Search results for: agronomy techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6801

Search results for: agronomy techniques

6681 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction

Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz

Abstract:

Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.

Keywords: image processing, noise, speckle, ultrasound

Procedia PDF Downloads 112
6680 Differential Effect of Technique Majors on Isokinetic Strength in Youth Judoka Athletes

Authors: Chungyu Chen, Yi-Cheng Chen, Po-Hsian Hsu, Hsin-Ying Chen, Yen-Po Hsiao

Abstract:

The purpose of this study was to assess the muscular strength performance of upper and lower extremity in isokinetic system for the youth judo players, and also to compare the strength difference between major techniques. Sixteen male and 20 female judo players (age: 16.7 ± 1.6 years old, training age: 4.5 ± 0.8 years) were served as the volunteers for this study. There were 21 players major hand techniques and 15 players major foot techniques. The Biodex S4 Pro was used to assess the strength performance of extensor and flexor of concentric action under the load condition of 30 degree/sec, 60 degree/sec, and 120 degree/sec for elbow joints and knee joints. The strength parameters were included the maximal torque, the normalized maximal torque, the average power, and the average maximal torque. A t test for independent groups was used to evaluate whether hand major and foot major differ significantly with an alpha level of .05. The result showed the maximal torque of left knee extensor in foot major players (243.5 ± 36.3 Nm) was higher significantly than hand major (210.7 ± 21.0 Nm) under the load of 30 degree/sec (p < .05). There were no differences in upper extremity strength between the hand and foot techniques major in three loads (ps < .05). It indicated that the judo player is required to develop the upper extremity strength overall to secure the execution of major techniques.

Keywords: knee, elbow, power, judo

Procedia PDF Downloads 457
6679 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 426
6678 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada

Authors: Monica Anumula

Abstract:

Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.

Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort

Procedia PDF Downloads 179
6677 Discovery of the Piano Extended Techniques by Focusing on Symbols That George Crumb Used in Makrokosmos Volumes

Authors: Parham Bakhtiari

Abstract:

George Crumb's Makrokosmos Volumes are considered significant pieces in twentieth-century piano music and showcase the extensive use of different tones and extended techniques on the piano. Crumb's works are known for making references, particularly to music from previous eras which the visual, aural, and numerical characteristics are symbolic in nature. Crumb created a list of symbols and shortened letters to clarify his unique directions to those who performed his compositions. The pianists who prepare to play Makrokosmos must dedicate time to study and analyze Crumb's markings diligently to accurately capture the composer's wishes. The aim of this paper is to provide a collection for pianists looking to perform George Crumb's compositions known as Makrokosmos Volumes. The research traits of unconventional playing techniques and discussions on the music explored by the composer are being described.

Keywords: music, piano, Crumb, Makrokosmos, performance

Procedia PDF Downloads 52
6676 Software Quality Assurance in Network Security using Cryptographic Techniques

Authors: Sidra Shabbir, Ayesha Manzoor, Mehreen Sirshar

Abstract:

The use of the network communication has imposed serious threats to the security of assets over the network. Network security is getting more prone to active and passive attacks which may result in serious consequences to data integrity, confidentiality and availability. Various cryptographic techniques have been proposed in the past few years to combat with the concerned problem by ensuring quality but in order to have a fully secured network; a framework of new cryptosystem was needed. This paper discusses certain cryptographic techniques which have shown far better improvement in the network security with enhanced quality assurance. The scope of this research paper is to cover the security pitfalls in the current systems and their possible solutions based on the new cryptosystems. The development of new cryptosystem framework has paved a new way to the widespread network communications with enhanced quality in network security.

Keywords: cryptography, network security, encryption, decryption, integrity, confidentiality, security algorithms, elliptic curve cryptography

Procedia PDF Downloads 734
6675 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 424
6674 Teaching, Learning and Evaluation Enhancement of Information Communication Technology Education in Schools through Pedagogical and E-Learning Techniques in the Sri Lankan Context

Authors: M. G. N. A. S. Fernando

Abstract:

This study uses a researchable framework to improve the quality of ICT education and the Teaching Learning Assessment/ Evaluation (TLA/TLE) process. It utilizes existing resources while improving the methodologies along with pedagogical techniques and e-Learning approaches used in the secondary schools of Sri Lanka. The study was carried out in two phases. Phase I focused on investigating the factors which affect the quality of ICT education. Based on the key factors of phase I, the Phase II focused on the design of an Experimental Application Model with 6 activity levels. Each Level in the Activity Model covers one or more levels in the Revised Bloom’s Taxonomy. Towards further enhancement of activity levels, other pedagogical techniques (activity based learning, e-learning techniques, problem solving activities and peer discussions etc.) were incorporated to each level in the activity model as appropriate. The application model was validated by a panel of teachers including a domain expert and was tested in the school environment too. The validity of performance was proved using 6 hypotheses testing and other methodologies. The analysis shows that student performance with problem solving activities increased by 19.5% due to the different treatment levels used. Compared to existing process it was also proved that the embedded techniques (mixture of traditional and modern pedagogical methods and their applications) are more effective with skills development of teachers and students.

Keywords: activity models, Bloom’s taxonomy, ICT education, pedagogies

Procedia PDF Downloads 165
6673 Digital Cinema Watermarking State of Art and Comparison

Authors: H. Kelkoul, Y. Zaz

Abstract:

Nowadays, the vigorous popularity of video processing techniques has resulted in an explosive growth of multimedia data illegal use. So, watermarking security has received much more attention. The purpose of this paper is to explore some watermarking techniques in order to observe their specificities and select the finest methods to apply in digital cinema domain against movie piracy by creating an invisible watermark that includes the date, time and the place where the hacking was done. We have studied three principal watermarking techniques in the frequency domain: Spread spectrum, Wavelet transform domain and finally the digital cinema watermarking transform domain. In this paper, a detailed technique is presented where embedding is performed using direct sequence spread spectrum technique in DWT transform domain. Experiment results shows that the algorithm provides high robustness and good imperceptibility.

Keywords: digital cinema, watermarking, wavelet DWT, spread spectrum, JPEG2000 MPEG4

Procedia PDF Downloads 251
6672 Prediction of Disability-Adjustment Mental Illness Using Machine Learning

Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad

Abstract:

Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population.

Keywords: ML, DAL, YLD, YLL

Procedia PDF Downloads 38
6671 A Study of Evolving Cloud Computing Data Security: A Machine Learning Perspective

Authors: Shinoy Vengaramkode Bhaskaran

Abstract:

The advancement of cloud computing led to a variety of security issues for both consumers and industries. Whereas machine learning (ML) is one approach to securing Cloud-based systems. Various methods have been employed to prevent or detect attacks and security vulnerabilities on the Cloud using ML techniques. In this paper, we present an ML perspective on the methodologies and techniques of cloud security. Initially, an investigative study on cloud computing is conducted with a primary emphasis on the gaps with two research questions that are impeding the adoption of cloud technology, as well as the challenges associated with threat solutions. Next, some ideas are generated based on machine learning methods to mitigate certain types of attacks that are frequently discussed through the application of ML techniques. Finally, we review different machine learning algorithms and their adoption in cloud computing.

Keywords: artificial intelligence, machine learning, cloud computing infrastructure as a service, support vector machine, platform as a service

Procedia PDF Downloads 10
6670 Data Mining Techniques for Anti-Money Laundering

Authors: M. Sai Veerendra

Abstract:

Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.

Keywords: data mining, clustering, money laundering, anti-money laundering solutions

Procedia PDF Downloads 539
6669 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 142
6668 Review of Malaria Diagnosis Techniques

Authors: Lubabatu Sada Sodangu

Abstract:

Malaria is a major cause of death in tropical and subtropical nations. Malaria cases are continually rising as a result of a number of factors, despite the fact that the condition is now treatable using effective methods. In this situation, quick and effective diagnostic methods are essential for the management and control of malaria. Malaria diagnosis using conventional methods is still troublesome, hence new technologies have been created and implemented to get around the drawbacks. The review describes the currently known malaria diagnostic techniques, their strengths and shortcomings.

Keywords: malaria, technique, diagnosis, Africa

Procedia PDF Downloads 55
6667 Review of Malaria Diagnosis Techniques

Authors: Lubabatu Sada Sodangi

Abstract:

Malaria is a major cause of death in tropical and subtropical nations. Malaria cases are continually rising as a result of a number of factors, despite the fact that the condition is now treatable using effective methods. In this situation, quick and effective diagnostic methods are essential for the management and control of malaria. Malaria diagnosis using conventional methods is still troublesome; hence, new technologies have been created and implemented to get around the drawbacks. The review describes the currently known malaria diagnostic techniques, their strengths, and shortcomings.

Keywords: malaria, technique, diagnosis, Africa

Procedia PDF Downloads 60
6666 Cost Reduction Techniques for Provision of Shelter to Homeless

Authors: Mukul Anand

Abstract:

Quality oriented affordable shelter for all has always been the key issue in the housing sector of our country. Homelessness is the acute form of housing need. It is a paradox that in spite of innumerable government initiated programmes for affordable housing, certain section of society is still devoid of shelter. About nineteen million (18.78 million) households grapple with housing shortage in Urban India in 2012. In Indian scenario there is major mismatch between the people for whom the houses are being built and those who need them. The prime force faced by public authorities in facilitation of quality housing for all is high cost of construction. The present paper will comprehend executable techniques for dilution of cost factor in housing the homeless. The key actors responsible for delivery of cheap housing stock such as capacity building, resource optimization, innovative low cost building material and indigenous skeleton housing system will also be incorporated in developing these techniques. Time performance, which is an important angle of above actors, will also be explored so as to increase the effectiveness of low cost housing. Along with this best practices will be taken up as case studies where both conventional techniques of housing and innovative low cost housing techniques would be cited. Transportation consists of approximately 30% of total construction budget. Thus use of alternative local solutions depending upon the region would be covered so as to highlight major components of low cost housing. Government is laid back regarding base line information on use of innovative low cost method and technique of resource optimization. Therefore, the paper would be an attempt to bring to light simpler solutions for achieving low cost housing.

Keywords: construction, cost, housing, optimization, shelter

Procedia PDF Downloads 447
6665 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 149
6664 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 276
6663 A Comparative Analysis of Various Companding Techniques Used to Reduce PAPR in VLC Systems

Authors: Arushi Singh, Anjana Jain, Prakash Vyavahare

Abstract:

Recently, Li-Fi(light-fiedelity) has been launched based on VLC(visible light communication) technique, 100 times faster than WiFi. Now 5G mobile communication system is proposed to use VLC-OFDM as the transmission technique. The VLC system focused on visible rays, is considered for efficient spectrum use and easy intensity modulation through LEDs. The reason of high speed in VLC is LED, as they flicker incredibly fast(order of MHz). Another advantage of employing LED is-it acts as low pass filter results no out-of-band emission. The VLC system falls under the category of ‘green technology’ for utilizing LEDs. In present scenario, OFDM is used for high data-rates, interference immunity and high spectral efficiency. Inspite of the advantages OFDM suffers from large PAPR, ICI among carriers and frequency offset errors. Since, the data transmission technique used in VLC system is OFDM, the system suffers the drawbacks of OFDM as well as VLC, the non-linearity dues to non-linear characteristics of LED and PAPR of OFDM due to which the high power amplifier enters in non-linear region. The proposed paper focuses on reduction of PAPR in VLC-OFDM systems. Many techniques are applied to reduce PAPR such as-clipping-introduces distortion in the carrier; selective mapping technique-suffers wastage of bandwidth; partial transmit sequence-very complex due to exponentially increased number of sub-blocks. The paper discusses three companding techniques namely- µ-law, A-law and advance A-law companding technique. The analysis shows that the advance A-law companding techniques reduces the PAPR of the signal by adjusting the companding parameter within the range. VLC-OFDM systems are the future of the wireless communication but non-linearity in VLC-OFDM is a severe issue. The proposed paper discusses the techniques to reduce PAPR, one of the non-linearities of the system. The companding techniques mentioned in this paper provides better results without increasing the complexity of the system.

Keywords: non-linear companding techniques, peak to average power ratio (PAPR), visible light communication (VLC), VLC-OFDM

Procedia PDF Downloads 286
6662 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
6661 Analysis of Spamming Threats and Some Possible Solutions for Online Social Networking Sites (OSNS)

Authors: Dilip Singh Sisodia, Shrish Verma

Abstract:

Spamming is the most common issue seen nowadays in the Internet especially in Online Social Networking Sites (like Facebook, Twitter, and Google+ etc.). Spam messages keep wasting Internet bandwidth and the storage space of servers. On social network sites; spammers often disguise themselves by creating fake accounts and hijacking user’s accounts for personal gains. They behave like normal user and they continue to change their spamming strategy. To prevent this, most modern spam-filtering solutions are deployed on the receiver side; they are good at filtering spam for end users. In this paper we are presenting some spamming techniques their behaviour and possible solutions. We have analyzed how Spammers enters into online social networking sites (OSNSs) and how they target it and the techniques they use for it. The five discussed techniques of spamming techniques which are clickjacking, social engineered attacks, cross site scripting, URL shortening, and drive by download. We have used elgg framework for demonstration of some of spamming threats and respective implementation of solutions.

Keywords: online social networking sites, spam, attacks, internet, clickjacking / likejacking, drive-by-download, URL shortening, networking, socially engineered attacks, elgg framework

Procedia PDF Downloads 349
6660 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction

Authors: Saurabh Kumar

Abstract:

In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.

Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth

Procedia PDF Downloads 32
6659 Multidrug Therapies For HIV: Hybrid On-Off, Hysteresis On-Off Control and Simple STI

Authors: Magno Enrique Mendoza Meza

Abstract:

This paper deals with the comparison of three control techniques: the hysteresis on-off control (HyOOC), the hybrid on-off control (HOOC) and the simple Structured Treatment Interruptions (sSTI). These techniques are applied to the mathematical model developed by Kirschner and Webb. To compare these techniques we use a cost functional that minimize the wild-type virus population and the mutant virus population, but the main objective is to minimize the systemic cost of treatment and maximize levels of healthy CD4+ T cells. HyOOC, HOOC, and sSTI are applied to the drug therapies using a reverse transcriptase and protease inhibitors; simulations show that these controls maintain the uninfected cells in a small, bounded neighborhood of a pre-specified level. The controller HyOOC and HOOC are designed by appropriate choice of virtual equilibrium points.

Keywords: virus dynamics, on-off control, hysteresis, multi-drug therapies

Procedia PDF Downloads 395
6658 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology

Authors: Amit Kamra, V. K. Jain, Pragya

Abstract:

Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.

Keywords: enhancement, mammography, multi-scale, mathematical morphology

Procedia PDF Downloads 427
6657 Innovative Teaching Learning Techniques and Learning Difficulties of Adult Learners in Literacy Education Programmes in Calabar Metropolis, Cross River State, Nigeria

Authors: Simon Ibor Akpama

Abstract:

The study investigated the extent to which innovative teaching-learning techniques can influence and attenuate learning difficulties among adult learners participating in different literacy education programmes in Calabar Metropolis, Cross River State, Nigeria. A quasi-experimental design was adopted to collect data from a sample size of 150 participants of the programme. The sample was drawn using the simple random sampling method. As an experimental study, the 150 participants were divided into two equal groups –the first was the experimental group while the second was the control. A pre-test was administered to the two groups which were later exposed to a post-test after treatment. Two instruments were used for data collection. The first was the guide for the Literacy Learning Difficulties Inventory (LLDI). Three hypotheses were postulated and tested as .05 level of significance using Analysis of Covariance (ANOVA) test statistics. Results of the analysis firstly showed that the two groups (treatment and control) did not differ in the pre-test regarding their literacy learning difficulties. Secondly, the result showed that for each hypothesis, innovative teaching-learning techniques significantly influenced adult learners’ (participants) literacy learning difficulties. Based on these findings, the study recommends the use of innovative teaching-learning techniques in adult literacy education centres to mitigate the learning difficulties of adult learners in literacy education programmes in Calabar Metropolis.

Keywords: teaching, learning, techniques, innovative, difficulties, programme

Procedia PDF Downloads 123
6656 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 592
6655 Synthesis of Y2O3 Films by Spray Coating with Milled EDTA ・Y・H Complexes

Authors: Keiji Komatsu,Tetsuo Sekiya, Ayumu Toyama, Atsushi Nakamura, Ikumi Toda, Shigeo Ohshio, Hiroyuki Muramatsu, Hidetoshi Saitoh

Abstract:

Yttrium oxide (Y2O3) films have been successfully deposited with yttrium-ethylenediaminetetraacetic acid (EDTA・Y・H) complexes prepared by various milling techniques. The effects of the properties of the EDTA・Y・H complex on the properties of the deposited Y2O3 films have been analyzed. Seven different types of the raw EDTA・Y・H complexes were prepared by various commercial milling techniques such as ball milling, hammer milling, commercial milling, and mortar milling. The milled EDTA・Y・H complexes exhibited various particle sizes and distributions, depending on the milling method. Furthermore, we analyzed the crystal structure, morphology and elemental distribution profile of the metal oxide films deposited on stainless steel substrate with the milled EDTA・Y・H complexes. Depending on the milling technique, the flow properties of the raw powders differed. The X-ray diffraction pattern of all the samples revealed the formation of Y2O3 crystalline phase, irrespective of the milling technique. Of all the different milling techniques, the hammer milling technique is considered suitable for fabricating dense Y2O3 films.

Keywords: powder sizes and distributions, flame spray coating techniques, Yttrium oxide

Procedia PDF Downloads 395
6654 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran

Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh

Abstract:

Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.

Keywords: evapotranspiration, hargreaves, equation, FAO-Penman method

Procedia PDF Downloads 395
6653 Robust Image Design Based Steganographic System

Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi

Abstract:

This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).

Keywords: encryption, thresholding, differential predictive coding, four triangles operation

Procedia PDF Downloads 493
6652 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 697