Search results for: queue length process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17496

Search results for: queue length process

16026 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 369
16025 System Identification and Controller Design for a DC Electrical Motor

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.

Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols

Procedia PDF Downloads 54
16024 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 324
16023 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 186
16022 Multiple Identity Construction among Multilingual Minorities: A Quantitative Sociolinguistic Case Study

Authors: Stefanie Siebenhütter

Abstract:

This paper aims to reveal criterions involved in the process of identity-forming among multilingual minority language speakers in Northeastern Thailand and in the capital Bangkok. Using sociolinguistic interviews and questionnaires, it is asked which factors are important for speakers and how they define their identity by their interactions socially as well as linguistically. One key question to answer is how sociolinguistic factors may force or diminish the process of forming social identity of multilingual minority speakers. However, the motivation for specific language use is rarely overt to the speaker’s themselves as well as to others. Therefore, identifying the intentions included in the process of identity construction is to approach by scrutinizing speaker’s behavior and attitudes. Combining methods used in sociolinguistics and social psychology allows uncovering the tools for identity construction that ethnic Kui uses to range themselves within a multilingual setting. By giving an overview of minority speaker’s language use in context of the specific border near multilingual situation and asking how speakers construe identity within this spatial context, the results exhibit some of the subtle and mostly unconscious criterions involved in the ongoing process of identity construction.

Keywords: social identity, identity construction, minority language, multilingualism, social networks, social boundaries

Procedia PDF Downloads 266
16021 A New Approach to the Boom Welding Technique by Determining Seam Profile Tracking

Authors: Muciz Özcan, Mustafa Sacid Endiz, Veysel Alver

Abstract:

In this paper we present a new approach to the boom welding related to the mobile cranes manufacturing, implementing a new method in order to get homogeneous welding quality and reduced energy usage during booms production. We aim to get the realization of the same welding quality carried out on the boom in every region during the manufacturing process and to detect the possible welding errors whether they could be eliminated using laser sensors. We determine the position of the welding region directly through our system and with the help of the welding oscillator we are able to perform a proper boom welding. Errors that may occur in the welding process can be observed by monitoring and eliminated by means of an operator. The major modification in the production of the crane booms will be their form of the booms. Although conventionally, more than one welding is required to perform this process, with the suggested concept, only one particular welding is sufficient, which will be more energy and environment-friendly. Consequently, as only one welding is needed for the manufacturing of the boom, the particular welding quality becomes more essential. As a way to satisfy the welding quality, a welding manipulator was made and fabricated. By using this welding manipulator, the risks of involving dangerous gases formed during the welding process for the operator and the surroundings are diminished as much as possible.

Keywords: boom welding, seam tracking, energy saving, global warming

Procedia PDF Downloads 345
16020 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun

Abstract:

Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.

Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics

Procedia PDF Downloads 468
16019 Growth Studies and Leaf Mineral Composition of Amaranthus hybridus L. in Soil Medium Supplemended with Palm Bunch Ash Extract from Elaeis Guineensis jacq. in Abak Agricultural Zone of Akwa Ibom State, Nigeria

Authors: Etukudo, M. Mbosowo, Nyananyo, L. Bio, Negbenebor, A. Charles

Abstract:

An aqueous extract of palm bunch ash from Elaeis guineensis Jacq., equilibrated with water was used to assess the growth and minerals composition of Amaranthus hybridus L. in agricultural soil of Abak, Akwa Ibom State, nigeria. Various concentrations, 0 (control), 10, 20, 30, 40, and 50% of palm bunch extract per 4kg of sandy-loam soil were used for the study. Chemical characteristics of the extract, Growth parameters (Plant height, root length, fresh weight, dry weight and moisture content), leaf minerals composition (Nitrogen, phosphorus, potassium, calcium and magnesium) of the crop and soil chemical composition before and after harvest (pH, organic matter, nitrogen, phosphorus, potassium, calcium and magnesium) were examined. The results showed that palm bunch ash extract significantly (P < 0.05) increased the soil pH at all levels of treatments compared to the control. Similarly, the soil and leaf minerals component (N, P, K. Ca, and Mg) of the crop increased with increase in the concentration of palm bunch extract, except at 40 and 50% for leaf minerals composition, Soil organic matter, nitrogen and phosphorus J(before and after harvest). In addition, The plant height, Root length, fresh weight, dry weight and moisture content of the crop increased significantly (P < 0.05) with increase in the concentration of the extract, Except at 30, 40 and 50% where these growth parameters decreased in relation to the control treatment. Therefore, this study suggests that palm bunch ash extract could be utilized at lower concentration as a nutrient supplement for both Amaranthus hubridus L. and soil medium, most especially in the tropical soils of the Niger Delta region of Nigeria.

Keywords: Amaranthus hybridus L., growth, leaf minerals composition, palm bunch ash extract

Procedia PDF Downloads 444
16018 Disease Control of Rice Blast Caused by Pyricularia Oryzae Cavara Using Novel Chitosan-based Agronanofungicides

Authors: Abdulaziz Bashir Kutawa, Khairulmazmi Ahmad, Mohd Zobir Hussein, Asgar Ali, Mohd Aswad Abdul Wahab, Amara Rafi, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, Md. Imam Hossain, Syazwan Afif Mohd Zobir

Abstract:

Rice is a cereal crop and belongs to the family Poaceae, it was domesticated in southern China and North-Eastern India around 8000 years ago, and it’s the staple nourishment for over half of the total world’s population. Rice production worldwide is affected by different abiotic and biotic stresses. Diseases are important challenges for the production of rice, among all the diseases in rice plants, the most severe and common disease is the rice blast. Worldwide, it is one of the most damaging diseases affecting rice cultivation, the disease is caused by the non-obligate filamentous ascomycete fungus called Magnaporthe grisae or Pyricularia oryzae Cav. Nanotechnology is a new idea to improve agriculture by combating the diseases of plants, as nanoparticles were found to possess an inhibitory effect on different species of fungi. This work aimed to develop and determine the efficacy of agronanofungicides, and commercial fungicides (in-vitro and in-vivo). The agronanofungicides were developed using ionic gelation methods. In-vitro antifungal activity of the synthesized agronanofungicides was evaluated against P. oryzae using the poisoned medium technique. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the agronanofungicides. Medium with the only solvent served as a control. Mycelial growth was recorded every day, and the percentage inhibition of radial growth (PIRG) was also calculated. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. In terms of the glasshouse results, the chitosan-hexaconazole-dazomet agronanofungicide (CHDEN) treatment (2.5g/L) was found to be the most effective fungicide to reduce the intensity of the disease with a disease severity index (DSI) of 19.80%, protection index (PI) of 82.26%, lesion length of 1.63cm, disease reduction (DR) of 80.20%, and AUDPC (390.60 Unit2). The least effective fungicide was found to be ANV with a disease severity index (45.60%), protection index (45.24%), lesion length (3.83 cm), disease reduction (54.40%), and AUDPC (1205.75 Unit2). The negative control did not show any symptoms during the glasshouse assay, while the untreated control treatment exhibited severe symptoms of the disease with a DSI value of 64.38%, lesion length of 5.20 cm, and AUDPC value of 2201.85 Unit2, respectively. The treatments of agronanofungicides have enhanced the yield significantly with CHDEN having 239.00 while the healthy control had 113.67 for the number of grains per panicle. The use of CHEN and CHDEN will help immensely in reducing the severity of rice blast in the fields, and this will increase the yield and profit of the farmers that produced rice.

Keywords: chitosan, dazomet, disease severity, efficacy, and blast disease

Procedia PDF Downloads 86
16017 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean

Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe

Abstract:

Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.

Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering

Procedia PDF Downloads 219
16016 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Authors: Buket Metin

Abstract:

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Keywords: construction process, construction technology, decision making, environmental performance, subcontractor

Procedia PDF Downloads 244
16015 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 178
16014 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network

Authors: Prateeksha Mahamallik, Anjali Pal

Abstract:

In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.

Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology

Procedia PDF Downloads 252
16013 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 277
16012 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges

Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt

Abstract:

Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.

Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system

Procedia PDF Downloads 131
16011 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 540
16010 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation

Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy

Abstract:

The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.

Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis

Procedia PDF Downloads 405
16009 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 219
16008 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model

Authors: Zina Benouaret, Djamil Aissani

Abstract:

In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.

Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis

Procedia PDF Downloads 247
16007 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap

Authors: Sabri Serkan Gulluoglu

Abstract:

It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.

Keywords: remote sensing, satellite imaging, gis, computer science, information

Procedia PDF Downloads 317
16006 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 228
16005 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 294
16004 Investigation of the Properties of Biochar Obtained by Dry and Wet Torrefaction in a Fixed and in a Fluidized Bed

Authors: Natalia Muratova, Dmitry Klimov, Rafail Isemin, Sergey Kuzmin, Aleksandr Mikhalev, Oleg Milovanov

Abstract:

We investigated the processing of poultry litter into biochar using dry torrefaction methods (DT) in a fixed and fluidized bed of quartz sand blown with nitrogen, as well as wet torrefaction (WT) in a fluidized bed in a medium of water steam at a temperature of 300 °C. Torrefaction technology affects the duration of the heat treatment process and the characteristics of the biochar: the process of separating CO₂, CO, H₂ and CH₄ from a portion of fresh poultry litter during torrefaction in a fixed bed is completed after 2400 seconds, but in a fluidized bed — after 480 seconds. During WT in a fluidized bed of quartz sand, this process ends in 840 seconds after loading a portion of fresh litter, but in a fluidized bed of litter particles previously subjected to torrefaction, the process ends in 350 - 450 seconds. In terms of the ratio between (H/C) and (O/C), the litter obtained after DT and WT treatment corresponds to lignite. WT in a fluidized bed allows one to obtain biochar, in which the specific pore area is two times larger than the specific pore area of biochar obtained after DT in a fluidized bed. Biochar, obtained as a result of the poultry litter treatment in a fluidized bed using DT or WT method, is recommended to be used not only as a biofuel but also as an adsorbent or the soil fertilizer.

Keywords: biochar, poultry litter, dry and wet torrefaction, fixed bed, fluidized bed

Procedia PDF Downloads 155
16003 The Effect of Branched-Chain Amino Acids, Arginine, and Citrulline on Repeated Swimming Performance

Authors: Chun-Fang Hsueh, Chen-Kang Chang

Abstract:

Introduction: Branched-chain amino acids (BCAA) could reduce cerebral uptake of tryptophan, leading to decreased synthesis of serotonin in the brain. Arginine and citrulline could reduce exercise-induced hyperammonemia by increasing nitric oxide synthesis and the urea cycle. The combination of these supplements could reduce exercise-induced central fatigue. The purpose of this study was to examine the effect of BCAA, arginine, and citrulline supplementation on repeated swimming performance in teenage athletes. Methods: Eight male and eight female high school swimmers ingested 0.085 g/kg BCAA, 0.05 g/kg arginine and 0.05 g/kg citrulline (AA trial) or placebo (PL trial) in a randomized cross-over design. One hour after the ingestion, the subjects performed a 50 m sprint with their best style every 2 min for 8 times in an indoor 25 m pool. The subjects were asked to swim with their maximal effort each time. The time, stroke frequency and stroke length in each sprint were recorded. Venous blood samples were collected before and after the exercise. The time for each sprint was analyzed by 2-way analysis of variance with repeated measurement. Results: When all subjects were pooled together, total time for the AA trial was significantly faster than the PL trial (AA: 244.02 ± 22.94 s; PL: 247.55 ± 24.17 s, p < .001). Individual sprint time showed significant trial (p= .001) and trial x time (p= .004) effects. The post-hoc analysis revealed that the AA trial was significantly faster than the PL trial in the 2nd, 5th, and 6th sprint. In female subjects, there is a significant trial effect (p= .004) with the AA trial being faster in the 1st, 2nd, and 5th sprint. On the other hand, the trial effect was not significant (p= .072) in male subjects. Conclusions: The combined supplementation could improve 8 x 50 m performance in high school swimmers. The blood parameters including BCAA, tryptophan, NH₃, nitric oxide, and urea, as well as the stroke frequency and length in each sprint, are being analyzed. The results will be presented in the conference.

Keywords: central fatigue, hyperammonemia, tryptophan, urea

Procedia PDF Downloads 183
16002 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 135
16001 Emergentist Metaphorical Creativity: Towards a Model of Analysing Metaphorical Creativity in Interactive Talk

Authors: Afef Badri

Abstract:

Metaphorical creativity does not constitute a static property of discourse. It is an interactive dynamic process created online. There has been a lack of research concerning online produced metaphorical creativity. This paper intends to account for metaphorical creativity in online talk-in-interaction as a dynamic process that emerges as discourse unfolds. It brings together insights from the emergentist approach to the study of metaphor in verbal interactions and insights from conceptual blending approach as a model for analysing online metaphorical constructions to propose a model for studying metaphorical creativity in interactive talk. The model is based on three focal points. First, metaphorical creativity is a dynamic emergent and open-to-change process that evolves in real time as interlocutors constantly blend and re-blend previous metaphorical contributions. Second, it is not a product of isolated individual minds but a joint achievement that is co-constructed and co-elaborated by interlocutors. The third and most important point is that the emergent process of metaphorical creativity is tightly shaped by contextual variables surrounding talk-in-interaction. It is grounded in the framework of interpretation of interlocutors. It is constrained by preceding contributions in a way that creates textual cohesion of the verbal exchange and it is also a goal-oriented process predefined by the communicative intention of each participant in a way that reveals the ideological coherence/incoherence of the entire conversation.

Keywords: communicative intention, conceptual blending, the emergentist approach, metaphorical creativity

Procedia PDF Downloads 257
16000 Analysis study According Some of Physical and Mechanical Variables for Joint Wrist Injury

Authors: Nabeel Abdulkadhim Athab

Abstract:

The purpose of this research is to conduct a comparative study according analysis of programmed to some of physical and mechanical variables for joint wrist injury. As it can be through this research to distinguish between the amount of variation in the work of the joint after sample underwent rehabilitation program to improve the effectiveness of the joint and naturally restore its effectiveness. Supposed researcher that there is statistically significant differences between the results of the tests pre and post the members research sample, as a result of submission the sample to the program of rehabilitation, which led to the development of muscle activity that are working on wrist joint and this is what led to note the differences between the results of the tests pre and post. The researcher used the descriptive method. The research sample included (6) of injured players in the wrist joint, as the average age (21.68) and standard deviation (1.13) either length average (178cm) and standard deviation (2.08). And the sample as evidenced homogeneous among themselves. And where the data were collected, introduced in program for statistical processing to get to the most important conclusions and recommendations and that the most important: 1-The commitment of the sample program the qualifying process variables studied in the search for the heterogeneity of study activity and effectiveness of wrist joint for injured players. 2-The analysis programmed a high accuracy in the measurement of the research variables, and which led to the possibility of discrimination into account differences in motor ability camel and injured in the wrist joint. To search recommendations including: 1-The use of computer systems in the scientific research for the possibility of obtaining accurate research results. 2-Programming exercises rehabilitation according to an expert system for possible use by patients without reference to the person processor.

Keywords: analysis of joint wrist injury, physical and mechanical variables, wrist joint, wrist injury

Procedia PDF Downloads 430
15999 Achieving Them Both: Business and Wellness Outcomes in Health Organizations – the 'Tip' Laser Intervention

Authors: Shosh Kazaz, Shmuel Banai, Vered Zilberberg

Abstract:

Optimizing high business performance and employee's well-being simultaneously often challenges organizations. 'TIP' intervention enables achieving them both as the given project demonstrates. Increasing outcomes and improving performance were the initial motivators for this explorative project, followed by a request of the head of the Cardiology department: 'I know we are the best at our clinical practice, but we need to take it further and break our own glass ceiling.' Two guided interventions were conducted in two different units within the department, designed to implement advanced managerial and business-oriented tools, along with 'soft tools' based on coaching psychology and particularly wellness coaching. The organ department multi-disciplinary teams were assembled, aiming to manage and lead the process: mapping the patients' flow, creating solutions, implementing, assessing, improving and assimilating them. Approximately four months later, without additional external resources, meaningful results emerged by the teams in terms of business and performance: shortening the hospitalization length at a given procedure (from 7 to 2.1 days); increasing the availability of Catheterization laboratory by 16% daily – resulting profitability raise; improving patients' journey and experience. A year later, those results are maintained. Furthermore, interviews with the participants revealed positive perceptions regarding the department; a higher sense of joyfulness, connectedness, belonging and a better department climate were reported. Additionally, participants reported a higher sense of fulfillment as opposed to their earliest skepticism and cynicism about their ability to enhance outcomes without more resources (budget and/or manpower), experiencing a mindset change toward the possibility of leading personal and professional growth processes. These reports were supported by analyzing a set of questionnaires that the participants completed, parallel to a control group of non-participating colleagues. Although the assessment was taken a year after the completion of the project and during 'covid-19th-3rd national quarantine, the results indicated a significant impact on several personal parameters associated with wellness, compared to the control group. The participants were higher in self-efficacy and organizational commitment; men were higher in resilience and optimism and women were higher in well-being. In conclusion, the 'TIP' relatively short intervention integrates advanced managerial and wellness coaching tools, empowers organizational resources: Team, Individual and Process and by that generates multi-impact measurable results in terms of employee's wellness parameters along with business performance and patient care.

Keywords: coaching, health and wellness, health management, leadership and well-being

Procedia PDF Downloads 182
15998 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)

Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity

Procedia PDF Downloads 424
15997 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems

Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber

Abstract:

In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).

Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition

Procedia PDF Downloads 237