scanning Electron Microscopy (SEM), and Fourier Transforms Infrared Spectroscopy (FTIR). It was observed that the leaf extracts of Moringa oleifera can reduce copper ions into copper nanoparticles within 8 to 10 min of reaction time. The method thus can be used for rapid and eco-friendly biosynthesis of stable copper nanoparticles. Further, we checked their antimicrobial and antioxidant potential, and it was observed that maximum antioxidant activity was observed for the particles prepared using the heating method. The maximum antibacterial activity was observed in Streptomyces grisveus particles and in Triochoderma Reesei for the maximum antifungal activity. At present, we are engaged in studying the anti-inflammatory activities of these as prepared nanoparticles.Keywords: green synthesis, antibacterial, antioxidant, antifungal, anti-inflammatory
Procedia PDF Downloads 349733 Cocrystals of Etodolac: A Crystal Engineering Approach with an Endeavor to Enhance Its Biopharmaceutical Assets
Authors: Sakshi Tomar, Renu Chadha
Abstract:
Cocrystallization comprises a selective route to the intensive design of pharmaceutical products with desired physiochemical and pharmacokinetic properties. The present study is focused on the preparation, characterization, and evaluation of etodolac (ET) co-crystals with coformers nicotinamide (ETNI) and Glutaric acid (ETGA), using cocrystallization approach. Preliminarily examination of the prepared co-crystal was done by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermographs of ETNI and ETGA cocrystals showed single sharp melting endotherms at 144°C and 135°C, respectively, which were different from the melting of drugs and coformers. FT-IR study points towards carbonyl-acid interaction sandwiched between the involving molecules. The emergence of new peaks in the PXRD pattern confirms the formation of new crystalline solid forms. Both the cocrystals exhibited better apparent solubility, and 3.8-5.0 folds increase in IDR were established, as compared to pure etodolac. Evaluations of these solid forms were done using anti-osteoarthritic activities. All the results indicate that etodolac cocrystals possess better anti-osteoarthritic efficacy than free drug. Thus loom of cocrystallization has been found to be a viable approach to resolve the solubility and bioavailability issues that circumvent the use of potential antiosteoarthritic molecules.Keywords: bioavailability, etodolac, nicotinamide, osteoarthritis
Procedia PDF Downloads 201732 Mapping Stress in Submerged Aquatic Vegetation Using Multispectral Imagery and Structure from Motion Photogrammetry
Authors: Amritha Nair, Fleur Visser, Ian Maddock, Jonas Schoelynck
Abstract:
Inland waters such as streams sustain a rich variety of species and are essentially hotspots for biodiversity. Submerged aquatic vegetation, also known as SAV, forms an important part of ecologically healthy river systems. Direct and indirect human influences, such as climate change are putting stress on aquatic plant communities, ranging from the invasion of non-native species and grazing, to changes in the river flow conditions and temperature. There is a need to monitor SAV, because they are in a state of deterioration and their disappearance will greatly impact river ecosystems. Like terrestrial plants, SAV can show visible signs of stress. However, the techniques used to map terrestrial vegetation from its spectral reflectance, are not easily transferable to a submerged environment. Optical remote sensing techniques are employed to detect the stress from remotely sensed images through multispectral imagery and Structure from Motion photogrammetry. The effect of the overlying water column in the form of refraction, attenuation of visible and near infrared bands in water, as well as highly moving targets, are NIR) key challenges that arise when remotely mapping SAV. This study looks into the possibility of mapping the changes in spectral signatures from SAV and their response to certain stresses.Keywords: submerged aquatic vegetation, structure from motion, photogrammetry, multispectral, spectroscopy
Procedia PDF Downloads 101731 Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films
Authors: R. Vidyasagar, G. L. S. Vilela, B. M. Guiraldelli, A. B. Henriques, J. Moodera
Abstract:
Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains.Keywords: optical transitions, thin films, ferrimagnetic insulator, strains
Procedia PDF Downloads 50730 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites
Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina
Abstract:
Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.Keywords: dispersion, mechanical performance, multi wall carbon nanotubes, sonication conditions
Procedia PDF Downloads 321729 Characterization of the Physicochemical Properties of Raw and Calcined Kaolinitic Clays Using Analytical Techniques
Authors: Alireza Khaloo, Asghar Gholizadeh-Vayghan
Abstract:
The present work focuses on the characterization of the physicochemical properties of kaolinitic clays in both raw and calcined (i.e., dehydroxylated) states. The properties investigated included the dehydroxylation temperature, chemical composition and crystalline phases, band types, kaolinite content, vitreous phase, and reactive and unreactive silica and alumina. The thermogravimetric analysis, X-ray diffractometry and infrared spectroscopy results suggest that full dehydroxylation takes place at 639°C, converting kaolinite to reactive metakaolinite (Si₂Al₂O₇). Application of higher temperatures up to 800 °C leads to complete decarbonation of the calcite phase, and the kaolinite converts to mullite at temperatures exceeding 957 °C. Calcination at 639°C was found to cause a 50% increase in the vitreous content of kaolin. Statistically meaningful increases in the reactivity of silica, alumina, calcite and sodium carbonate in kaolin were detected as a result of such thermal treatment. Such increases were found to be 11%, 47%, 240% and 10%, respectively. The ferrite phase, however, showed a 36% decline in reactivity. The proposed approach can be used as an analytical method to determine the viability of the source of kaolinite and proper physical and chemical modifications needed to enhance its suitability for geopolymer production.Keywords: physicochemical properties, dehydroxylation, kaolinitic clays, kaolinite content, vitreous phase, reactivity
Procedia PDF Downloads 163728 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production
Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin
Abstract:
A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)
Procedia PDF Downloads 219727 Development of Catalyst from Waste Egg Shell for Biodiesel Production by Using Waste Vegetable Oil
Authors: Victor Chinecherem Ejeke, Raphael Eze Nnam
Abstract:
The main objective of this research is to produce biodiesel from waste vegetable oil using activated eggshell waste as solid catalysts. A transesterification reaction was performed for the conversion to biodiesel. Waste eggshells were calcined at 700°C, 800°C and 900°C for a time period of 3hrs for the preparation of the renewable catalyst. The calcined waste eggshell catalyst was characterized using X-Ray Florescence (XRF) Spectroscopy, which revealed CaO as the major constituent (90.86%); this was further confirmed by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analyses. The prepared catalyst was used for transesterification reaction and the effects of calcination temperature (700 to 900°C), Deep Eutectic Solvent DES loading (3 to 18 wt. %), Waste Egg Shell (WES) catalyst loading (6 to 14 wt. %) on the conversion to biodiesel were studied. The yield of biodiesel using a waste eggshell catalyst (91%) is comparable to conventional catalyst like sodium hydroxide with a yield of 80-90%. The maximum biodiesel production yield was obtained at a specific oil-to methanol molar ratio of 1:10, a temperature of 65°C and a catalyst loading of 14g-wt%. The biodiesel produced was characterized as being composed of methyl Tetradecanoate (C₁₄H₂₈O₂) 30.92% using the Gas Chromatographic (GC-MS) analysis. The fuel properties of the biodiesel (Flashpoint 138ᵒC) were comparable to commercial diesel, and hence it can be used in compression-ignition engines. The results indicated that the catalysts derived from waste eggshell had high potential to be used as biodiesel production catalysts in transesterification of waste vegetable oil with the advantage of reusability and also not requiring water washing steps.Keywords: waste vegetable oil, catalyst , biodiesel , waste egg shell
Procedia PDF Downloads 211726 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound
Authors: S. Said, Asmaa A. Abdulrahman
Abstract:
MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT
Procedia PDF Downloads 105725 Functional Characterization of Transcriptional Regulator WhiB Proteins of Mycobacterium Tuberculosis
Authors: Sonam Kumari
Abstract:
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, possesses a remarkable feature of entering into and emerging from a persistent state. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes.Mtb has seven such proteins (WhiB1 to WhiB7).WhiB proteins are transcriptional regulators; their conserved C-terminal HTH motif is involved in DNA binding. They regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical Analysis of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB.Keywords: tuberculosis, WhiB proteins, mycobacterium tuberculosis, nucleic acid binding
Procedia PDF Downloads 104724 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles
Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi
Abstract:
Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization
Procedia PDF Downloads 395723 Preparation and Characterizations of Hydroxyapatite-Sodium Alginate Nanocomposites for Biomedical Applications
Authors: Friday Godwin Okibe, Christian Chinweuba Onoyima, Edith Bolanle Agbaji, Victor Olatunji Ajibola
Abstract:
Polymer-inorganic nanocomposites are presently impacting diverse areas, specifically in biomedical sciences. In this research, hydroxyapatite-sodium alginate has been prepared, and characterized, with emphasis on the influence of sodium alginate on its characteristics. In situ wet chemical precipitation method was used in the preparation. The prepared nanocomposite was characterized with Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), with image analysis, and X-Ray Diffraction (XRD). The FTIR study shows peaks characteristics of hydroxyapatite and confirmed formation of the nanocomposite via chemical interaction between sodium alginate and hydroxyapatite. Image analysis shows the nanocomposites to be of irregular morphologies which did not show significant change with increasing sodium alginate addition, while particle size decreased with increase in sodium alginate addition (359.46 nm to 109.98 nm). From the XRD data, both the crystallite size and degree of crystallinity also decreased with increasing sodium alginate composition (32.36 nm to 9.47 nm and 72.87% to 1.82% respectively), while the specific surface area and microstrain increased with increasing sodium alginate composition (0.0041 to 0.0139 and 58.99 m²/g to 201.58 m²/g respectively). The results show that the formulation with 50%wt of sodium alginate (HASA-50%wt), possess exceptional characteristics for biomedical applications such as drug delivery.Keywords: nanocomposite, sodium alginate, hydroxyapatite, biomedical, FTIR, XRD, SEM
Procedia PDF Downloads 330722 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography
Authors: Mulatu Kassie Birhanu
Abstract:
Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane
Procedia PDF Downloads 238