Search results for: OS based virtualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28229

Search results for: OS based virtualization

13619 National Standard of Canada for Psychological Health and Safety in the Workplace: A Critical Review

Authors: Lucie Cote, Isabelle Rodier

Abstract:

The main objective of the research was to identify demonstrated mechanisms promoting psychological well-being and psychological health in the workplace, and to take a critical look at the 'National Standard of Canada for Psychological Health and Safety in the Workplace - Prevention, Promotion and Guidance to Staged Implementation (Standard)' as a mechanism to promote the psychological well-being and psychological health in the workplace. A review of the scientific literature was conducted, and a case study was done using data from a Canadian federal department. The following six mechanisms with an efficiency supported by most of the studies reviewed were identified: improving psychological well-being in the workplace literacy; strengthening the resilience of employees; creating an environmentally friendly and healthy workplace; promoting a healthy lifestyle; taking into account psychological characteristics in the drafting of job descriptions and tasks during the hiring process; and offering psychological self-care tools. The Standard offers several mechanisms beyond those previously identified and their implementation can be demanding. Research based on objective data and addressing the magnitude of the effect would be required.

Keywords: critical review, national standard of Canada, psychological health, workplace

Procedia PDF Downloads 238
13618 Spatial Data Mining by Decision Trees

Authors: Sihem Oujdi, Hafida Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining

Procedia PDF Downloads 612
13617 Automation Test Method and HILS Environment Configuration for Hydrogen Storage System Management Unit Verification

Authors: Jaejeogn Kim, Jeongmin Hong, Jungin Lee

Abstract:

The Hydrogen Storage System Management Unit (HMU) is a controller that manages hydrogen charging and storage. It detects hydrogen leaks and tank pressure and temperature, calculates the charging concentration and remaining amount, and controls the opening and closing of the hydrogen tank valve. Since this role is an important part of the vehicle behavior and stability of Fuel Cell Electric Vehicles (FCEV), verifying the HMU controller is an essential part. To perform verification under various conditions, it is necessary to increase time efficiency based on an automated verification environment and increase the reliability of the controller by applying numerous test cases. To this end, we introduce the HMU controller automation verification method by applying the HILS environment and an automation test program with the ASAM XIL standard.

Keywords: HILS, ASAM, fuel cell electric vehicle, automation test, hydrogen storage system

Procedia PDF Downloads 70
13616 Secure E-Voting Using Blockchain Technology

Authors: Barkha Ramteke, Sonali Ridhorkar

Abstract:

An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems.

Keywords: blockchain, AMV chain, electronic voting, decentralized

Procedia PDF Downloads 136
13615 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 205
13614 New Public Management: Step towards Democratization

Authors: Aneri Mehta, Krunal Mehta

Abstract:

Administration is largely based on two sciences: ‘management science’ and ‘political science’. The approach of new public management is more inclined towards the management science. Era of ‘New Public Management’ has affected the developing countries very immensely. Public management reforms are needed to enhance the development of the countries. This reform mainly includes capacity building, control of corruption, political decentralization, debureaucratization and public empowerment. This gives the opportunity to create self-sustaining change in the governance. This paper includes the link of approach of new public management and their effect on building effective democratization in the country. This approach mainly focuses on rationality and effectiveness of governance system. These need to have deep efforts on technological, organizational, social and cultural fields. Bringing citizen participation in governance is main objective of NPM. The shift from traditional public management to new public management have low success rate of reforms. This research includes case study of RTI which is a big step of government towards citizen centric approach of governance. The aspect of ‘publicness’ in the democratic policy implementation is important for good governance in India.

Keywords: public management, development, public empowerment, governance

Procedia PDF Downloads 505
13613 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering

Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli

Abstract:

Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.

Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model

Procedia PDF Downloads 514
13612 HPA Pre-Distorter Based on Neural Networks for 5G Satellite Communications

Authors: Abdelhamid Louliej, Younes Jabrane

Abstract:

Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents EVM improvement by 95.26%. NMSE and ACPR were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers.

Keywords: satellites, 5G, neural networks, HPA, TWTA, SSPA, EVM, NMSE, ACPR

Procedia PDF Downloads 91
13611 Towards Safety-Oriented System Design: Preventing Operator Errors by Scenario-Based Models

Authors: Avi Harel

Abstract:

Most accidents are commonly attributed in hindsight to human errors, yet most methodologies for safety focus on technical issues. According to the Black Swan theory, this paradox is due to insufficient data about the ways systems fail. The article presents a study of the sources of errors, and proposes a methodology for utility-oriented design, comprising methods for coping with each of the sources identified. Accident analysis indicates that errors typically result from difficulties of operating in exceptional conditions. Therefore, following STAMP, the focus should be on preventing exceptions. Exception analysis indicates that typically they involve an improper account of the operational scenario, due to deficiencies in the system integration. The methodology proposes a model, which is a formal definition of the system operation, as well as principles and guidelines for safety-oriented system integration. The article calls to develop and integrate tools for recording and analysis of the system activity during the operation, required to implement validate the model.

Keywords: accidents, complexity, errors, exceptions, interaction, modeling, resilience, risks

Procedia PDF Downloads 195
13610 Factors Influencing Savings of People between 30-40 Years Old in Dusit District, Bangkok Metropolis

Authors: Charawee Butbumrung

Abstract:

The purpose of this research were to study the factors influencing savings of people between 30-40 years old in Dusit District, Bangkok Metropolis. The statistic used in data analysis were frequency, mean and standard deviation, t-test, one-way ANOVA and Pearson’s correlation coefficient based on social science statistic program. Result of hypothesis testing showed that married people earning different monthly salary generally saved by depositing into the bank at different level. People of different occupation saved in form of life insurance at different level at statistical significance 0.05. Result of influence testing between saving motivation was found that people saved for use upon sickness or getting older, saved for the children. Worthiness and certainty influenced saving in the same direction at high level while saving motivation in public relation, annual tax reduction, inducement by the others, bonus gift influenced saving in the same direction at moderate level at statistical significance 0.05.

Keywords: Dusit District, factors, saving, Bangkok Metropolis

Procedia PDF Downloads 244
13609 Sulfamethaxozole (SMX) Removal by Microwave-Assisted Heterogenous Fenton Reaction Involving Synthetic Clay (LDHS)

Authors: Chebli Derradji, Abdallah Bouguettoucha, Zoubir Manaa, S. Nacef, A. Amrane

Abstract:

Antibiotics are major pollutants of wastewater not only due to their stability in biological systems, but also due to their impact on public health. Their degradation by means of hydroxyl radicals generated through the application of microwave in the presence of hydrogen peroxide and two solid catalysts, iron-based synthetic clay (LDHs) and goethite (FeOOH) have been examined. A drastic reduction of the degradation yield was observed above pH 4, and hence the optimal conditions were found to be a pH of 3, 0.1 g/L of clay, a somewhat low amount of H2O2 (1.74 mmol/L) and a microwave intensity of 850 W. It should be observed that to maintain an almost constant temperature, a cooling with cold water was always applied between two microwaves running; and hence the ratio between microwave heating time and cooling time was 1. The obtained SMX degradation was 98.8 ± 0.2% after 30 minutes of microwave treatment. It should be observed that in the absence of the solid catalyst, LDHs, no SMX degradation was observed. From this, the use of microwave in the presence of a solid source of iron (LDHs) appears to be an efficient solution for the treatment of wastewater containing SMX.

Keywords: microwave, fenton, heterogenous fenton, degradation, oxidation, antibiotics

Procedia PDF Downloads 280
13608 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 388
13607 Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density

Authors: M. Mahdavi, M. Mohseni, R. Rafiei, H. Yari

Abstract:

Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance.

Keywords: refinish clear coat, pancreatin, Arabic gum, cross-linking, biological degradation

Procedia PDF Downloads 368
13606 Some Observations on the Analysis of Four Performances of the Allemande from J.S. Bach's Partita for Solo Flute (BWV 1013) in Terms of Zipf's Law

Authors: Douglas W. Scott

Abstract:

The Allemande from J. S. Bach's Partita for solo flute (BWV 1013) presents many unique challenges for any flautist, especially in terms of segmentation analysis required to select breathing places in the first half. Without claiming to identify a 'correct' solution to this problem, this paper analyzes the section in terms of a set of techniques based around a statistical property commonly (if not ubiquitously) found in music, namely Zipf’s law. Specifically, the paper considers violations of this expected profile at various levels of analysis, an approach which has yielded interesting insights in previous studies. The investigation is then grounded by considering four actual solutions to the problem found in recordings made by different flautists, which opens up the possibility of expanding Zipfian analysis to include a consideration of inter-onset-intervals (IOIs). It is found that significant deviations from the expected Zipfian distributions can reveal and highlight stylistic choices made by different performers.

Keywords: inter-onset-interval, Partita for solo flute, BWV 1013, segmentation analysis, Zipf’s law

Procedia PDF Downloads 182
13605 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 71
13604 Study the effect of bulk traps on Solar Blind Photodetector Based on an IZTO/β Ga2O3/ITO Schottky Diode

Authors: Laboratory of Semiconducting, Metallic Materials (LMSM) Biskra Algeria

Abstract:

InZnSnO2 (IZTO)/β-Ga2O3 Schottky solar barrier photodetector (PhD) exposed to 255 nm was simulated and compared to the measurement. Numerical simulations successfully reproduced the photocurrent at reverse bias and response by taking into account several factors, such as conduction mechanisms and material parameters. By adopting reducing the density of the trap as an improvement. The effect of reducing the bulk trap densities on the photocurrent, response, and time-dependent (continuous conductivity) was studied. As the trap density decreased, the photocurrent increased. The response was 0.04 A/W for the low Ga2O3 trap density. The estimated decay time for the lowest intensity ET (0.74, 1.04 eV) is 0.05 s and is shorter at ∼0.015 s for ET (0.55 eV). This indicates that the shallow traps had the dominant effect (ET = 0.55 eV) on the continuous photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD).

Keywords: IZTO/β-Ga2O3, self-powered solar-blind photodetector, numerical simulation, bulk traps

Procedia PDF Downloads 86
13603 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 145
13602 Miniaturized and Compact Monopole Corner Antenna with a Periodic Slot Truncated and T-Inverted Stub-Tuning for Ultra Wideband Applications

Authors: R. Dakir, J. Zbitou, Ahmed Mouhsen, A. Errkik, A. Tajmouati, M. Latrach

Abstract:

The design and analysis of a new compact and miniaturized monopole antenna structure for ultra wideband (UWB) wireless applications are presented and suggested in this paper. The proposed antenna structure is based on corner radiator patch with T-shaped slot and fed by mictostrip feed line with a partial ground plane combined a periodic rectangular slot and inverted T-stub tuning to increase the bandwidth. The design parameters and the performance of the suggested antenna are investigated by using 'CST Microwave Studio' and Advanced Design System. The final prototype of the proposed antenna operates from 3GHZ to 25GHz, corresponding to wide input impedance bandwidth around (157.14%) with a size of 16*24mm2 and can be easily integrated with radio-frequency or microwave circuits with low cost manufacturing. Details of the UWB antenna design and both simulated and measured results are described and discussed.

Keywords: UWB, T-shaped slots, improvement, bandwidth, stub tuning

Procedia PDF Downloads 295
13601 The Production of B-Group Vitamin by Lactic Acid Bacteria and Its Importance in Food Industry

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) has been used commonly in the food industry. They can be used as natural preservatives because acidifying carried out in the medium can protect the last product against microbial spoilage. Besides, other metabolites produced by LAB during fermentation period have also an antimicrobial effect on pathogen and spoilage microorganisms in the food industry. LAB are responsible for the desirable and distinctive aroma and flavour which are observed in fermented food products such as pickle, kefir, yogurt, and cheese. Various LAB strains are able to produce B-group vitamins such as folate (B11), riboflavin (B2) and cobalamin (B12). Especially wild-type strains of LAB can produce B-group vitamins in high concentrations. These cultures may be used in food industry as a starter culture and also the microbial strains can be used in encapsulation technology for new and functional food product development. This review is based on the current applications of B-group vitamin producing LAB. Furthermore, the new technologies and innovative researches about B vitamin production in LAB have been demonstrated and discussed for determining their usage availability in various area in the food industry.

Keywords: B vitamin, food industry, lactic acid bacteria, starter culture, technology

Procedia PDF Downloads 390
13600 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 169
13599 Effects of Li2O Doping on Mechanical and Electrical Properties of Bovine Hydroxyapatite Composites (BHA)

Authors: Sibel Daglilar, Isil Kerti, Murat Karagoz, Fatih Dumludag, Oguzhan Gunduz, Faik Nuzhet Oktar

Abstract:

Hydroxyapatite (HA) materials have common use in bone repairing due to its ability to accelerate the bone growth around the implant. In spite of being a biocompatible and bioactive material, HA has a limited usage as an implant material because of its weak mechanical properties. HA based composites are required to improve the strength and toughness properties of the implant materials without compromising of biocompatibility. The excellent mechanical properties and higher biocompatibilities are expected from each of biomedical composites. In this study, HA composites were synthesized by using bovine bone reinforced doped with different amount of (wt.%) Li2O. The pressed pellets were sintered at various sintering temperatures between 1000ºC and 1300°C, and mechanical, electrical properties of the obtained products were characterized. In addition to that, in vitro stimulated body fluid (SBF) tests for these samples were conducted. The most suitable composite composition for biomedical applications was discussed among the composites studied.

Keywords: biocomposites, sintering temperature, biocompatibility, electrical property, conductivity, mechanical property

Procedia PDF Downloads 399
13598 Comparison of Psychological Well-Being, Hope, and Health Concern in Leukemia Patients before and After Receiving Stem Cells

Authors: Tahereh Yavari, Sara Norozi Far

Abstract:

The aim of this study was to compare psychological well-being, hope, and health concerns in leukemia patients before and after receiving stem cells. The statistical population of the present study was made up of leukemia patients in Tehran, and the research sample was among the patients referred to the Bone Marrow Transplant Center of Shariati Hospital in Tehran, and they were placed in two experimental and control groups (15 people in each group), which were selected by purposive sampling method. In order to collect the data for the research, three psychological well-being questionnaires were used by Riff (2002), Schneider's Hope Scale (SHS), and Schneider's Health Concern Questionnaire (HCQ). In order to analyze the data in this research, according to the "pre-test-post-test design with a control group," covariance analysis was used. Based on the research findings, it was concluded that receiving stem cells increases hope and psychological well-being in leukemia patients and significantly reduces health concerns.

Keywords: psychological well-being, hope, health concerns, blood cancer, stem cells

Procedia PDF Downloads 89
13597 The Latent Model of Linguistic Features in Korean College Students’ L2 Argumentative Writings: Syntactic Complexity, Lexical Complexity, and Fluency

Authors: Jiyoung Bae, Gyoomi Kim

Abstract:

This study explores a range of linguistic features used in Korean college students’ argumentative writings for the purpose of developing a model that identifies variables which predict writing proficiencies. This study investigated the latent variable structure of L2 linguistic features, including syntactic complexity, the lexical complexity, and fluency. One hundred forty-six university students in Korea participated in this study. The results of the study’s confirmatory factor analysis (CFA) showed that indicators of linguistic features from this study-provided a foundation for re-categorizing indicators found in extant research on L2 Korean writers depending on each latent variable of linguistic features. The CFA models indicated one measurement model of L2 syntactic complexity and L2 learners’ writing proficiency; these two latent factors were correlated with each other. Based on the overall findings of the study, integrated linguistic features of L2 writings suggested some pedagogical implications in L2 writing instructions.

Keywords: linguistic features, syntactic complexity, lexical complexity, fluency

Procedia PDF Downloads 170
13596 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin

Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam

Abstract:

Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.

Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event

Procedia PDF Downloads 412
13595 Design of a New Package for Saffron Using Kansei Engineering

Authors: Sotiris Papantonopoulos, Marianna Bortziou

Abstract:

This study aimed at developing a new package of saffron using emotional design and specifically the Kansei Engineering method. Kansei Engineering is a proactive product development methodology, which aims to improve the product development process and to translate consumers' feelings and image of a product into design elements. A survey was conducted with two major purposes: (1) to determine the target group of saffron use and to collect information about the adequacy of the product’s promotion and the importance of its packaging, (2) to collect the most important properties of a package according to consumers and to evaluate the existing saffron packages according to these properties (benchmarking). The interaction with the general public conducted by the distribution of online questionnaires and personal interviews as well as the statistical analysis of the results were performed using the SPSS software. The results of the survey were used in all stages of Kansei Engineering. Based on the results, a new saffron package was designed by using various designing and image processing software. This improved package is expected to achieve a better promotion and increased sales of the product.

Keywords: design, emotional design, Kansei Engineering, packaging, saffron

Procedia PDF Downloads 160
13594 Relationships between the Components of Love by Stenberg and Personality Disorder Traits

Authors: Barbara Gawda

Abstract:

The study attempts to show the relationship between the structure of love by Sternberg and personality disorder traits. People with personality disorders experience dysfunctional emotionality. They manifest difficulties in experiencing love and closeness. Their relationships are marked by ambivalence and conflicts, e.g., as in borderline and narcissistic personality disorders. Considering love as a crucial human feeling, the study was planned to describe the associations between intimacy, passion, commitment, and personality disorder traits in a community sample. A sample of 194 participants was investigated (men and women in similar age and education levels). The following techniques were used: the SCID-II to assess personality disorders’ traits and the Triangular Love Scale by Sternberg to assess the components of love. Results show there are significant negative correlations between intimacy, commitment and personality disorders traits. Many personality disorders are associated with decreasing of intimacy and commitment, whereas passion was not associated with personality disorders’ traits. Results confirm that emotional impairments in personality disorders elicit conflicts and problems in relationships based on love and closeness.

Keywords: intimacy, commitment, love, passion, personality disorders

Procedia PDF Downloads 277
13593 Exploring the Use of Discourse Markers by American Male and Female Politicians: A Corpus Based Study

Authors: Gohar Rahman, Rabia Saad Ullah

Abstract:

This research aims to examine the use of discourse markers within the dominion of political speeches, differentiating between genders. The analysis centers on twelve speakers, comprising six males and six females. Speeches selected include commencement, victory, state union addresses, campaigns, and presidential speeches. Halliday and Hasan's cohesion framework, specifically discourse markers, is utilized as a theoretical framework. Data is quantitatively analyzed using AntConc to identify marker frequency. The findings are presented through Excel's tables and graphs, suggesting differences in discourse marker preferences between genders. The findings suggest a divergence in the preferences for discourse markers between males and females. However, asserting that females utilize discourse markers more frequently due to the increased use of filler words, face threat mitigation, and polite speech would be an exaggeration. The disparity in frequency is not substantial, suggesting that males and females exhibit varying language inclinations to some degree.

Keywords: discourse markers, political discourse, gender, speeches, language

Procedia PDF Downloads 56
13592 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 57
13591 The Predictors of Self-Esteem among Business School Students

Authors: Suchitra Pal, Arjun Mitra

Abstract:

Objective: The purpose of this empirical study is to ascertain if gender, personality traits and social support predict the self-esteem amongst business school students. Method: The study was conducted through an online survey administered on 160 business school students of which equal-number of males and females were taken, with controls for education and family income status. The participants were contacted through emails. Data was gathered and statistically analyzed to determine the relationship between the variables. Results: The results showed that gender was not associated with self-esteem. Whilst all the personality and social support factors were found to be significantly inter-correlated with self-esteem, only extraversion, openness to new experiences, conscientiousness, emotional stability and total perceived social support were found to predict self-esteem. Conclusion: The findings were explained in the light of existing conceptualizations in the field of self-concept. Recommendations for early identification and interventions for a population with lower self-esteem levels have been made based on findings of the study. Major implications for researchers and practitioners are discussed.

Keywords: self-esteem, personality, social support, gender, self-concept

Procedia PDF Downloads 503
13590 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 291