Search results for: neural regeneration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2307

Search results for: neural regeneration

837 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 149
836 The Healing Effect of Unrestricted Somatic Stem Cells Loaded in Collagen-Modified Nanofibrous PHBV Scaffold on Full-Thickness Skin Defects

Authors: Hadi Rad

Abstract:

Unrestricted somatic stem cells (USSCs) loaded in nanofibrous PHBV scaffold can be used for skin regeneration when grafted into full-thickness skin defects of rats. Nanofibrous PHBV scaffolds were designed using electrospinning method and then, modified with the immobilized collagen via the plasma method. Afterward, the scaffolds were evaluated using scanning electron microscopy, physical and mechanical assays. In this study; nanofibrous PHBV scaffolds loaded with and without USSCs were grafted into the skin defects. The wounds were subsequently investigated at 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; all study groups excluding the control group exhibited the most pronounced effect on wound closure, with the statistically significant improvement in wound healing being seen on post-operative Day 21. Histological and immunostaining examinations of healed wounds from all groups, especially the groups treated with stem cells, showed a thin epidermis plus recovered skin appendages in the dermal layer. Thus, the graft of collagen-coated nanofibrous PHBV scaffold loaded with USSC showed better results during the healing process of skin defects in rat model.

Keywords: collagen, nanofibrous PHBV scaffold, unrestricted somatic stem cells, wound healing.

Procedia PDF Downloads 361
835 Conservation Status of a Lowland Tropical Forest in South-West, Nigeria

Authors: Lucky Dartsa Wakawa, Friday Nwabueze Ogana, Temitope Elizabeth Adeniyi

Abstract:

Timely and reliable information on the status of a forest is essential for assessing the extent of regeneration and degradation. However, when such information is lacking effective forest management practices becomes impossible. Therefore, this study assessed the tree species composition, richness, diversity, structure of Oluwa forest reserve with the view of ascertaining it conservation status. A systematic line transect was used in the laying of eight (8) temporary sample plots (TSPs) of size 50m x 50m. Trees with Dbh ≥ 10cm in the selected plots were enumerated, identified and measured. The results indicate that 535 individual trees were enumerated cutting across 26 families and 58 species. The family Sterculiaceae recorded the highest number of species (10) and occurrence (112) representing 17.2% and 20.93% respectively. Celtis zenkeri is the species with the highest number of occurrence of tree per hectare and importance value index (IVI) of 59 and 53.81 respectively. The reserve has the Margalef's index of species richness, Shannon-Weiner diversity Index (H') and Pielou's Species Evenness Index (EH) of 9.07, 3.43 and 0.84 respectively. The forest has a mean Dbh (cm), mean height (m), total basal area/ha (m2) and total volume/ha (m3) of 24.7, 16.9, 36.63 and 602.09 respectively. The important tropical tree species identified includes Diospyros crassiflora Milicia excels, Mansonia altisima, Triplochiton scleroxylon. Despite the level of exploitation in the forest, the forest seems to be resilience. Given the right attention, it could regenerate and replenish to save some of the original species composition of the reserve.

Keywords: forest conservation, forest structure, Lowland tropical forest, South-west Nigeria

Procedia PDF Downloads 347
834 Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters

Authors: Vibha Sinha, Sumedha Chakma

Abstract:

Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value.

Keywords: arsenic, catalysts, hybrid hydrogel-biochar, water purification

Procedia PDF Downloads 193
833 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 35
832 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 100
831 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware

Authors: Le Zhao, Alain Nogaret

Abstract:

We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.

Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses

Procedia PDF Downloads 477
830 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 75
829 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 162
828 Developing a Model for the Relation between Heritage and Place Identity

Authors: A. Arjomand Kermani, N. Charbgoo, M. Alalhesabi

Abstract:

In the situation of great acceleration of changes and the need for new developments in the cities on one hand and conservation and regeneration approaches on the other hand, place identity and its relation with heritage context have taken on new importance. This relation is generally mutual and complex one. The significant point in this relation is that the process of identifying something as heritage rather than just historical  phenomena, brings that which may be inherited into the realm of identity. In planning and urban design as well as environmental psychology and phenomenology domain, place identity and its attributes and components were studied and discussed. However, the relation between physical environment (especially heritage) and identity has been neglected in the planning literature. This article aims to review the knowledge on this field and develop a model on the influence and relation of these two major concepts (heritage and identity). To build this conceptual model, we draw on available literature in environmental psychology as well as planning on place identity and heritage environment using a descriptive-analytical methodology to understand how they can inform the planning strategies and governance policies. A cross-disciplinary analysis is essential to understand the nature of place identity and heritage context and develop a more holistic model of their relationship in order to be employed in planning process and decision making. Moreover, this broader and more holistic perspective would enable both social scientists and planners to learn from one another’s expertise for a fuller understanding of community dynamics. The result indicates that a combination of these perspectives can provide a richer understanding—not only of how planning impacts our experience of place, but also how place identity can impact community planning and development.

Keywords: heritage, inter-disciplinary study, place identity, planning

Procedia PDF Downloads 424
827 The Postcognitivist Era in Cognitive Psychology

Authors: C. Jameke

Abstract:

During the cognitivist era in cognitive psychology, a theory of internal rules and symbolic representations was posited as an account of human cognition. This type of cognitive architecture had its heyday during the 1970s and 80s, but it has now been largely abandoned in favour of subsymbolic architectures (e.g. connectionism), non-representational frameworks (e.g. dynamical systems theory), and statistical approaches such as Bayesian theory. In this presentation I describe this changing landscape of research, and comment on the increasing influence of neuroscience on cognitive psychology. I then briefly review a few recent developments in connectionism, and neurocomputation relevant to cognitive psychology, and critically discuss the assumption made by some researchers in these frameworks that higher-level aspects of human cognition are simply emergent properties of massively large distributed neural networks

Keywords: connectionism, emergentism, postocgnitivist, representations, subsymbolic archiitecture

Procedia PDF Downloads 579
826 Neural Correlates of Arabic Digits Naming

Authors: Fernando Ojedo, Alejandro Alvarez, Pedro Macizo

Abstract:

In the present study, we explored electrophysiological correlates of Arabic digits naming to determine semantic processing of numbers. Participants named Arabic digits grouped by category or intermixed with exemplars of other semantic categories while the N400 event-related potential was examined. Around 350-450 ms after the presentation of Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when stimuli were grouped by category relative to the mixed condition. Contrary to what was found in other studies, electrophysiological results suggested that the production of numerals involved semantic mediation.

Keywords: Arabic digit naming, event-related potentials, semantic processing, number production

Procedia PDF Downloads 583
825 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 51
824 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 171
823 Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption

Authors: Sang-Wook Lee, So-Yeon Jeon, Min-Gi Cho, Dae-Young Shin, Sung-Ho Hwang

Abstract:

Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm.

Keywords: continuous mode changing, engine fuel consumption, excavator, fuel efficiency, IMV

Procedia PDF Downloads 385
822 Plantlet Regeneration from Zygotic Embryos of Securidaca longepedunculata Fresen

Authors: Uche C. Okafor, Nwanneka M. Okpokwu, Felix Nwafor, Carl E. A. Okezie

Abstract:

Securidaca longepedunculata Fresen (Violet tree) belongs to the family Polygalaceae characterised by papillionaceous purplish flowers. This medicinally valued plant disappears at an alarming rate due to intensified anthropopressure particularly the unregulated manner of subterranean plant parts' collection from natural stands. Some indiscriminately harvested plants bear seeds containing both mature and immature zygotic embryos that are often discarded. Here, such seeds are collected for this experiment. Seeds were collected, washed, de-coated, and dipped in 70 % (v/v) ethanol for 30 s followed by rising in 5 % solution sodium hypochlorite, containing two drops of tween 20, for another 25 min. Mature zygotic embryos (MZEs) were excised from seeds and cultured in two basal media (MS and B5), three carbon sources (sucrose, glucose and fructose) at five concentrations (0-40 g/L) while immature zygotic embryos (iMZEs) were composed on similar basal media and carbon source supplemented with 0-2 mg/L Benzylaminopurine (BAP) and 0-2 mg/L Indole acetic acid (IAA). MZEs cultured on MS + 30g/L sucrose differed significantly from other treatments at p≤0.05 with maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm). MZEs culture had the maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm) in medium containing MS+ 30g L-1 sucrose. iMZEs on the other hand had maximum growth on MS + 40g/L sucrose supplemented with 1.5 mg/L IAA+ 1.0 mg/L BAP. This study is a geared towards creating an alternative path for the maximum production of plants in vitro, thereby, preventing the plants from disappearing.

Keywords: Gamborg's medium, Murashige and Skoog medium, Securidaca longepedunculata, zygotic embryos

Procedia PDF Downloads 157
821 Adsorption of 17a-Ethinylestradiol on Activated Carbon Based on Sewage Sludge in Aqueous Medium

Authors: Karoline Reis de Sena

Abstract:

Endocrine disruptors are unregulated or not fully regulated compounds, even in the most developed countries, and which can be a danger to the environment and human health. They pass untreated through the secondary stage of conventional wastewater treatment plants, then the effluent from the wastewater treatment plants is discharged into the rivers, upstream and downstream from the drinking water treatment plants that use the same river water as the tributary. Long-term consumption of drinking water containing low concentrations of these compounds can cause health problems; these are persistent in nature and difficult to remove. In this way, research on emerging pollutants is expanding and is fueled by progress in finding the appropriate method for treating wastewater. Adsorption is the most common separation process, it is a simple and low-cost operation, but it is not eco-efficient. Concomitant to this, biosorption arises, which is a subcategory of adsorption where the biosorbent is biomass and which presents numerous advantages when compared to conventional treatment methods, such as low cost, high efficiency, minimization of the use of chemicals, absence of need for additional nutrients, biosorbent regeneration capacity and the biomass used in the production of biosorbents are found in abundance in nature. Thus, the use of alternative materials, such as sewage sludge, for the synthesis of adsorbents has proved to be an economically viable alternative, together with the importance of valuing the generated by-product flows, as well as managing the problem of their correct disposal. In this work, an alternative for the management of sewage sludge is proposed, transforming it into activated carbon and using it in the adsorption process of 17a-ethinylestradiol.

Keywords: 17α-ethinylestradiol, adsorption, activated carbon, sewage sludge, micropollutants

Procedia PDF Downloads 96
820 Urban Citizenship in a Sensor Rich Society

Authors: Mike Dee

Abstract:

Urban public spaces are sutured with a range of surveillance and sensor technologies that claim to enable new forms of ‘data based citizen participation’, but also increase the tendency for ‘function-creep’, whereby vast amounts of data are gathered, stored and analysed in a broad application of urban surveillance. This kind of monitoring and capacity for surveillance connects with attempts by civic authorities to regulate, restrict, rebrand and reframe urban public spaces. A direct consequence of the increasingly security driven, policed, privatised and surveilled nature of public space is the exclusion or ‘unfavourable inclusion’ of those considered flawed and unwelcome in the ‘spectacular’ consumption spaces of many major urban centres. In the name of urban regeneration, programs of securitisation, ‘gentrification’ and ‘creative’ and ‘smart’ city initiatives refashion public space as sites of selective inclusion and exclusion. In this context of monitoring and control procedures, in particular, children and young people’s use of space in parks, neighbourhoods, shopping malls and streets is often viewed as a threat to the social order, requiring various forms of remedial action. This paper suggests that cities, places and spaces and those who seek to use them, can be resilient in working to maintain and extend democratic freedoms and processes enshrined in Marshall’s concept of citizenship, calling sensor and surveillance systems to account. Such accountability could better inform the implementation of public policy around the design, build and governance of public space and also understandings of urban citizenship in the sensor saturated urban environment.

Keywords: citizenship, public space, surveillance, young people

Procedia PDF Downloads 451
819 Effects of Opuntia ficus-indica var. Saboten on Glucose Uptake and Insulin Sensitivity in Pancreatic β Cell

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

The prickly pear cactus (Opuntia ficus-indica) has a global distribution and have been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. However, very little information is currently available for their mechanism. The prikly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, southwestern region of Korea, and used as a functional food. Present study investigated the effects of OFS on pancreatic β-cell function using pancreatic islet β cells (HIT cell). Alpha-glucosidase inhibition, glucose uptake, insulin secretion, insulin sensitivity, and pancreatic β cell proliferation were determined. The inhibitory effect of ethanol extract of OFS stem on α-glucosidase enzyme was measured in a cell free system. Glucose uptake was determined using fluorescent glucose analogue, 2-NBDG. Insulin secretion was measured by ELISA assay. Cell proliferation was measured by MTT assay. Ethanol extracts of OFS dose-dependently inhibited α-glucosidase activity as well as glucose uptake. Insulinotrophic effect of OFS extract was observed at high glucose media in pancreatic β-islet cells. Furthermore, pancreatic β cell regeneration was also observed.These results suggest that OFS mediates the antidiabetic activity mainly via α-glucosidase inhibition, glucose uptake, and improved insulin sensitivity.

Keywords: prickly pear cactus, Opuntia ficus-indica var. Saboten, pancreatic islet HIT cells, α-glucosidase, glucose uptake, insulinotrophic

Procedia PDF Downloads 468
818 Gas Phase Extraction: An Environmentally Sustainable and Effective Method for The Extraction and Recovery of Metal from Ores

Authors: Kolela J Nyembwe, Darlington C. Ashiegbu, Herman J. Potgieter

Abstract:

Over the past few decades, the demand for metals has increased significantly. This has led to a decrease and decline of high-grade ore over time and an increase in mineral complexity and matrix heterogeneity. In addition to that, there are rising concerns about greener processes and a sustainable environment. Due to these challenges, the mining and metal industry has been forced to develop new technologies that are able to economically process and recover metallic values from low-grade ores, materials having a metal content locked up in industrially processed residues (tailings and slag), and complex matrix mineral deposits. Several methods to address these issues have been developed, among which are ionic liquids (IL), heap leaching, and bioleaching. Recently, the gas phase extraction technique has been gaining interest because it eliminates many of the problems encountered in conventional mineral processing methods. The technique relies on the formation of volatile metal complexes, which can be removed from the residual solids by a carrier gas. The complexes can then be reduced using the appropriate method to obtain the metal and regenerate-recover the organic extractant. Laboratory work on the gas phase have been conducted for the extraction and recovery of aluminium (Al), iron (Fe), copper (Cu), chrome (Cr), nickel (Ni), lead (Pb), and vanadium V. In all cases the extraction revealed to depend of temperature and mineral surface area. The process technology appears very promising, offers the feasibility of recirculation, organic reagent regeneration, and has the potential to deliver on all promises of a “greener” process.

Keywords: gas-phase extraction, hydrometallurgy, low-grade ore, sustainable environment

Procedia PDF Downloads 139
817 Vascularized Adipose Tissue Engineering by Using Adipose ECM/Fibroin Hydrogel

Authors: Alisan Kayabolen, Dilek Keskin, Ferit Avcu, Andac Aykan, Fatih Zor, Aysen Tezcaner

Abstract:

Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, only very thin implants can be used in vivo since vascularization is still a problem for thick implants. Another problem is finding a biocompatible scaffold with good mechanical properties. In this study, the aim is to develop a thick vascularized adipose tissue that will integrate with the host, and perform its in vitro and in vivo characterizations. For this purpose, a hydrogel of decellularized adipose tissue (DAT) and fibroin was produced, and both endothelial cells and adipocytes that were differentiated from adipose derived stem cells were encapsulated in this hydrogel. Mixing DAT with fibroin allowed rapid gel formation by vortexing. It also provided to adjust mechanical strength by changing fibroin to DAT ratio. Based on compression tests, gels of DAT/fibroin ratio with similar mechanical properties to adipose tissue was selected for cell culture experiments. In vitro characterizations showed that DAT is not cytotoxic; on the contrary, it has many natural ECM components which provide biocompatibility and bioactivity. Subcutaneous implantation of hydrogels resulted with no immunogenic reaction or infection. Moreover, localized empty hydrogels gelled successfully around host vessel with required shape. Implantations of cell encapsulated hydrogels and histological analyses are under study. It is expected that endothelial cells inside the hydrogel will form a capillary network and they will bind to the host vessel passing through hydrogel.

Keywords: adipose tissue engineering, decellularization, encapsulation, hydrogel, vascularization

Procedia PDF Downloads 529
816 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 78
815 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 104
814 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering

Authors: Tuba Kizilirmak

Abstract:

Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.

Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals

Procedia PDF Downloads 197
813 Old and New Paradigms for Pre-Earthquake Prevention and Post-Earthquake Regeneration of Territories in Crisis in Italy

Authors: Maria Angela Bedini, Fabio Bronzini

Abstract:

Most of the Italian territory is at seismic risk. Many earthquakes have hit Italy, and devastating effects have been generated. The specific objective of the research is to distinguish the negative approaches that have generated unacceptable social situations of marginalization, abandonment, and economic regression, from positive methodological approaches. On the basis of the different situations examined, the study proposes strategies and guidelines to obtain the best possible results, in Italy or abroad, in the event of new earthquakes. At national and international level, many theoretical studies address the aspects of prevention, while the comparisons, carried out in this study, between the techniques and the operative procedures applied and the results obtained are rare. The adopted methodology compares the different pre-earthquake urban-planning approaches, for the emergency (temporary urban planning), and for the post-earthquake (socio-economic-territorial processes) in Italy. Attention is placed on the current consolidated planning and programming acquisitions, pre and post-earthquake. The main results of the study concern the prospects in Italy of protection from seismic risks in the next decades. An integrated settlement system for a new economic and social model, aimed at the rebirth of territories in crisis, is proposed. Finally, the conclusions describe the disciplinary positions, procedures and the fundamental points generally shared by the scientific community for each approach, in order to identify the strategic choices and the disciplinary and management paths that will be followed in the coming decades.

Keywords: post-earthquake, seismic emergency, seismic prevention, urban planning interventions in Italy

Procedia PDF Downloads 129
812 Relationship between Pushing Behavior and Subcortical White Matter Lesion in the Acute Phase after Stroke

Authors: Yuji Fujino, Kazu Amimoto, Kazuhiro Fukata, Masahide Inoue, Hidetoshi Takahashi, Shigeru Makita

Abstract:

Aim: Pusher behavior (PB) is a disorder in which stroke patients shift their body weight toward the affected side of the body (the hemiparetic side) and push away from the non-hemiparetic side. These patients often use further pushing to resist any attempts to correct their position to upright. It is known that the subcortical white matter lesion (SWML) usually correlates of gait or balance function in stroke patients. However, it is unclear whether the SWML influences PB. The purpose of this study was to investigate if the damage of SWML affects the severity of PB on acute stroke patients. Methods: Fourteen PB patients without thalamic or cortical lesions (mean age 73.4 years, 17.5 days from onset) participated in this study. Evaluation of PB was performed according to the Scale for Contraversive Pushing (SCP) for sitting and/or standing. We used modified criteria wherein the SCP subscale scores in each section of the scale were >0. As a clinical measurement, patients were evaluated by the Stroke Impairment Assessment Set (SIAS). For the depiction of SWML, we used T2-weighted fluid-attenuated inversion-recovery imaging. The degree of damage on SWML was assessed using the Fazekas scale. Patients were divided into two groups in the presence of SWML (SWML+ group; Fazekas scale grade 1-3, SWML- group; Fazekas scale grade 0). The independent t-test was used to compare the SCP and SIAS. This retrospective study was approved by the Ethics Committee. Results: In SWML+ group, the SCP was 3.7±1.0 points (mean±SD), the SIAS was 28.0 points (median). In SWML- group, the SCP was 2.0±0.2 points, and the SIAS was 31.5 points. The SCP was significantly higher in SWML+ group than in SWML- group (p<0.05). The SIAS was not significant in both groups (p>0.05). Discussion: It has been considered that the posterior thalamus is the neural structures that process the afferent sensory signals mediating graviceptive information about upright body orientation in humans. Therefore, many studies reported that PB was typically associated with unilateral lesions of the posterior thalamus. However, the result indicates that these extra-thalamic brain areas also contribute to the network controlling upright body posture. Therefore, SMWL might induce dysfunction through malperfusion in distant thalamic or other structurally intact neural structures. This study had a small sample size. Therefore, future studies should be performed with a large number of PB patients. Conclusion: The present study suggests that SWML can be definitely associated with PB. The patients with SWML may be severely incapacitating.

Keywords: pushing behavior, subcortical white matter lesion, acute phase, stroke

Procedia PDF Downloads 246
811 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study

Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang

Abstract:

Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.

Keywords: autism, event-related potentials , mismatch negativity, speech perception

Procedia PDF Downloads 221
810 Facial Emotion Recognition Using Deep Learning

Authors: Ashutosh Mishra, Nikhil Goyal

Abstract:

A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.

Keywords: facial recognition, computational intelligence, convolutional neural network, depth map

Procedia PDF Downloads 232
809 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 231
808 Maryland Restoration of Anterior Tooth Loss as a Minimal Invasive Dentistry: An Alternative Treatment

Authors: B. Oral, C. Bal, M. S. Kar, A. Akgürbüz

Abstract:

Loss of maxillary central incisors occurs in many patients, and the treatment of young adults with this problem is a challenge for both prosthodontists and orthodontists. Common treatment alternatives are distalization of adjacent teeth and fabrication of a conventional 3-unit fixed partial denture, a single implant supported crown restoration or a resin-bonded fixed partial denture. This case report describes the indication of a resin-bonded fixed partial denture, preparation of the abutment teeth and the prosthetic procedures. The technique described here represents a conservative, esthetically pleasing and rapid solution for the missing maxillary central incisor when implant placement and/or guided bone regeneration techniques are not feasible because of financial, social or time restrictions. In this case a 16 year-old female patient who lost her maxillary left central incisor six years ago in a bicycle accident applied to our clinic with a major complaint of her unaesthetic appearance associated with the loss of her maxillary left central incisor. Although there was an indication for orthodontic treatment because of the limited space at the traumatized area, the patient did not accept to receive any orthodontic procedure. That is why an implant supported restoration could not be an option for the narrow area. Therefore maryland bridge as a minimal invasive dental therapy was preferred as a retention appliance so the patient's aesthetic appearance was restored.

Keywords: Maryland bridge, single tooth restoration, aesthetics, maxillary central incisors

Procedia PDF Downloads 361