Search results for: pressure hull
2679 Exploring the Treatment of Unmarried Female Adolescents (10-19 Years) at Health Facilities during the Maternity Period in Uganda
Authors: Peninah Agaba, Monica Magadi, Bev Orton
Abstract:
Uganda is one of the countries with high maternal mortality (336/100,000) where adolescents account for 24 percent of the total maternal deaths. Research shows that use of maternal health services may prevent some of these deaths and good provider attitudes attract adolescents to use the services. However, poor health provider’s attitudes discourage adolescents from seeking the services during the maternity period. This study explores the experiences of unmarried female adolescents at the health facilities during the maternity period. The study population is unmarried adolescent girls aged 10-19 years who were pregnant or had given birth within three years before the interview. This is a special interest group that requires attention throughout this period. Most of the pregnancies among unmarried adolescents are unwanted; as a result, many of them have been abused and neglected by parents and close family members including partners who deny fatherhood of the pregnancy/child. These adolescents hope to find comfort from health providers like being listened to during counseling, not abused and judged; unfortunately this is not the case always. The research was approved by the University of Hull, School of Education and Social Sciences ethics review committee, Mildmay Uganda Research Ethics Committee and Uganda National Council of Science and Technology. The study was carried out in Bushenyi and Kibale districts in Western Uganda. Fourteen in-depth interviews and seven focus group discussions were completed in the local languages and later transcribed to English language. Thematic analysis to identify the themes was done. Adolescents were aged 16-19 years, two had become pregnant before 15 years. Most had not completed secondary education; none had tertiary education and three of the 14 IDI adolescent participants wanted to get pregnant. Analysis shows varied experiences; most adolescents were abused verbally and physically by the health providers due to their young age of pregnancy, lack of essential items during this period (maternity dresses, children clothes, delivery kit) and fear of labour pains. Another cause for abuse was these adolescents coming for antenatal care with no partners yet the implementation of a policy on increasing male involvement in reproductive health in Uganda requires them to attend antenatal care with their partners and most of these unmarried adolescents have no partners to accompany them. Despite the above challenges, the study also identified the care some of these unmarried adolescents received during the maternity visits for example they were not abused, were provided with appropriate information and supported with child care. The study identified abuse and support the unmarried adolescents received during the maternity period. Efforts to provide adolescents with adequate information including what to expect during labour by providers and provision of basic needs are essential. Health providers should have trainings on client care especially how to embrace unmarried adolescents when they come to access maternity services. More so, the policy on improving male involvement in RH issues need to be considerate of unmarried adolescents who in most cases do not have the partners to go with to access maternity care.Keywords: abuse, maternity care, Uganda, unmarried, adolescents
Procedia PDF Downloads 1312678 Aerodynamic Analysis of Vehicles
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes
Abstract:
Two of the objective principal in the study of the aerodynamics of vehicles are the safety and the acting. Those objectives can be reached through the development of devices modify the drainage of air about of the vehicle and also through alterations in the way of the external surfaces. The front lowest profile of the vehicle, for instance, has great influence on the coefficient of aerodynamic penetration (Cx) and later on great part of the pressure distribution along the surface of the vehicle. The objective of this work was of analyzing the aerodynamic behavior that it happens on some types the trucks of vehicles, based on experimentation in aerodynamic tunnel, seeking to determine the aerodynamic efficiency of each one of them.Keywords: aerodynamic, vehicles, wind tunnel, safety, acting
Procedia PDF Downloads 5012677 Computer Simulation Approach in the 3D Printing Operations of Surimi Paste
Authors: Timilehin Martins Oyinloye, Won Byong Yoon
Abstract:
Simulation technology is being adopted in many industries, with research focusing on the development of new ways in which technology becomes embedded within production, services, and society in general. 3D printing (3DP) technology is fast developing in the food industry. However, the limited processability of high-performance material restricts the robustness of the process in some cases. Significantly, the printability of materials becomes the foundation for extrusion-based 3DP, with residual stress being a major challenge in the printing of complex geometry. In many situations, the trial-a-error method is being used to determine the optimum printing condition, which results in time and resource wastage. In this report, the analysis of 3 moisture levels for surimi paste was investigated for an optimum 3DP material and printing conditions by probing its rheology, flow characteristics in the nozzle, and post-deposition process using the finite element method (FEM) model. Rheological tests revealed that surimi pastes with 82% moisture are suitable for 3DP. According to the FEM model, decreasing the nozzle diameter from 1.2 mm to 0.6 mm, increased the die swell from 9.8% to 14.1%. The die swell ratio increased due to an increase in the pressure gradient (1.15107 Pa to 7.80107 Pa) at the nozzle exit. The nozzle diameter influenced the fluid properties, i.e., the shear rate, velocity, and pressure in the flow field, as well as the residual stress and the deformation of the printed sample, according to FEM simulation. The post-printing stability of the model was investigated using the additive layer manufacturing (ALM) model. The ALM simulation revealed that the residual stress and total deformation of the sample were dependent on the nozzle diameter. A small nozzle diameter (0.6 mm) resulted in a greater total deformation (0.023), particularly at the top part of the model, which eventually resulted in the sample collapsing. As the nozzle diameter increased, the accuracy of the model improved until the optimum nozzle size (1.0 mm). Validation with 3D-printed surimi products confirmed that the nozzle diameter was a key parameter affecting the geometry accuracy of 3DP of surimi paste.Keywords: 3D printing, deformation analysis, die swell, numerical simulation, surimi paste
Procedia PDF Downloads 692676 Characterization of Ethanol-Air Combustion in a Constant Volume Combustion Bomb Under Cellularity Conditions
Authors: M. Reyes, R. Sastre, P. Gabana, F. V. Tinaut
Abstract:
In this work, an optical characterization of the ethanol-air laminar combustion is presented in order to investigate the origin of the instabilities developed during the combustion, the onset of the cellular structure and the laminar burning velocity. Experimental tests of ethanol-air have been developed in an optical cylindrical constant volume combustion bomb equipped with a Schlieren technique to record the flame development and the flame front surface wrinkling. With this procedure, it is possible to obtain the flame radius and characterize the time when the instabilities are visible through the cell's apparition and the cellular structure development. Ethanol is an aliphatic alcohol with interesting characteristics to be used as a fuel in Internal Combustion Engines and can be biologically synthesized from biomass. Laminar burning velocity is an important parameter used in simulations to obtain the turbulent flame speed, whereas the flame front structure and the instabilities developed during the combustion are important to understand the transition to turbulent combustion and characterize the increment in the flame propagation speed in premixed flames. The cellular structure is spontaneously generated by volume forces, diffusional-thermal and hydrodynamic instabilities. Many authors have studied the combustion of ethanol air and mixtures of ethanol with other fuels. However, there is a lack of works that investigate the instabilities and the development of a cellular structure in ethanol flames, a few works as characterized the ethanol-air combustion instabilities in spherical flames. In the present work, a parametrical study is made by varying the fuel/air equivalence ratio (0.8-1.4), initial pressure (0.15-0.3 MPa) and initial temperature (343-373K), using a design of experiments type I-optimal. In reach mixtures, it is possible to distinguish the cellular structure formed by the hydrodynamic effect and by from the thermo-diffusive. Results show that ethanol-air flames tend to stabilize as the equivalence ratio decreases in lean mixtures and develop a cellular structure with the increment of initial pressure and temperature.Keywords: ethanol, instabilities, premixed combustion, schlieren technique, cellularity
Procedia PDF Downloads 692675 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)
Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min
Abstract:
Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e.less than 8seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the systemopening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used,shows significant improvement over the old ones.Keywords: aircraft door damper, bypass valve, emergency power assist system, hydraulic damper, oil viscosity
Procedia PDF Downloads 4232674 The Dual Catastrophe of Behçet’s Disease Visual Loss Followed by Acute Spinal Shock After Lumbar Drain Removal
Authors: Naim Izet Kajtazi
Abstract:
Context: Increased intracranial pressure and associated symptoms such as headache, papilledema, motor or sensory deficits, seizures, and conscious disturbance are well-known in acute CVT. However, visual loss is not commonly associated with this disease, except in the case of secondary IIH associated with it. Process: We report a case of a 40-year-old male with Behçet’s disease and cerebral venous thrombosis, and other multiple comorbidities admitted with a four-day history of increasing headache and rapidly progressive visual loss bilaterally. The neurological examination was positive for bilateral papilledema of grade 3 with light perception on the left eye and counting fingers on the right eye. Brain imaging showed old findings of cerebral venous thrombosis without any intraparenchymal lesions to suggest a flare-up of Behçet’s disease. The lumbar puncture, followed by the lumbar drain insertion, gave no benefit in headache or vision. However, he completely lost sight. The right optic nerve sheath fenestration did not result in vision improvement. The acute spinal shock complicated the lumbar drain removal due to epidural hematoma. An urgent lumbar laminectomy with hematoma evacuation undertook. Intra-operatively, the neurosurgeon noted suspicious abnormal vessels at conus medullaris with the possibility of an arteriovenous malformation. Outcome: In a few days following the spinal surgery, the patient vision started to improve. Further improvement was achieved after plasma exchange sessions followed by cyclophosphamide. In the recent follow-up in the clinic, he reported better vision, drove, and completed his Ph.D. studies. Relevance: Visual loss in patients with Behçet’s disease should always be anticipated and taken reasonable care of, ensuring that they receive well-combined immunosuppression with anticoagulation and agents to reduce intracranial pressure. This patient’s story is significant for a high disease burden and complicated hospital course by acute spinal shock due to spinal lumbar drain removal with a possible underlying spinal arteriovenous malformation.Keywords: Behcet disease, optic neuritis, IIH, CVT
Procedia PDF Downloads 742673 Knowledge of Risk Factors and Health Implications of Fast Food Consumption among Undergraduate in Nigerian Polytechnic
Authors: Adebusoye Michael, Anthony Gloria, Fasan Temitope, Jacob Anayo
Abstract:
Background: The culture of fast food consumption has gradually become a common lifestyle in Nigeria especially among young people in urban areas, in spite of the associated adverse health consequences. The adolescent pattern of fast foods consumption and their perception of this practice, as a risk factor for Non-Communicable Diseases (NCDs), have not been fully explored. This study was designed to assess fast food consumption pattern and the perception of it as a risk factor for NCDs among undergraduates of Federal Polytechnic, Bauchi. Methodology: The study was descriptive cross-sectional in design. One hundred and eighty-five students were recruited using systematic random sampling method from the two halls of residence. A structured questionnaire was used to assess the consumption pattern of fast foods. Data collected from the questionnaires were analysed using statistical package for the social sciences (SPSS) version 16. Simple descriptive statistics, such as frequency counts and percentages were used to interpret the data. Results: The age range of respondents was 18-34 years, 58.4% were males, 93.5% singles and 51.4% of their parents were employed. The majority (100%) were aware of fast foods and (75%) agreed to its implications as NCD. Fast foods consumption distribution included meat pie (4.9%), beef roll/ sausage (2.7%), egg roll (13.5%), doughnut (16.2%), noodles(18%) and carbonated drinks (3.8%). 30.3% consumed thrice in a week and 71% attached workload to high consumption of fast food. Conclusion: It was revealed that a higher social pressure from peers, time constraints, class pressure and school programme had the strong influence on high percentages of higher institutions’ students consume fast foods and therefore nutrition educational campaigns for campus food outlets or vendors and behavioural change communication on healthy nutrition and lifestyles among young people are hereby advocated.Keywords: fast food consumption, Nigerian polytechnic, risk factors, undergraduate
Procedia PDF Downloads 4712672 Prediction of Ionic Liquid Densities Using a Corresponding State Correlation
Authors: Khashayar Nasrifar
Abstract:
Ionic liquids (ILs) exhibit particular properties exemplified by extremely low vapor pressure and high thermal stability. The properties of ILs can be tailored by proper selection of cations and anions. As such, ILs are appealing as potential solvents to substitute traditional solvents with high vapor pressure. One of the IL properties required in chemical and process design is density. In developing corresponding state liquid density correlations, scaling hypothesis is often used. The hypothesis expresses the temperature dependence of saturated liquid densities near the vapor-liquid critical point as a function of reduced temperature. Extending the temperature dependence, several successful correlations were developed to accurately correlate the densities of normal liquids from the triple point to a critical point. Applying mixing rules, the liquid density correlations are extended to liquid mixtures as well. ILs are not molecular liquids, and they are not classified among normal liquids either. Also, ILs are often used where the condition is far from equilibrium. Nevertheless, in calculating the properties of ILs, the use of corresponding state correlations would be useful if no experimental data were available. With well-known generalized saturated liquid density correlations, the accuracy in predicting the density of ILs is not that good. An average error of 4-5% should be expected. In this work, a data bank was compiled. A simplified and concise corresponding state saturated liquid density correlation is proposed by phenomena-logically modifying reduced temperature using the temperature-dependence for an interacting parameter of the Soave-Redlich-Kwong equation of state. This modification improves the temperature dependence of the developed correlation. Parametrization was next performed to optimize the three global parameters of the correlation. The correlation was then applied to the ILs in our data bank with satisfactory predictions. The correlation of IL density applied at 0.1 MPa and was tested with an average uncertainty of around 2%. No adjustable parameter was used. The critical temperature, critical volume, and acentric factor were all required. Methods to extend the predictions to higher pressures (200 MPa) were also devised. Compared to other methods, this correlation was found more accurate. This work also presents the chronological order of developing such correlations dealing with ILs. The pros and cons are also expressed.Keywords: correlation, corresponding state principle, ionic liquid, density
Procedia PDF Downloads 1302671 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well
Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao
Abstract:
When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.Keywords: air compression, foaming agents, gas well, liquid loading
Procedia PDF Downloads 1352670 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 902669 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering
Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola
Abstract:
Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials
Procedia PDF Downloads 742668 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: CH4 hydrate, Black Sea hydrates, gas hydrate experiments, HydrateResSim
Procedia PDF Downloads 6242667 Structural Properties of CuCl, CuBr, and CuI Compounds under Hydrostatic Pressure
Authors: S. Louhibi-Fasla, H. Rekab Djabri, H. Achour
Abstract:
The aim of this work is to investigate the structural phase-transitions and electronic properties of copper halides. Our calculations were performed within the PLW extension to the first principle FPLMTO method, which enables an accurate treatment of all kinds of structures including the open ones. Results are given for lattice parameters, bulk modulus and its first derivatives in five different surface phases, and are compared with the available theoretical and experimental data. In the zinc-blende (B3) and PbO (B10) phases, the fundamental gap remains direct with both the top of VB and the bottom of CB located at Γ.Keywords: FPLMTO, structural properties, Copper halides, phase transitions, ground state phase
Procedia PDF Downloads 4312666 Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs
Authors: Madhu Sarwan, Ritu Dubey, Sadhna Singh
Abstract:
We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs.Keywords: III-V alloy, elastic moduli, phase transition, semiconductors
Procedia PDF Downloads 5442665 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine
Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.Keywords: diesel fuel, CFD, evaporation, multiphase
Procedia PDF Downloads 3442664 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure
Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff
Abstract:
Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics
Procedia PDF Downloads 5272663 Enhancement of CO2 Capturing Performance of N-Methyldiethanolamine (MDEA) Using with New Class Functionalized Ionic Liquids: Kinetics and Interaction Mechanism Analysis
Authors: Surya Chandra Tiwari, Kamal Kishore Pant, Sreedevi Upadhyayula
Abstract:
CO2 capture using benign cost-effective solvents is an essential unit operation not only in the process industry for CO2 separation and recovery from industrial off-gas streams but also for direct capture from air to clean the environment. Several solvents are identified, by researchers, with high CO2 capture efficiency due to their favorable chemical and physical properties, interaction mechanism with CO2, and low regeneration energy cost. However, N-Methyldiethanolamine (MDEA) is the most frequently used solvent for CO2 capture with promoters such as piperazine (Pz) and monoethanolamine (MEA). These promoters have several issues such as low thermal stability, heat-stable salt formation, and being highly degradable. Therefore, new class promoters need to be used to overcome these issues. Functionalized ionic liquids (FILs) have the potential to overcome these limitations. Hence, in this work, four different new class functionalized ionic liquids (FILs) were used as promoters and determined their effectivity toward enhancement of the CO2 absorption performance. The CO2 absorption is performed at different pressure (2 bar, 4.4 bar, and 7 bar) and different temperature (303, 313, and 323K). The results confirmed that CO2 loading increases around 18 to 22% after 5wt% FILs blended in the MDEA. It was noticed that the CO2 loading increases with increasing pressure and decreases with increasing temperature for all absorbents systems. Further, the absorption kinetics was determined, and results showed that all the FILs provide an excellent absorption rate enhancement. Additionally, for the interaction mechanism study, 13C NMR analysis was performed for the blend aqueous MDEA-CO2 system. The results suggested that the FILs blend MDEA system produced a high amount of carbamates and bicarbonates during CO2 absorption, which further decreases with increasing temperature. Eventually, regeneration energy was calculated, and results confirmed that the energy heat duty penalty was lower in the [TETAH][Im] blend MDEA system. Overall, [TETAH][Pz], [TETAH][Im], [DETAH][Im] and [DETAH][Tz] showed the promising ability as promoters to enhance CO2 capturing performance of MDEA.Keywords: CO2 capture, interaction mechanism, kinetics, Ionic liquids
Procedia PDF Downloads 1132662 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface
Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L. C. Hsu
Abstract:
In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.Keywords: aerostatic, bearing, elastomer, static stiffness
Procedia PDF Downloads 3782661 Electronic, Structure and Magnetic Properties of KXF3(X= Fe, Co, Mn, V) from Ab Initio Calculations
Authors: M. Ibrir, S. Berri, S. Lakel, D. Maouche And Y. Medkour
Abstract:
We have performed first-principle calculations of the structural, electronic and magnetic properties of KFeF3, KCoF3, KMnF3, KVF3, using full-potential linearized augmented plane-wave (FP-LAPW) scheme within GGA. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Also, we have presented our results of the band structure and the density of states. The magnetic moments of KFeF3, KCoF3, KMnF3, KVF3 compounds are in most came from the exchange-splitting of X-3d orbital.Keywords: Ab initio calculations, electronic structure, magnetic materials
Procedia PDF Downloads 4212660 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation
Authors: Abhisek Sarkar, Abhimanyu Gaur
Abstract:
In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.Keywords: bifurcation, attractor, intermittence, energy cascade, energy spectra, vortex stretching
Procedia PDF Downloads 4002659 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic
Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx
Abstract:
Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM
Procedia PDF Downloads 2072658 Health Challenges of Unmarried Women over Thirty in Pakistan: A Public Health Perspective on Nutrition and Well-being
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
In Pakistan, the health of unmarried women over thirty is an emerging public health concern due to its increasing prevalence. Achieving the Sustainable Development Goals (SDGs) requires addressing nutrition and public health issues. This research investigates these goals through the lens of nutrition and public health, specifically examining the challenges faced by unmarried women over thirty in Faisalabad, Pakistan. According to a recent United Nations report, there are 10 million unmarried women over the age of 35 in Pakistan. The United Nations defines health as "a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity." Being unmarried and under constant societal pressure profoundly influences the dietary behaviors and nutritional status of these women, affecting their overall health, including physical, mental, and social well-being. A qualitative research approach was employed, involving interviews with both unmarried and married women over thirty. This research examines how marital status influences dietary practices, nutritional status, mental and social health, and their subsequent impacts. Factors such as physical health, mental and emotional status, societal pressure, social health, economic independence, and decision-making power were analyzed to understand the effect of singleness on overall wellness. Findings indicated that marital status significantly affects the dietary patterns and nutritional practices among women in Faisalabad. It was also revealed that unmarried women experienced more stress and had a less optimistic mindset compared to married women, due to loneliness or the absence of a spouse in their lives. Nutritional knowledge varied across marital status, impacting the overall health triangle, including physical, mental, and social health. Understanding these dynamics is crucial for developing targeted interventions to improve nutritional outcomes and overall health among unmarried women in Faisalabad. This study highlights the importance of fostering supportive environments and raising awareness about the health needs of unmarried women over thirty to enhance their overall well-being.Keywords: health triangle, unmarried woman over thirty, socio-cultural barriers, women’s health
Procedia PDF Downloads 372657 Improvement of Cardiometabolic after 8 Weeks of Weight Loss Intervention
Authors: Boris Bajer, Andrea Havranova, Miroslav Vlcek, Richard Imrich, Adela Penesova
Abstract:
Lifestyle interventions can prevent the deterioration of impaired glucose tolerance to manifest type 2 diabetes, and also prevent cardiovascular diseases, as it showed many studies (the Finnish Diabetes Prevention Study, Diabetes Prevention Program (DPP), . the China Da Qing Diabetes Prevention Study, etc.) Therefore the aim of our study was to compare the effect of intensified lifestyle intervention on cardiometabolic parameters. Methods: It is an ongoing randomized interventional clinical study (NCT02325804) focused on the reduction of body weight/fat. Intervention: hypocaloric diet (30% restriction of calories) and physical activity 150 minutes/week. Before and after 8 weeks of intervention all patients underwent complete medical examination (measurement of physical fitness, resting metabolic rate (RMR), body composition analysis, oral glucose tolerance test, parameters of lipid metabolism, and other cardiometabolic risk factors. Results: So far 39 patients finished the intervention. The average reduction of body weight was 6,8 + 4,9 kg (0-15 kg; p=0,0006), accompanied with significant reduction of body fat percentage (p ≤ 0,0001), amount of fat mass (p=0,03), waist circumference (p=0.02). Amount of lean mass and RMR remained unchanged. Heart rate (p=0,02), systolic and diastolic blood pressure was reduced (p=0,01 p=0,02 resp.) as well as insulin sensitivity was improved. Lipid parameters also changed - cholesterol, LDL decreased (p=0,05, p=0,04 resp.), while triglycerides showed tendency to decrease (p=0,055). Liver function improved, alanine aminotrasnferase (ALT) were reduced (p=0,01). Physical fitness significantly improved (as measure VO2 max (p=0,02). Conclusion: Results of our study are in line with previous results about the beneficial effect of intensive lifestyle changes on the reduction of cardiometabolic risk factors and improvement of liver function. Supported by grants APVV 15-0228; VEGA 2/0161/16Keywords: obesity, weight loss, diet lipids, blood pressure, liver enzymes
Procedia PDF Downloads 1662656 A Case Study on an Integrated Analysis of Well Control and Blow out Accident
Authors: Yasir Memon
Abstract:
The complexity and challenges in the offshore industry are increasing more than the past. The oil and gas industry is expanding every day by accomplishing these challenges. More challenging wells such as longer and deeper are being drilled in today’s environment. Blowout prevention phenomena hold a worthy importance in oil and gas biosphere. In recent, so many past years when the oil and gas industry was growing drilling operation were extremely dangerous. There was none technology to determine the pressure of reservoir and drilling hence was blind operation. A blowout arises when an uncontrolled reservoir pressure enters in wellbore. A potential of blowout in the oil industry is the danger for the both environment and the human life. Environmental damage, state/country regulators, and the capital investment causes in loss. There are many cases of blowout in the oil the gas industry caused damage to both human and the environment. A huge capital investment is being in used to stop happening of blowout through all over the biosphere to bring damage at the lowest level. The objective of this study is to promote safety and good resources to assure safety and environmental integrity in all operations during drilling. This study shows that human errors and management failure is the main cause of blowout therefore proper management with the wise use of precautions, prevention methods or controlling techniques can reduce the probability of blowout to a minimum level. It also discusses basic procedures, concepts and equipment involved in well control methods and various steps using at various conditions. Furthermore, another aim of this study work is to highlight management role in oil gas operations. Moreover, this study analyze the causes of Blowout of Macondo well occurred in the Gulf of Mexico on April 20, 2010, and deliver the recommendations and analysis of various aspect of well control methods and also provides the list of mistakes and compromises that British Petroleum and its partner were making during drilling and well completion methods and also the Macondo well disaster happened due to various safety and development rules violation. This case study concludes that Macondo well blowout disaster could be avoided with proper management of their personnel’s and communication between them and by following safety rules/laws it could be brought to minimum environmental damage.Keywords: energy, environment, oil and gas industry, Macondo well accident
Procedia PDF Downloads 1892655 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia
Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran
Abstract:
The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators
Procedia PDF Downloads 1652654 Design and Modeling of Human Middle Ear for Harmonic Response Analysis
Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey
Abstract:
The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)
Procedia PDF Downloads 1762653 Type of Dam Construction and It’s Challengings
Authors: Mokhtar Nikgoo
Abstract:
Definition of dam: A dam is one of the most important and widely used engineering structures, which means stopping or changing the course of water on a river. A lake is formed behind the dam, which is called (reservoir). Water is stored in the tank to be used when needed. The dam building industry is a great service to mankind in the use of water and land resources. If they build the dam in a suitable place, they will prevent floods. The water that collects behind the dam and in the dam's lake and reservoir is a valuable reserve for drinking by people and animals. Dry agricultural lands are also irrigated with this water. In addition, in many dams, the pressure caused by the water fall is directed by turbines, and the turbines move the power generation devices and provide power from electricityKeywords: dam, shaft, gallery, spillway, power plant
Procedia PDF Downloads 622652 Relationship Between Insulin Resistance and Some Coagulation and Fibrinolytic Parameters in Subjects With Metabolic Syndrome
Authors: Amany Ragab, Nashwa Khairat Abousamra, Omayma Saleh, Asmaa Higazy
Abstract:
Insulin resistance syndrome has been shown to be associated with many coagulation and fibrinolytic proteins and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders. This study was conducted to determine the levels of some of the haemostatic parameters in subjects having metabolic syndrome and to correlate these values with the anthropometric and metabolic variables associated with this syndrome. The study included 46 obese non diabetic subjects of whom 28 subjects(group1) fulfilled the ATP III criteria of the metabolic syndrome and 18 subjects (group2) did not have metabolic syndrome as well as 14 lean subjects (group 3) of matched age and sex as a control group. Clinical and laboratory evaluation of the study groups stressed on anthropometric measurements (weight, height, body mass index, waist circumference, and sagittal abdominal diameter), blood pressure, and laboratory measurements of fasting plasma glucose, fasting insulin, serum lipids, tissue plasminogen activator (t-PA), antithrombin III activity (ATIII), protein C and von Willebrand factor (vWf) antigen. There was significant increase in the concentrations of t-PA and vWf antigens in subjects having metabolic syndrome (group 1) in comparison to the other groups while there were non-significant changes in the levels of protein C antigen and AT III activity. Both t-PA and vWf showed significant correlation with HOMA-IR as a measure of insulin sensitivity. The t-PA showed also significant correlation with most of the variables of metabolic syndrome including waist circumference, BMI, systolic blood pressure, fasting plasma glucose, fasting insulin, and HDL cholesterol. On the other hand, vWf showed significant correlations with fasting plasma glucose, fasting insulin and sagital abdominal diameter, with non-significant correlations with the other variables. Haemostatic and fibrinolytic parameters should be included in the features and characterization of the insulin resistance syndrome. t-PA and vWf antigens concentrations were increased in subjects with metabolic syndrome and correlated with the HOMA-IR measure of insulin sensitivity. Taking into consideration that both t-PA and vWf are mainly released from vascular endothelium, these findings could be an indicator of endothelial dysfunction in that group of subjects.Keywords: insulin resistance, obesity, metabolic syndrome, coagulation
Procedia PDF Downloads 1372651 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels
Authors: A. Durgadevi, S. Pushpavanam
Abstract:
For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number
Procedia PDF Downloads 1782650 An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF
Authors: L. Capitanu, V. Floresci, L. L. Badita
Abstract:
Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals.Keywords: plastics, composites with short glass fibres, moulding, wear, experimental modelling, glass fibres content influence
Procedia PDF Downloads 266