Search results for: microscopic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17194

Search results for: microscopic model

17074 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9

Authors: Ulrich Wake, Eniman Syamsuddin

Abstract:

The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weights

Keywords: ​ One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation

Procedia PDF Downloads 209
17073 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 66
17072 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 145
17071 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility

Authors: Le Kang

Abstract:

According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.

Keywords: USR, achievement model, ferris wheel model, social responsibilities

Procedia PDF Downloads 725
17070 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.

Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink

Procedia PDF Downloads 596
17069 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 230
17068 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 112
17067 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

Authors: S. A. Sadegh Zadeh, C. Kambhampati

Abstract:

Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.

Keywords: all-or-none, computational modelling, mathematical model, transmembrane voltage, action potential

Procedia PDF Downloads 617
17066 Early Cell Cultures Derived from Human Prostate Cancer Tissue Express Tissue-Specific Epithelial and Cancer Markers

Authors: Vladimir Ryabov, Mikhail Baryshevs, Mikhail Voskresenskey, Boris Popov

Abstract:

The human prostate gland (PG) samples were obtained from patients who had undergone radical prostatectomy for prostate cancer (PC) and used to extract total RNA and prepare the prostate stromal cell cultures (PSCC) and patients-derived organoids (PDO). Growth of the cell cultures was accessed under microscopic evaluation in transmitted light and the marker expression by reverse polymerase chain reaction (RT-PCR), immunofluorescence, and immunoblotting. Some PCR products from prostate tissue, PSCC, and PDO were cloned and sequenced. We found that the cells of early and late passages of PSCC and corresponding PDO expressed luminal (androgen receptor, AR; cytokeratin 18, CK18) and basal (CK5, p63) epithelial markers, the production of which decreased or disappeared in late PSCC and PDO. The PSCC and PDO of early passages from cancer tissue additionally produced cancer markers AMACR, TMPRSS2-ERG, and Ezh2. The expression of TMPRSS2-ERG fusion transcripts was verified by cloning and sequencing the PCR products. The results obtained suggest that early passages of PSCC might be used as a pre-clinical model for the evaluation of early markers of prostate cancer.

Keywords: localized prostate cancer, prostate epithelial markers, prostate cancer markers, AMACR, TMPRSS2-ERG, prostate stromal cell cultures, PDO

Procedia PDF Downloads 110
17065 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain

Authors: Muleya Nqobile, Winston Garira

Abstract:

We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.

Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model

Procedia PDF Downloads 460
17064 Optics Meets Microfluidics for Highly Sensitive Force Sensing

Authors: Iliya Dimitrov Stoev, Benjamin Seelbinder, Elena Erben, Nicola Maghelli, Moritz Kreysing

Abstract:

Despite the revolutionizing impact of optical tweezers in materials science and cell biology up to the present date, trapping has so far extensively relied on specific material properties of the probe and local heating has limited applications related to investigating dynamic processes within living systems. To overcome these limitations while maintaining high sensitivity, here we present a new optofluidic approach that can be used to gently trap microscopic particles and measure femtoNewton forces in a contact-free manner and with thermally limited precision.

Keywords: optofluidics, force measurements, microrheology, FLUCS, thermoviscous flows

Procedia PDF Downloads 171
17063 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 107
17062 Proposal for a Generic Context Meta-Model

Authors: Jaouadi Imen, Ben Djemaa Raoudha, Ben Abdallah Hanene

Abstract:

The access to relevant information that is adapted to users’ needs, preferences and environment is a challenge in many applications running. That causes an appearance of context-aware systems. To facilitate the development of this class of applications, it is necessary that these applications share a common context meta-model. In this article, we will present our context meta-model that is defined using the OMG Meta Object facility (MOF). This meta-model is based on the analysis and synthesis of context concepts proposed in literature.

Keywords: context, meta-model, MOF, awareness system

Procedia PDF Downloads 562
17061 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 393
17060 Model of MSD Risk Assessment at Workplace

Authors: K. Sekulová, M. Šimon

Abstract:

This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.

Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors

Procedia PDF Downloads 551
17059 Identification of Classes of Bilinear Time Series Models

Authors: Anthony Usoro

Abstract:

In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.

Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model

Procedia PDF Downloads 409
17058 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys

Authors: Mechri hanane, Azzaz Mohammed

Abstract:

Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.

Keywords: nanomaterials, thin films, TEM, SEM

Procedia PDF Downloads 411
17057 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 245
17056 OmniDrive Model of a Holonomic Mobile Robot

Authors: Hussein Altartouri

Abstract:

In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.

Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot

Procedia PDF Downloads 611
17055 History of Film in the (West/South) Africa-the Emergence of the Film Production Economy

Authors: Sibusiso Mnyanda

Abstract:

Storytelling through motion pictures is a valuable economy. South Africa was one of the first countries in the world to see and hear sound motion pictures With Lingards Waxworks in Durban first showing them in August 1895. This article celebrates and takes a microscopic look into the developments of this industry and its economy, highlighting these fundamentals: Skill levels and talent sets that were displayed in this emergence, the quality of the products that were produced by filmmakers and actors, the level of Administration and quality assurance of production houses and the general infrastructure and resources available to the industry at the time.

Keywords: film, Africa, production economy, history

Procedia PDF Downloads 59
17054 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies

Authors: Maximilian Richter

Abstract:

Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.

Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider

Procedia PDF Downloads 124
17053 A Constitutive Model for Time-Dependent Behavior of Clay

Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili

Abstract:

A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.

Keywords: bounding surface, consistency theory, constitutive model, viscosity

Procedia PDF Downloads 493
17052 The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations

Authors: Carlos F. Sanz-Navarro, Sonia Fereres

Abstract:

Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials.

Keywords: atomistic simulations, thermal storage, latent heat, molten salt, ion mobility

Procedia PDF Downloads 326
17051 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies

Keywords: crop yield, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 411
17050 Numerical Modeling of the Depth-Averaged Flow over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.

Keywords: depth-averaged equations, numerical modeling, CFD, wind park model

Procedia PDF Downloads 603
17049 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves

Authors: Jui-Ching Chou

Abstract:

Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.

Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model

Procedia PDF Downloads 174
17048 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization

Authors: Jessica Gu, Yu Chen

Abstract:

Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.

Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution

Procedia PDF Downloads 243
17047 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.

Keywords: runoff, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 378
17046 Two Taxa of Paradiacheopsis Genera Recordings of the Myxomycetes from Turkey

Authors: Dursun Yağız, Ahmet Afyon

Abstract:

The study materials were collected from Isparta province in 2008. These materials were moved to the laboratory. The 'Most Chamber Techniques' were applied to the materials in the laboratory. Materials were examined with a stereo microscope. As a result of investigations carried out on the samples of sporophores which were developed in the laboratory, Paradiacheopsis erythropodia (Ing) Nann.-Bremek. and Paradiacheopsis longipes Hooff & Nann.-Bremek. species were identified. As a result of the literature research, it is determined that these taxa were new recordings in Turkey. The identified taxa have been added to Turkey's myxomycota. These two taxa’ microscopic features, photos, localities and substrate information were given.

Keywords: myxomycete, paradiacheopsis, Turkey, slime mould

Procedia PDF Downloads 284
17045 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 549